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Abstract
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all plus, free and spin-glass. In each case, we determine when the root is influenced
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exact capacity criteria that govern behavior at critical temperatures. For plus boundary

conditions, an L3 capacity arises. In particular, on a spherically symmetric tree that

has nαbn vertices at level n (up to bounded factors), we prove that there is a unique

Gibbs measure for the ferromagnetic Ising model at the relevant critical temperature if

and only if α ≤ 1/2. Our proofs are based on a new link between nonlinear recursions

on trees and Lp capacities.
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1 Introduction

Let T be a finite rooted tree of depthN . Let |v| denote the distance from a vertex v ∈ V (T )

to the root o and write v → w if v is the parent of w, i.e., the neighbor of w closer to the root

than w. Consider the space Ω = Ω(T ) = {+1,−1}V (T ) of configurations on the vertices

of T . For each w 6= o there is a unique edge vw with v → w; let Jw = J(vw) be a positive

number, so that {Jw : o 6= w ∈ V (T )} is a fixed set of interaction strengths on the edges

of T . We assume throughout that the interaction strengths are bounded:

0 < Jmin ≤ Jv ≤ Jmax ∀v ∈ V (T ), v 6= o. (1.1)

This assumption loses little generality; see the end of Section 4. Fix an inverse temperature

β and define the weight of a configuration η ∈ Ω to be the following product over all pairs

of neighboring vertices:

W (η) =
∏
v→w

exp(βJwη(v)η(w)).

The Ising model under various boundary conditions can be obtained by restricting to suit-

able subsets of Ω and assigning probabilities proportional to W . Our aim in this paper is

to pinpoint the locations of the phase transitions that occur in these models as N →∞. In

each case the critical temperature for phase transitions to occur is known. We refine these

results by giving sharp criteria for the existence of a phase transition in terms of capacities.

2 Main results

Let T be any tree, rooted at a vertex o, and let ∂T denote the set of maximal paths oriented

away from the root; these are either infinite or end at a leaf of T . For finite trees, we identify

∂T with the set of leaves in T different from o. For infinite trees, we assume there are no

leaves (except possibly o) so all paths in ∂T are infinite. Let {R(e) : e ∈ E(T )} be a set of

2



resistances (nonnegative numbers) assigned to the edges of T . Let µ be a flow on T , that

is, a nonnegative function on E(T ) such that at every vertex (except for the root and the

leaves) inflow equals outflow: whenever v → w (v is a parent of w) and w is not a leaf,

we have µ(vw) =
∑

y:w→y µ(wy). Such a flow µ can be identified with a positive finite

measure on ∂T , where µ(e) is the measure of the set of paths in ∂T that traverse e. The

total mass of this measure is the outflow from the root, |µ | :=
∑

y:o→y µ(oy). Fix p > 1

and set s = p− 1. For y ∈ ∂T define

Vµ(y) :=
∑
e∈y

(µ(e)R(e))s; (2.2)

V (µ) := sup{Vµ(y) : y ∈ ∂T}; (2.3)

capp(T ) := sup{ |µ | : µ a flow on T with V(µ) = 1} . (2.4)

These capacities have been studied on more general networks as part of discrete nonlinear

potential theory; see, e.g., Murakami and Yamasaki (1992), Soardi (1993, 1994) and the

references therein. However, all the properties of capp that we will use follow readily from

the definition. We note that cap2(T ) reduces to the electrical conductance between o and

∂T . We also observe that if the tree T and the resistances are spherically symmetric (i.e.,

the degree of every vertex w depends only on |w|, and similarly for the resistance R(vw)

between w and its parent v), then among all flows µ with the same mass |µ| the equally

splitting flow minimizes V (µ). To see this, given any other µ, choose a path from o to ∂T

by maximizing µ at every step.

For T finite, let P denote the probability measure on Ω(T ) proportional to W :

P(η) =
W (η)∑
ξ∈Ω W (ξ)

.

This is a ferromagnetic Ising model with no external field and free boundary conditions.

There is another construction of the measure P as a tree-indexed Markov chain. To the

edge leading to a vertex v from its parent, assign the positive bias

θv =
eβJv − e−βJv
eβJv + e−βJv

= tanh(βJv) . (2.5)
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Let the spin η(o) at the root take the values ±1 with probability 1/2 each. Conditional on

η(o), let the spin at every other vertex v be determined recursively, by copying the sign at

the parent with probability (1+θv)/2 and reversing sign with probability (1−θv)/2. When

Jv = J does not depend on v, we write θ for the common bias.

Now suppose T is an infinite, locally finite tree, rooted at o, and let T (N) be the induced

finite subgraph of T with vertices {v ∈ V (T ) : |v| ≤ N}. Letting P(N) be the free-

boundary Ising measure on T (N), we ask about P(N)(η(0) = +1 | η(v) : v ∈ ∂T (N)).

In particular, this converges in probability to 1/2 if and only if the free boundary Gibbs

measure on T is extremal, see Georgii (1988). The question of extremality of the Gibbs

measure with free boundary on regular trees was settled by Bleher et al (1995), see also

Ioffe (1996a) for an elegant alternative proof.

The same question for general trees was solved by Ioffe (1996b) and Evans et al (2000),

where the critical value is computed for an arbitrary tree. However, the question of ex-

tremality at the critical temperature was left open. In this paper we settle the critical case

by showing that zero L2 capacity (with respect to certain resistances) implies extremality.

For vertices y, w of T , write y ≤ w if y is on the path from the root o to w. If y ≤ w and

y 6= w write y < w. In particular, o < y for every vertex y 6= o. We prove

Theorem 2.1 Let T be an infinite, locally finite tree, rooted at o, with no leaves except

possibly at o and interaction strengths Jv satisfying (1.1). For vertices y, w, write y ≤ w if

y is on the path from o to w. Assign to each edge e = vw with v → w, the resistance

Rw := R(e) :=
∏

o<y≤w

(tanh βJy)
−2 , (2.6)

Then the free boundary Gibbs measure at inverse temperature β is extremal if and only

if cap2(T ) = 0.

One direction of this theorem (that extremality implies zero capacity) was already proved

in Evans et al (2000).

4



Plus boundary conditions.

Consider T finite again. Let Ω+ = Ω+(T ) ⊂ Ω(T ) be the set of configurations with

η(v) = +1 for v ∈ ∂T . Then the probability measure P+ on Ω+ defined by

P+(η) =
W (η)∑

ξ∈Ω+
W (ξ)

is the Ising model with plus boundary conditions and no external field.

The critical value of the interaction strength here has long been known for regular trees

(see Preston 1974, 1976). Lyons (1991) computes the critical temperature for general trees

and allows the interaction strengths to vary as well. We refine the known results by de-

termining what happens at criticality. The sharp criterion turns out to involve an “L3-

capacity”. We prove

Theorem 2.2 Let T be any infinite, locally finite tree rooted at o and having no leaves

except possibly o. Let {Jv} be bounded interaction strengths, i.e., satisfying (1.1), and

assign resistance Rv =
∏

o<y≤v(tanh(βJy))
−1 to the edge between v and its parent. Then

the decreasing limit

lim
N→∞

P(N,+)(η(o) = +1)

is equal to 1/2 if and only if cap3(T ) = 0.

Here P(N,+) is the measure on configurations on the first N levels of T with plus boundary

conditions imposed at level N .

For ease of reading, we state the result more explicitly in the special case of spherically

symmetric trees, and when the interaction strength is constant.

Corollary 2.3 Under the hypotheses of Theorem 2.2, assume spherical symmetry as well:

θv = θ|v| and deg(v) = d|v| depend only on |v|. Then there are multiple Gibbs states if and
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only if ∑
n≥1

n∏
i=1

(diθi)
−2 <∞ . (2.7)

In particular, for a spherically symmetric tree T , suppose that the level cardinalities satisfy

|Tn| � θ−nnα . (2.8)

Then there is a unique Gibbs state for the Ising model at criticality if and only if α ≤ 1/2.

Note that for T satisfying (2.8), endowed with edge resistances θ−n at level n, the standard

L2 capacity of T is zero as long as α ≤ 1.

Corollary 2.4 Suppose that Jv ≡ J is constant, and let θ := tanh(βJ). Then phase

transition occurs with plus boundary conditions if and only if cap3(T ) > 0 with resistances

θ−n at distance n from the root. If T is spherically symmetric, this is equivalent to∑
n≥1

θ−2n|Tn|−2 <∞.

(The last statement is also a special case of the previous corollary).

Spin-glass boundary conditions.

For a tree T of depth N , define a measure Psg on Ω(T ) by making the signs η(v)

for v ∈ ∂T i.i.d. fair coin flips, and requiring that the measure be proportional to W

conditionally on the values on ∂T :

Psg(η) = 2−|∂T |
W (η)∑

ξ|∂T=η|∂T W (ξ)
.

This is equivalent to the following spin-glass model considered by Chayes et al (1986): the

Hamiltonian has interactions of a fixed magnitude, and no external field; the signs of the

interactions are determined by i.i.d. fair coin flips, and the boundary conditions are fixed
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and known (e.g. they are all plus). The question is whether, conditional upon the signs of

the interactions, the sign at the root is influenced at all by the boundary values in the limit

as N →∞. A critical interaction strength is given in Chayes et al (1986) for regular trees;

we improve this to the case of general trees and settle what happens at the critical case. The

result is a standard (i.e., L2) capacity criterion, exactly equal to the criterion for the case of

a free boundary.

Theorem 2.5 Let T be an infinite, locally finite tree, rooted at o, with no leaves (except

possibly o) and interaction strengths Jv satisfying (1.1). Assign resistances

Rv =
∏

0<y≤v

(tanh(βJy))
−2 .

Then Psg
(
η(o) = 1

∣∣∣ η|∂T (N)

)
→ 1/2 in law under the spin-glass measure if and only if

cap2(T ) = 0.

Recursions for the log-likelihood. Let xv denote the log-likelihood ratio of having spin 1

versus −1 at v, given the boundary. The method in the plus boundary case is to show that

{xv : v ∈ V (T )} satisfy a recursion of the form

xv =
∑
v→w

fw(xw) . (2.9)

This reduces the problem to the question of whether, on a given infinite tree, this recursion

has a nonzero solution. We give a general solution to this problem, recursively establishing

a set of inequalities relating solutions and sub-solutions of these equations to generalized

capacities. In the cases of free and spin-glass boundary conditions, the log likelihood ratios

are random variables {Xv : v ∈ V (T )} and we obtain versions of (2.9) for certain moments

{mv} of {Xv}.

The rest of the paper is organized as follows. The next section focuses entirely on

the deterministic aspect of the problem, namely, when the recursion (2.9) has a nontrivial
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solution or sub-solution. The theorems in this section are broad enough to handle the

recursions arising from the three types of boundary conditions in the Ising model. Then we

spend one section on each of the three models and conclude with some questions.

3 Recursions on trees and potential theory

Let T be any locally finite rooted tree and let {fv : v ∈ V (T )} be a collection of nonnega-

tive functions indexed by the vertices of T . We are interested in whether the simultaneous

inequalities

xv ≤
∑
v→w

fw(xw) (3.10)

have any nonzero solutions. A special case of interest is when fv ≡ f does not depend on

v. Our characterization is in terms of generalized capacities, which we defined in (2.4).

Fix p > 1 and let s = p− 1. We quote several easy, and well known, consequences of

the definition of capacity.

(i) The supremum in the definition (2.4) of capp is achieved if the set of mea-

sures of bounded potential is non-empty. (Clear by lower semi-continuity of

V (µ).)

(ii) Joining several trees at the root sums their capacities.

(iii) Multiplying all resistances by α decreases capacity by a factor of α.

(iv) A single edge of resistance R connected in series to the root of a tree T

yields a tree of capacity

capp(T )

(1 +Rscapp(T )s)1/s
.

8



To see (iv), observe that there is a one to one correspondence between flows µ from the

root to the boundary in T and flows µR in the enhanced tree, such that |µR | = |µ | and

V (µR) = V (µ) +Rs |µ | s.

These facts yield the following lemma, which we will need below. Denote by T (v) the

subtree of T consisting of v and all vertices that are separated from o by v.

Lemma 3.1 Fix p > 1 and s = p− 1. For any vertex v, define

φ(v) := Rvcapp(T (v)) ,

where Ro=1 by convention. (In particular, φ(v) = Rv if v is a leaf.) Then for any vertex v,

φ(v) =
∑
v→w

(Rv/Rw)φ(w)

(1 + φ(w)s)1/s
.

PROOF: If w 6= o, let T ′(w) be the tree rooted at the parent of w consisting of T (w) plus

the edge between w and its parent. Then

φ(v) = Rvcapp(T (v)) =
∑
v→w

Rvcapp(T
′(w))

=
∑
v→w

(Rv/Rw)
Rwcapp(T (w))

(1 +R(w)scapp(T (w))s)1/s

which gives the desired expression. �

We now relate these computations to the system (3.10). In the following theorem, f(∞)

denotes lim infx→∞ f(x) and s denotes p− 1.

Theorem 3.2 Let T be finite. Suppose that there exist κ1 > 0, p = 1 + s > 1 and a

collection of positive constants {av : v ∈ V (T )} such that for every v ∈ V (T ) and x ≥ 0,

fv(x) ≤ avx

(1 + (κ1x)s)1/s
. (3.11)
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Then any solution to the system

xv =
∑
v→w

fw(xw) with xw =∞ when w is a leaf, (3.12)

satisfies

xo ≤
capp(T )

κ1

, (3.13)

where the resistances are given by

Rv =
∏

0≤y≤v

a−1
y . (3.14)

Similarly, if (3.12) holds and

avx

(1 + (κ2x)s)1/s
≤ fv(x) , (3.15)

then
capp(T )

κ2

≤ xo . (3.16)

PROOF: We first prove that (3.12) and (3.15) imply (3.16). Let g(v) = Rvcapp(T (v))/κ2,

with g(v) = ∞ if v 6= o is a leaf. We show by induction that g(v) ≤ xv for all v. If v is a

leaf, this is true by definition. Assume v is not a leaf and, by induction, that g(w) ≤ xw for

all v → w. Applying the previous lemma gives

g(v) =
∑
v→w

(Rv/Rw)g(w)

(1 + (κ2g(w))s)1/s
.

Note that Rv/Rw = aw when v → w. By monotonicity of x 7→ x/(1 + (cx)s)1/s, and the

induction hypothesis,

g(v) ≤
∑
v→w

awxw
(1 + (κ2xw)s)1/s

.

This is at most
∑

v→w fw(xw) by the assumption (3.15), finishing the induction.

If we assume (3.11) instead of (3.15), an analogous induction yields xv ≤ G(v) for

all v, where G(v) = Rvcapp(T (v))/κ1. Setting v = o now recovers the statement of the

theorem. �
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With regard to sub-solutions, that is, to the system of inequalities (3.10), we have the

following immediate corollary, used in Section 4 to analyze Ising models with free bound-

aries.

Corollary 3.3 Under the hypothesis (3.11), any solution to

xv ≤
∑
v→w

fw(xw)

satisfies xo ≤ capp(T )/κ1. �

Although the estimate for finite trees in Theorem 3.2 is the most useful, the following

corollary for infinite trees is more elegant. The corollary follows directly from the fact that

capp(T ) is the decreasing limit of capp(T
(N)), so we omit the details.

Corollary 3.4 (a) Let T be infinite and locally finite, having no leaves except possibly the

root. Assign resistances according to (3.14). If f satisfies (3.11) for all v ∈ V (T ), x ≥ 0,

then any solution {xv} of (3.10) satisfies xo ≤ capp(T )/κ1. In particular, if capp(T ) = 0

and (3.11) holds, then there are no nontrivial solutions to (3.10) on T .

(b) Conversely, if capp(T ) > 0 and f satisfies (3.15) for all v ∈ V (T ) and x ≥ 0, then

there is a solution of (3.10) with the property that xo ≥ capp(T )/κ2. This solution is given

by xv = Rvcapp(T (v))/κ2 for all v.

To see the value in what we have proved, we turn to some special cases. Recall that we

denote f(∞) = lim infx→∞ f(x).

Corollary 3.5 Suppose that an increasing bounded function f : [0,∞)→ [0,∞) satisfies

(i) f(x) = ax−Θ(xp) near 0 for some p > 1;

(ii) 0 < f(x) < ax for all x > 0.
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Then there is a nontrivial sub-solution xv ≤
∑

x→w f(xw) on the vertices of T if and only

if capp(T ) > 0 with resistances a−n at distance n from the root. �

Remarks:

• Assumption (ii) above follows from (i) if f is concave and f(x) > 0 for all x > 0.

• Denote by |e| the level of an edge e, so edges adjacent to o have |e| = 1. The

branching number br(T ) of an infinite tree T was defined by R. Lyons [14, 15] as

the infimum of the λ such that T admits a nonzero flow µ that satisfies µ(e) ≤ λ−|e|

for all edges e of T . Suppose we assign resistance R(e) = a−|e| to every edge e of

T . If an infinite tree T has br(T ) < a−1 then any positive flow µ on T must satisfy

µ(e) ≥ (a + δ)|e| for some δ > 0 and infinitely many edges e, whence V (µ) = ∞.

Thus

br(T ) < a−1 =⇒ capp(T ) = 0 ∀p > 0 .

Conversely,

br(T ) > a−1 =⇒ capp(T ) > 0 ∀p > 0 ,

since under this assumption, T admits a flow µ with µ(e) ≤ (a−δ)|e| for some δ > 0

and all edges e.

• Lyons (1990,1992) proved that for Bernoulli percolation on a tree T with retention

probability a for each edge, the probability that the root is in an infinite cluster sat-

isfies P[o ←→ ∂T ] > 0 iff cap2(T ) > 0, where the resistance of an edge e is a−|e|.

One of the proofs Lyons gave was recursive, and it was refined by Marchal (1998).

This result is covered by our framework (though not with the optimal constants):

Define xv := − log
(

1−P[v ←→ ∂T (v)]
)

and rewrite the identity

1−P[v ←→ ∂T (v)] =
∏

{w:v→w}

(
1− aP[w ←→ ∂T (w)]

)
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in the form

e−xv =
∏

w:v→w

(
1− a(1− e−xw)

)
,

that is, xv =
∑

v→w f(xw) where

f(x) = − log[1− a(1− e−x)] .

It is easy to check that f(x) = ax−Θ(x2) near 0 and f is concave, so it satisfies the

hypotheses of Corollary 3.5, whence the claimed equivalence for percolation follows.

Corollary 3.6 Suppose that T , an infinite, locally finite, leafless tree, is spherically sym-

metric, meaning that the degree of v depends only on v. Suppose fv = f|v| depends only on

|v| as well. Assume the inequalities (3.11) and (3.15). Then there is a nonzero solution to

xv ≤
∑

v→w fw(xw) if and only if

∞∑
n=1

n∏
j=1

1

(ajdj)s
<∞.

We use this in the next section with s = 2 to obtain an exact summability criterion for phase

transition of the Ising model with plus boundary conditions on an arbitrary spherically

symmetric tree. This refines the work of Lyons (1989), who computed the critical value in

terms of the branching number but did not settle the behavior at criticality.

4 Plus boundary conditions

In this section T is an infinite tree with no leaves except possibly the root and T (N) denotes

the truncation to distance at most N from the root. We fix interaction strengths {Jw :

o 6= w ∈ V (T )} satisfying (1.1), set θv = tanh(βJv), and consider the family of measures

P(N,+) on the space Ω+(T (N)) of±1 configurations on T (N) with plus boundary conditions.

The goal is to determine whether P(N,+)(η(0) = +1) converges to 1/2 or is bounded below
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by 1/2 + ε as N → ∞. This is accomplished in the following theorem, already stated in

the introduction.

Theorem 2.2 Let T be any infinite, locally finite tree rooted at o and having no leaves

except possibly o. Let {Jv} be bounded interaction strengths, i.e., satisfying (1.1), and

assign resistances Rv =
∏

0<y≤v(tanh(βJy))
−1 as in (2.6). Then the decreasing limit

lim
N→∞

P(N,+)(η(0) = +1)

is equal to 1/2 if and only if cap3(T ) = 0.

The key to the proof of Theorem 2.2 and to the main results in each of the next two

sections is the following recursive likelihood computation. For any tree denote by T (v) the

subtree rooted at v, so that for |v| ≤ N , the tree T (N)(v) has vertex set {w ∈ V (T ) : v ≤
w, |w| ≤ N}. Consider a boundary configuration ξ : ∂T (N) → {±1} and let Pξ denote the

Ising measure with boundary condition ξ. Furthermore, let P(N,ξ)
v denote the Ising measure

on T (N)(v) whose boundary condition is ξ|∂T (N)(v).

Lemma 4.1 For each v 6= o let θv = tanh(βJv) ∈ [0, 1). Let

x(N)
v = x(N,ξ)

v = log

[
P

(N,ξ)
v (η(v) = +1)

P
(N,ξ)
v (η(v) = −1)

]

be the log-likelihood ratio at the root given the boundary. Then for |v| < N ,

x(N)
v =

∑
v→w

fw(x(N)
w ),

where for θ ∈ [0, 1) and w ∈ V (T ), we denote

fθ(x) := log

[
cosh(x/2) + θ sinh(x/2)

cosh(x/2)− θ sinh(x/2)

]
and fw(x) := fθw(x) . (4.17)

This lemma is well known; we include its proof for the convenience of the reader.
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PROOF OF LEMMA 4.1: Let η be a configuration on T (N)(v). If |v| < N then for each

child w of v, let ηw be the restriction of η to the subtree T (N)(w). We may then write

W (η) =
∏
v→w

W (ηw) exp(η(v)η(w)βJw).

Writing Zv for the normalizing factor, we have

P(N,ξ)
v (η(v) = +1) = Z−1

v

∏
v→w

∑
ηw:T (N)(w)→{±1}

W (ηw) exp(η(w)βJw)

which equals

Z−1
v

∏
v→w

[
eβJwZwP

(N,ξ)
w (η(w) = 1) + e−βJwZwP

(N,ξ)
w (η(w) = −1)

]
. (4.18)

Similarly, P(N,ξ)
v (η(v) = −1) equals

Z−1
v

∏
v→w

[
e−βJwZwP

(N,ξ)
w (η(w) = +1) + eβJwZwP

(N,ξ)
w (η(w) = −1)

]
. (4.19)

Divide (4.18) and (4.19) by
∏

v→w ZwP
(N,ξ)
w (η(w) = −1) and then consider their ratio:

P
(N,ξ)
v (η(v) = +1)

P
(N,ξ)
v (η(v) = −1)

=
∏
v→w

e(βJw+x
(N)
w ) + e−βJw

e(−βJw+x
(N)
w ) + eβJw

=
∏
v→w

cosh(βJw)(ex
(N)
w + 1) + sinh(βJw)(ex

(N)
w − 1)

cosh(βJw)(ex
(N)
w + 1)− sinh(βJw)(ex

(N)
w − 1)

.

Next, divide numerator and denominator by cosh(βJw) and recall that tanh(βJw) = θw. It

follows that the log of the likelihood ratio above satisfy

x(N)
v =

∑
v→w

log
ex

(N)
w + 1 + θw(ex

(N)
w − 1)

ex
(N)
w + 1− θw(ex

(N)
w − 1)

. (4.20)

Finally, divide numerator and denominator by ex
(N)
w /2 to complete the proof. �

We will need some basic properties of the functions fθ defined in (4.17).

15



Lemma 4.2 For θ > 0, the function

fθ(x) := log

[
cosh(x/2) + θ sinh(x/2)

cosh(x/2)− θ sinh(x/2)

]
is an increasing odd function of x ∈ R, which is concave for x > 0. Moreover, for any

compact interval I ⊂ (0,∞), the inequality

θx

(1 + κ2x2)1/2
≤ fθ(x) ≤ θx

(1 + κ1x2)1/2
(4.21)

holds for all x > 0 and θ ∈ I , where the constants κ2 ≥ κ1 > 0 depend only on I .

PROOF: First, we differentiate fθ:

f ′θ(x) =
θ

cosh2(x/2)− θ2 sinh2(x/2)
=

θ

1 + (1− θ2) sinh2(x/2)
∀x ∈ R. (4.22)

The denominator in (4.22) is positive for all x ∈ R and increasing in x for x > 0, so fθ(x)

is an increasing function of x ∈ R and a concave function for x > 0. Another consequence

of (4.22) is that f ′θ(x) is an even function of x, whence fθ(x) which vanishes at x = 0 is an

odd function of x.

The denominator in (4.22) has the expansion 1+(1−θ2)x2/4+O(x4) near 0, where the

O(x4) term depends on θ, but is a uniformly bounded multiple of x4 for θ ∈ I . Inverting

and integrating, we see that the Taylor expansion of fθ near 0 has the form

fθ(x) = θx− θ(1− θ2)

12
x3 +O(x5) . (4.23)

It remains to prove (4.21). Dividing that inequality by θx, inverting and squaring, shows

that (4.21) is equivalent to 1+κ1x
2 ≤

(
θx
fθ(x)

)2

≤ 1+κ2x
2 . In other words, we must verify

that

ψθ(x) := x−2
[( θx

fθ(x)

)2

− 1
]

satisfies κ1 ≤ ψθ(x) ≤ κ2 , (4.24)
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for all x > 0 and θ ∈ I , with some κ2 ≥ κ1 > 0 that depend only on I . By (4.22), for

x > 0 we have fθ(x) < θx so ψθ(x) > 0. Therefore ψθ is uniformly bounded above and

below by positive constants if x and θ are restricted to compact intervals in (0,∞). Since

fθ(x)→ log

[
1 + θ

1− θ

]
as x→∞ uniformly in θ ∈ I,

we deduce that ψθ(x) converges to a positive limit as x → ∞, uniformly in θ ∈ I . The

expansion (4.23) implies that ψθ(x)→ θ(1− θ2)/6 as x→ 0. These considerations prove

(4.24) and the lemma.

�

PROOF OF THEOREM 2.2: Specialize to plus boundary conditions. Thus we write P
(N,+)
v

for P
(N,ξ)
v where ξ ≡ +1. Let

x(N)
v = x(N,+)

v = log

(
P

(N,+)
v (η(v) = +1)

P
(N,+)
v (η(v) = −1)

)

be the log-likelihood ratio of plus to minus at the root of the subtree T (N)(v). Note that

with plus boundary conditions, all the x(N)
v are positive. Lemma 4.1 shows that

x(N)
v =

∑
v→w

fw(x(N)
w ),

with fw = fθw as in equation (4.17).

Recall that the interaction strengths Jv are in a bounded interval [Jmin, Jmax] ⊂ (0,∞)

and β is fixed. Therefore all the biases θv are in some bounded interval I ⊂ (0,∞).

It follows from Theorem 3.2 and the inequalities in (4.21) that x(N)
o is bounded between

cap3(T (N))/κ2 and cap3(T (N))/κ1 for all N . Taking decreasing limits finishes the proof of

the theorem. �

We conclude this section with a discussion of the boundedness condition (1.1). Given

any tree T with associated interactions {J(e) : e ∈ E(T )} a new tree T ′ may be constructed
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by subdividing edges of T according to the following scheme. Fix an ε > 0. Replace each

edge e with θe < ε by a series of n edges e(1), . . . , e(n) with θe(j) = θ
1/n
e , where n is the

least integer making θ1/n
e greater than ε.

From the error propagation description of the Ising measure, we see that the measure on

{±1}V (T ) gotten by restricting the Ising measure on T ′ to the vertices of T coincides with

the Ising measure on T . Distances in T ′ no longer coincide with distances in T , but it is easy

to see that the various definitions of phase transition in this article are unchanged if limits

on T ′ are taken with respect to distances in T . The associated resistor network to T ′ may be

described as follows. Each edge not subdivided retains the same resistance. A subdivided

edge with resistance R(e) = A/θe is replaced by n edges in series, of resistances Aθ−j/ne

for j = 1, . . . , n. Since θ1/n
e < ε1/2, the effective resistance of these n new edges in series

is less than 1/(1 −
√
ε) times the greatest resistance among them, which is A/θe. Thus

the resistance of the new network is equal to the old resistance up to a bounded factor, and

hence has capacity within a bounded factor of the original capacity. We conclude that no

generality is lost by assuming Jv to be bounded away from zero.

There is some generality lost in assuming Jv to be bounded above, but for good reason,

as shown by the following example. Let T be a spherically symmetric tree with |Tn| ≈
nα2n for some α > 1/2. As seen in Corollary 2.4, there is a phase transition on T with

constant interaction strength satisfying θ = 1/2. Now replace each edge in generation n

by n edges having θe = 2−1/n. The resistance of each new series of edges in generation

n is of order n times the old resistance, so when α ≤ 3/2, the new tree has zero capacity.

Thus the capacity criterion breaks down when the interaction strengths are allowed to have

θv → 1, i.e., Jv →∞.
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5 Free boundary conditions

The question we ask in this section is: if you generate a configuration on T (N) from the free

boundary measure, then look only at the boundary, do you have non-vanishing information

about the root as N → ∞? To formalize this, let ξ be the random boundary configuration

induced by the free measure P(N) on configurations on all of T (N). In the notation of

Lemma 4.1, let

X(N)
v := x(N,ξ)

v

be the log-likelihood ratio of plus to minus at v given the boundary.

We want to know whether the P(N) law of X(N)
o (the free law) converges weakly to

the point mass at 0 as N → ∞. Evans et al (2000) showed that X(N)
o does not go to

zero when T has positive L2 capacity with resistances given by (2.6). As mentioned in the

introduction, they, as well as Ioffe (1996b) have results in the other direction which leave

the critical case open. We sharpen this by showing that zero capacity implies X(N)
o

D−→0.

The following statement is equivalent to Theorem 2.1.

Theorem 2.1′ Let T be an infinite locally finite tree, rooted at o, with no leaves except pos-

sibly at o and interaction strengths Jv satisfying (1.1) and set θv = tanh(βJv)). Suppose

that cap2(T ) = 0 with resistances as in (2.6). Then X(N)
o converges in law to 0.

PROOF: By Lemma 4.1, when |v| < N ,

X(N)
v =

∑
v→w

fw(X(N)
w ), (5.25)

holds pointwise, with fw as in equation (4.17). To make use of this functional recursion,

we will derive from it a system of real inequalities:

m(N)
v ≤

∑
v→w

θ2
wm

(N)
w

1 + κm
(N)
w

. (5.26)
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The quantity m(N)
v will be an expectation of X(N)

v but it is not obvious what measure

should be used to take the expectation. Define the measures QN+
v (respectively QN−

v ) on

the σ-field F (N)
v of boundary values by letting

QN+
v (ξ) := P(N)

v (η : η|∂T (N)
v

= ξ | η(v) = +1)

be the conditional distribution of the free boundary given a plus at v (respectively, given a

minus at v). Define

m(N)
v :=

∫
X(N)
v dQN+

v = −
∫
X(N)
v dQN−

v .

The properties of the measures QN±
v summarized in the following lemmas make these

appropriate for the study of the free boundary.

Lemma 5.1 For any v with |v| < N ,

QN+
v =

∏
v→w

[
(1 + θw)

2
QN+
w +

(1− θw)

2
QN−
w

]
.

In particular, the projection of QN+
v onto boundary configurations on T (N)(w) is

(1 + θw)

2
QN+
w +

(1− θw)

2
QN−
w .

Lemma 5.2 For any odd function φ,∫
φ(X(N)

v ) dQN+
v =

∫
φ(|X(N)

v |) tanh(|X(N)
v |/2) dP(N)

v .

Lemma 5.3 There is a positive, continuous function κ such that when fθ is defined as

in (4.17) with θ = θv, then∫
fθ(X

(N)
v ) dQN+

v ≤ θ

∫
X

(N)
v dQN+

v

1 + κ(θ)
∫
X

(N)
v dQN+

v

.
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To finish the proof from these lemmas, use (5.25) and Lemma 5.1 to evaluate

m(N)
v =

∑
v→w

∫
fw(X(N)

w ) dQN+
v

=
1

2

∑
v→w

∫
fw(X(N)

w ) d((1 + θw)QN+
w + (1− θw)QN−

w )

=
∑
v→w

∫
θwfw(X(N)

w ) dQN+
w . (5.27)

Apply Lemma 5.3 to see that this is at most

∑
v→w

θ2
wm

(N)
v

1 + κ(θv)m
(N)
v

.

By continuity of κ(θ) and the boundedness assumption (1.1), we arrive at (5.26). Theo-

rem 3.2 now applies to show that m(N)
o ≤ cap2(T (N))

κ
with resistances as in the hypothesis of

the theorem. Hence cap2(T ) = 0 implies m(N)
o → 0 as N → ∞. Finally, by Lemma 5.2

with φ(x) = x, this implies that X(N)
o

D−→0 as N →∞, finishing the proof. �

It remains to prove the lemmas. Lemma 5.1 is immediate from the Markov property.

PROOF OF LEMMA 5.2: We first compare QN+
v to the boundary measure induced by the

free measure P
(N)
v . We claim that

dQN+
v

dP
(N)
v

= 1 + tanh(X(N)
v /2). (5.28)

Indeed, from Bayes’ rule, one gets

dQN+
v

dP
(N)
v

=
P

(N)
v (η(v) = +1 | F (N)

v )

P
(N)
v (η(v) = +1)

.

The denominator is 1/2 by symmetry, while the numerator is exp(X
(N)
v )/(1+exp(X

(N)
v )) =

(1 + tanh(X
(N)
v /2))/2 by the definition of X(N)

v . This proves the claim. Now if φ is any
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odd function, then φ(x) = (φ(x)− φ(−x))/2, and thus∫
φ(X(N)

v ) dQN+
v =

∫
1

2
(φ(X(N)

v )− φ(−X(N)
v )) dQN+

v

=

∫
(φ(X(N)

v )− φ(−X(N)
v ))

eX
(N)
v /2

eX
(N)
v /2 + e−X

(N)
v /2

dP(N)
v

=

∫
φ(X(N)

v )
eX

(N)
v /2 − e−X

(N)
v /2

eX
(N)
v /2 + e−X

(N)
v /2

dP(N)
v .

The integrand is a product of two odd functions, whence it is an even function of X(N)
v .

Inserting absolute values yields the desired conclusion. �

PROOF OF LEMMA 5.3: Abbreviate the notation by writing X for X(N)
v , E for integration

against P(N)
v and E+ for integration against QN+

v . First, for any c > 0, the product

E+fθ(X)(1 + cE+X) = E+fθ(X) + c
(
E+fθ(X)

)
(E+X)

is equal, by Lemma 5.2, to the sum

E
[
fθ(|X|) tanh |X/2|

]
+ E

[
fθ(|X|) tanh |X/2|)

]
· E
[
c|X| tanh |X/2|

]
.

Since the functions fθ(x) tanh(x/2) and cx tanh(x/2) are both nondecreasing on [0,∞),

they are positively correlated functions of |X| (under P
(N)
v or any other law), and hence

(E+fθ(X))(1 + cE+X) ≤ E
[
fθ(|X|) tanh |X/2|

]
+ E

[
c|X|fθ(|X|) tanh2 |X/2|

]
= E

[
fθ(|X|) tanh |X/2|(1 + c|X| tanh |X/2|)

]
.

Recall that tanh(x) = x − Θ(x3). Refer to the Taylor expansion for fθ = fv in equa-

tion (4.23) to see that for κ(θ) sufficiently small, there is a range x ∈ [0, δ] for which

fθ(x)(1 + κ(θ)x tanh(x/2)) < θx . (5.29)

Since fθ is itself bounded and less than θx− ε(θ)x on [δ,∞), we may choose κ(θ) smaller

if necessary so that (5.29) holds for all x ≥ 0. Clearly the choice of κ can be made

22



continuously in θ. It follows that

(E+fθ(X))(1 + κ(θ)E+X) ≤ E
[
θ|X| tanh |X/2|

]
= θE+X ,

by Lemma 5.2. Dividing by (1 + κ(θ)E+X) proves the lemma. �

6 Spin-glasses

Let P
(N,sg)
v denote the spin-glass measure Psg on configurations on the tree T (N)(v) (see

Section 1 for definitions). Our object in this section is to determine when the conditional

probability P
(N,sg)
o (η(o) = +1 | F (N)) converges in distribution to a point mass at 1/2,

where F (N) = F (N)
o is the σ-field generated by boundary values on T (N). By the Markov

random field property (or by the definitions of P and Psg), the measures P(N) and P(N,sg)

agree when conditioned on the boundary, so the functions X(N)
v of the previous section

compute conditional probabilities with respect to P(N,sg). Thus our task is to see when

X
(N)
o

D−→0 under the laws P(N,sg).

Theorem 2.5 Let T be an infinite, locally finite tree, rooted at o, with no leaves except

possibly at o and interaction strengths Jv satisfying (1.1) and set θv = tanh(βJv). Then

X
(N)
o

D−→0 under the spin-glass measure if and only if cap2(T ) = 0 with resistances Rv =∏
y≤v θ

−2
y as assigned in (2.6).

PROOF: The structure of the proof is similar to that of Theorem 2.1. We begin with equa-

tion (5.25):

X(N)
v =

∑
v→w

fw(X(N)
w ).

Let U (N)
v := (X

(N)
v )2 and

u(N)
v :=

∫
U (N)
v dP(N,sg)

v ,

where the integrating measure in this case is just i.i.d. fair coin-flips on the boundary of

T (N)(v). In place of Lemma 5.1 we have the observation that the random variables X(N)
w
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have mean zero and are independent as w ranges over the children of a fixed v. Lemmas 5.2

and 5.3 are replaced by the following two lemmas. Define

gv(x) := (fv(
√
x))2.

Lemma 6.1 For all v and all N > |v|,

E(U (N)
v )2 ≤ 3(EU (N)

v )2 .

Lemma 6.2 There are continuous functions κ2(c, θv) ≥ κ1(c, θv) > 0 such that for any

random variable V satisfying EV 2 ≤ c(EV )2, one has

h2(EV ) ≤ Egv(V ) ≤ h1(EV ), (6.30)

with hi(x) = θ2
vx/(1 + κi(c, θv)x).

From these two lemmas the proof is finished as follows. Let E denote expectation

with respect to i.i.d. unbiased (spin-glass) boundary conditions. Since each fv is an odd

function, the quantities f(X
(N)
w ) are independent mean-zero as w varies over the children

of v, which gives rise to the recursive formula

u(N)
v = E(X(N)

v )2

= E

(∑
v→w

fv(X
(N)
w )

)2

=
∑
v→w

Efv(X
(N)
w )2

=
∑
v→w

Egv(U
(N)
w ).

Apply Lemma 6.2 with V = U
(N)
v and c = 3 (obtaining the hypothesis from Lemma 6.1),

to get ∑
v→w

h2(u(N)
w ) ≤ u(N)

v ≤
∑
v→w

h1(u(N)
w ).
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By continuity and the boundedness assumption (1.1), we may take κi in the definition of hi
to be constants independent of v. By Theorem 3.2 we see that limN→∞ u

(N)
o is estimated up

to a constant factor by cap2(T ) with resistances as stated in the hypothesis of the theorem.

Since X(N)
o has mean zero and is bounded by

∑
o→v log[(1 + θv)/(1− θv)], it follows that

the random variables X(N)
o converge in distribution to 0 if and only if their variances u(N)

o

go to zero. This completes the proof of Theorem 2.5. �

It remains to prove Lemmas 6.1 and 6.2. Before proving Lemma 6.1, we record some

preliminary facts.

Lemma 6.3 Suppose f is a differentiable, weakly increasing and concave function on

[0,∞), with f(0) = 0. Then x2 ◦ f ◦
√
x is concave.

PROOF: Let ϕ(x) = f(x0) + (x − x0)f ′(x0) be the tangent line for f at x0. Concavity

implies that ϕ(x) ≥ f(x) for all x ≥ 0 and that ϕ′(x0) ≤ f(x0)/x0. Thus ϕ(x) = ax + b

with b ≥ 0, whence x2 ◦ ϕ ◦
√
x is a concave support function, lying above x2 ◦ f ◦

√
x

with equality at x2
0. We conclude that x2 ◦ f ◦

√
x is the minimum of a family of concave

functions. �

Lemma 6.4 Let g : [0,∞)→ [0,∞) be concave with g(0) = 0, and let Y be a nonnegative

random variable with positive finite variance. Then

E[g(Y )2]

[Eg(Y )]2
≤ EY 2

(EY )2
. (6.31)

PROOF: Let Z = Y/EY and h(z) = g(zEY )/E(g(Y )). Then EZ = Eh(Z) = 1, so there

must exist z1, z2 > 0 such that h(z1) ≥ z1 and h(z2) ≤ z2. Note that (6.31) is equivalent

to E[h(Z)2] ≤ E[Z2]. We may assume that h(z) is not identically equal to z, and thus by

concavity there is a unique fixed point x > 0 for which h(x) = x. For any z ≥ 0,

|h(z)− x| ≤ |z − x| ,
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and therefore,

E[h(Z)2] = E(h(Z)− x)2 + 2x− x2 ≤ E(Z − x)2 + 2x− x2 = EZ2 ,

proving the lemma. �

Lemma 6.5 For any non-negative random variable X ∈ L4, and any concave function f

with f(0) = 0,
Ef 4(X)

(Ef 2(X))2
≤ EX4

(EX2)2
.

PROOF: by Lemma 6.3, the function g := x2 ◦ f ◦
√
x is concave. Applying Lemma 6.4 to

the function g and the random variable Y = X2 ∈ L2 gives

Ef 4(X)

(Ef 2(X))2
=

Eg2(Y )

[Eg(Y )]2
≤ EY 2

(EY )2
=

EX4

(EX2)2
,

proving the lemma. �

Remark. As noted by the referee, Lemmas 6.2, 6.4 and 6.5 are valid for quite general

random variables; it would be interesting to apply them to more general situations.

PROOF OF LEMMA 6.1: Recall the definitions of U (N)
v and u

(N)
v and define the fourth

moment s(N)
v :

U
(N)
v = (X

(N)
v )2 ;

u
(N)
v = EU

(N)
v ;

s
(N)
v = E(U

(N)
v )2 = E(X

(N)
v )4.

For any v, the random variables {fw(X
(N)
w ) : v → w} are independent with mean zero,

so any monomial of these will have mean zero unless all exponents are even. The basic
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recursion (5.25) yields

u(N)
v = E

(∑
v→w

fw(X(N)
w )

)2

=
∑
v→w

Efw(X(N)
w )2 .

Hence

(u(N)
v )2 =

∑
v→w

(
Efw(X(N)

w )2
)2

+
∑

v→{w,w′}

2Efw(X(N)
w )2Efw′(X

(N)
w′ )2 . (6.32)

The fourth power expands similarly:

s(N)
v = E

(∑
v→w

fw(X(N)
w )

)4

=
∑
v→w

Efw(X(N)
w )4 +

∑
v→{w,w′}

6Efw(X(N)
w )2Efw′(X

(N)
w′ )2 . (6.33)

It is required to show that s(N)
v ≤ 3(u

(N)
v )2.

Proceed by induction on N − |v|. First suppose N − |v| = 1 and that v has d chil-

dren. Then X(N)
v is the sum of d independent mean-zero random variables, each equal to

± log(p/(1 − p)). In this case, s(N)
v /(u

(N)
v )2 = 3 − 2/d < 3. Now suppose N − |v| > 1.

By induction, sw ≤ 3u2
w for each child w of v. Applying Lemma 6.5, we see that for each

such w,

Efw(X(N)
w )4 ≤ 3(Efw(X(N)

w )2)2.

Plugging this into equation (6.33) and comparing with equation (6.32) shows that s(N)
v ≤

3(u
(N)
v )2, completing the induction. �

PROOF OF LEMMA 6.2: We observed in the proof of Lemma 6.5 that gv is concave. For

the upper bound, first note that

gv(x) ≤ h(x) :=
θ2
vx

1 + κ(θv)x
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for some κ(θ) is bounded above and below by positive constants for θ in a compact interval.

The proof of this is the same as the proof of (4.21), using the Taylor expansion (that follows

from (4.23))

gv(x) = θ2
vx− θ2

v(1− θ2
v)x

2/6 +O(x3)

together with boundedness and concavity of gv. Jensen’s inequality gives

Egv(V ) ≤ Eh(V ) ≤ h(EV )

which proves the upper bound with κ1 = κ.

For the lower bound, since gv(x) = θ2
vx − O(x2) near 0, we have gv(x) ≥ θ2

vx − λx2

for some λ and all x in some interval [0, δ]. Choosing λ larger if necessary, we can ensure

that gv(x) ≥ θ2
vx− λx2 for all x ≥ 0. Hence

Egv(V ) ≥ θ2
vEV − cλ(EV )2.

Choose δ(θv) > 0 so that the right-hand side is positive for x ∈ (0, δ(θv)). Choose κ2(θv)

so that
θ2
vx

1 + κ2(θv)x
≤ [θ2

vx− λx2] ∧ gv(δ/2)

4c
.

This satisfies (6.30) when EV ≤ δ. But when EV > δ, then the hypothesis on V implies

that P(V > δ/2) ≥ 1/(4c) and therefore that Egv(V ) ≥ gv(δ/2)/(4c). Hence (6.30) is

valid for all x ≥ 0. Together with the evident continuous dependence of κi on θv, this

proves the lemma. �

7 Concluding remarks

Although we have in general no explicit probabilistic interpretation of Lp capacities, in the

case of integer values of p there is a more probabilistic formulation. Positive Lp capacity is

equivalent to the existence of a probability measure µ on ∂T such that p independent paths
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picked from µ will coincide along a path of finite average resistance. This corresponds to

the representation of Lp-energy as a p-fold integral over ∂T .

Finally, we note that other statistical mechanical models lead to recursions similar

to (5.25) but with functions fv that are not necessarily concave. The Potts model with

1 < q < 2 is essentially similar to the Ising model, but when q > 2, the functions fv are not

concave and qualitatively different behavior arises. See Häggström (1996) for a discussion

of this as pertains to the random cluster model.

Remark. Since the first draft of this paper was circulated in 1996, there have been many

developments on the reconstruction problem, some of them influenced by that draft. As

suggested by the referee, we summarize some of these developments here. Pemantle and

Steif (1999) analyzed the Heisenberg model and other continuous-state models on general

trees. They also introduced the important notion of ”Robust Reconstruction”, where the

boundary data is noisy. This notion was analyzed later in great generality by Janson and

Mossel (2004). Census reconstruction on regular trees (where only the number of particles

of each type on the boundary is given) was considered by Mossel and Peres (2004). A

comprehensive survey of the area up to 2004 was written by Mossel (2004). A connection

between reconstruction on trees and Glauber dynamics was found by Kenyon, Mossel and

Peres (2001) (see also Berger et al (2005)), and this theme was developed further by Mar-

tinelli, Sinclair and Weitz (2004). Notable progress on the reconstruction problem for the

asymmetric Ising model was made by Borgs, Chayes, Mossel and Roch (2006) and for the

Potts model by Sly (2009). The arguments in Section 5 were extended to other boundary

conditions in Ding, Lubetzky and Peres (2009) and used there to bound the relaxation time

for Glauber dynamics at the critical temperature.
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