METRICS ON COMPOSITIONS AND COINCIDENCES
AMONG RENEWAL SEQUENCES

PERSI DIACONIS*, SUSAN HOLMES!, SVANTE JANSON?,
STEVEN P. LALLEYS, AND ROBIN PEMANTLEY

Abstract. We study several metrics on the space C(m, n) of compositions of m into
at most n parts. Understanding the geometry of these spaces leads to the study of the
distribution of the distance between randomly chosen compositions. This in turn leads
to some non-standard probability problems. One involves pinned Wiener processes., A
second leads to the following renewal theory problem: Let X3, X5, ...X n; Y1,Y2,...Y, be
positive integer valued random variables. Let Cr, = |{i,; <n:X1+.+Xi=1 +
--++Y;}| be the number of coincidences among the partial sums. We determine limiting
approximations to the distribution of Cr,. When X; and Y; are jointly independent and
identically distributed; the limit is non normal. When X; + --- + X,, = Yi+---4+Y,
is tied down (as in the application to compositions) the limit is normal. Our study was
motivated by algorithms for careful approximation of the bootstrap.

1. Introduction. Let C(m,n) be the set of compositions of m into
at most n parts. Thus

(1.1) C(m, n)={(hy, ha---, hn) : h; > 0, integer, hy + - - - + h,, = m}

n—1

For example, when m = 4, n = 3 the 15 compositions in C(4, 3) are

The familiar stars and bars argument shows |C(m, n)| = ( m+n—1 ) .

112 400 013 130 220
121 040 031 301 202
211 004 103 310 022

Compositions are a basic combinatorial object which arise in several sta-
tistical applications. For example, a class of m students given grades in
{4, B,C, D, E} give rise to a point in C(m,5). Aitchison [1] gives a com-
prehensive treatment of compositional data.

Our motivation for careful study of compositions arose from analysis
of the statistical tool known as the bootstrap. This is based on repeated
samples of of n items chosen with replacement from a list of n. Each sample
can be associated to a point in C(n,n), with h; being the number of times
item 7 appears in the sample. We were seeking “well distributed” points in
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C(n, n) this required natural motions of distance. See Diaconis and Holmeg
[7] for further discussion. :

In Section 2 we introduce and study a number of metrics on C(m,n).
As explained below, this is closely related to the study of metrics on the
space of probability measures. We study the size of the balls in a given
metric by studying the following problem: Pick &, A’ at random in C(m,n).
What is the distribution of d(k, h')? We give fairly complete answers op
C(n,n). The results lead to some non-standard probability problems.

The final two sections focus on some renewal theory problems arising
from the study of our subset metric. Let X;,Xs,-; Y3,Y5--- be positive
integer valued random variables. Let S]X and S}' be the corresponding
partial sums. Define the coincidence number

(1.2) Co={i,j; 1<, j<n:8F =57}
That is, the number of common values between the sets
{Sf(; Sg{: "'131}1('} and {Sy’ S%,’ Tt S,}:}

We study the limit distribution of Cy, under two distributional assumptions.
We first treat the independent and identically distributed case. In Section
3 we prove

THEOREM 1.1. Let {X;}{2,, {Y;}32, be jointly independent and iden-
tically distributed positive integer valued random variables. Suppose that
g-cd{h: P{X; = h} > 0} = 1 and that X, has finite mean u and finite
positive variance o2, Then, as n — oo

Cp —np~!

vn
where the vector (Z1, Z3) has a bivariate normal distribution with mean

zero and non-degenerate (rank 2) covariance matriz. The limit is thus
non-normal.

= min(Zl, Zz)

In Section 4 we prove
THEOREM 1.2. Let {W;}7, be the cell counts when n balls are dropped
into n bozes. Let X; = Wy + 1. Let {Y;}, be an independent copy of
{Xi},. Asn— oo, the C, of (1.2) satisfies
Cn - n/2
vn

where Z is normal with mean 0 and positive, finite variance.

= Z

The connection between Theorems 1.1 and 1.2 and the metrics of Sec-
tion 2 is explained in the introduction to Section 3.
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2. Metrics on compositions. Let C(m,n) be the set of composi-
tions of m into at most n parts. In this section we define and study sev-
eral metrics on C(m,n): total variation (Section 2.1), the subset metric
(Section 2.2), and Vassershtein metric (Section 2.3). Basic properties and
sampling distributions are developed. The sampling distributions are de-
rived for both the uniform and multinomial distributions. The first gives
a geometric feeling for the space. The second is natural for the bootstrap
applications: the measure induced on C(n,n) by bootstrap sampling is
exactly the multinomial distribution of n balls dropped randomly into n
boxes.

Compositions may be regarded as measures on {1,2, ..., n} with total
mass m. This allows any distance on probabilities to be adapted to a metric
on C(m,n). Section 2.4 gives pointers to the relevant literature and some
further examples.

Total variation emerges as our favorite metric. The others are devel-
oped because they have natural invariance properties or lead to interesting
math problems.

2.1. Total variation. For z,y € C(m, n) define

(2.1) drv(z, y) = { minimum number of +1 switches

needed to bring z to y.

For example, take m =4, n = 3, 2 =(4,0,0), y = (1,1,2). We bring z to
y by 400 — 301 — 202 — 112 so dry(z,y) =3.

The standard properties of the total variation distance between two
probability measures (see e.g. Diaconis [6, Chapter 3]) can be translated to
give the following equivalences.

LEMMA 2.1. The total variation distance on C(m,n) defined in (3.1)
satisfies

1 1 n n
drv(z,9) ==Y  |zi—yi| = = max  Tifi—yifi=m—)  min(z;,y)
2 =1 2 |£i1<1 =1 =1

Remark 2.2.

1. The first equality gives an easy way to calculate dpy. The sec-
ond equality shows that if two compositions are close then linear
combinations of them are uniformly close. The third equality gives
a statistically natural property of d7v. In the bootstrap applica-
tion, min(z;, ¥) is the amount of overlap or redundancy between
the two samples. For m = n, the distance is largest (equal to n) if
the two compositions come from disjoint bootstrap replications.

2. The distance dry is invariant under coordinate permutations. On
the other hand the number of points in a metric ball can depend
on where the ball is centered. For example, when m = 4 and
n = 3, there are two points at distance 1 from (004) and 6 points at
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distance 1 from (112). Generic z have n(n—1) points at distance {
but for larger balls, all depends on how close z is to the corner of th,
simplex C(m, n). This becomes more pronounced for larger n. Fo,
example, on C(n,n), if Y has a multinomial distribution and z =
(n, 0, ---,0), drv(z, Y) is essentially constant at n while if ¢ =
(1,1,---,1) drv(z,Y) has an approximate normal distributioy
centered at n/e. This can be proved using the argument of Lemmj,
2.3 which interpolates between these extremes by choosing z at
random.

The next two lemmas give the approximate sampling distributions of
drv(X,Y) where X and Y are randomly chosen compositions. We derive
limiting approximations when m and n are large with m/n — A. This
is the domain of interest for bootstrap applications. The answers can be
quite different in other zones (m small n large or vice-versa). Nowadays,
one can easily simulate this distribution for any specific m, n of interest,

LEMMA 2.3. Let X and Y be independently chosen from the multino.
mial distribution on C(m, n). Then, form,n /' oo with m/n — A 0 <
A < 00, dry(X,Y) is approzimately normally distributed with

mean ~ 2;4()\), var ~ %a’z(/\)
For p(A) = E|W —W'| with W, W' independent Poisson () and

a?(A) = [2X = p()?{1 = 2[22% = Mu(V)?] T [EIW? = WW'| - Au(N))*}

Proof. The means and the variances can be computed by elementary
arguments or by using the conditioned limit arguments as below.

Without essential loss, take A = m/n. Realize the multinomial vari-
ables X and Y as the conditional values of independent Poisson()) vectors
X, Y with X{+...+ X, =Y{ +...+Y,, = m. Let normalized random
variables be defined by:

An = n(z,\l-#z(x)) Yin{lXi =Y - p(N)}
Bn = 7;321':1()(.{ -2)
Cn = V75 E?=1(Yil -A)

Then the conditional law of A, given B, = C, = 0 is the law of
(2drv(X,Y) —p(X))//n(2X — p2(X)). From the multivariate central limit

theorem,
Aqn A
B, — | B
Cn C

with (A, B,C)T trivariate normal having mean vector 0 and covariance
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p 0 1
Conditioned limit theory as in Holst [12] (cor. 3.6) implies that

1 pop
matrix ( p 1 0 ) where p = [2A2 = Ap(A)]~3[E|W2 - WW'| - Ap(A)].

L(An|Bn =Cn =0) — L(A|B=C =0)

Now, if a random normal vector Z is partitioned into Z; and Zs, using
standard notation, £(Z1]2; = z;) is normal with mean p; +X1,55, (22— p2)
and covariance matrix X1 —2122;21 T21. In the present case L(A|B=C =
0) is normal with mean 0 and variance 1 —2p%. This yields the stated result
after elementary rescaling. 0

Remark 2.4. Ramasubban [19,20] studied A, = E|W — W’|". He gives
p(2) = 2xe 22 [Io(2)) + L1(2))] with I,(z) the n*® order modified Bessel
function of the first kind. We compute

A .5 1 1.5 2 2.5 3
u(A) | 674 1.048 1.319 1543 1.738 1.912
c®(A) | 0.330 0.712 1.082 1.448 1.812 2.177

Feller [8] relates Poisson differences and Bessel functions.

Essentially the same proof, conditioning on geometric variables instead
of Poisson variables, gives a limit theorem for the total variation distance
under the uniform distribution on C(m,n), in this case the variance has a
closed form.

LEMMA 2.5. Let X and Y be independently chosen from the uniform
distribution on C(m, n). Then, form,n /oo withm/n — X, 0 < A <
00, dry(X, Y) is approzimately normally distributed with

mean ~ %p(/\)

var ~ %a’z(/\)

For p(\) = E|W - W'| = 2—/\1(%_—-;,\'\—) where W, W’ are independent geo-
. 1 ) . ; .
. metric (1+)‘) variables (P(W = j) = 0(1 - 0Y,0 < j < 00,0 = 135)
and
a2(A) = [2AA+1) = p(V)A{1-2222(A + 1)2

=MA+ DEPN]THEIW? - WW| — Au(V)]P}
A+ 1) + 20+ 1)/(22 +1)*
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Remark 2.6. We compute

) 5 1 15 2 25 3
p(0) | 0.75 1333 1875 24 292 343
o?(\) | 0.352 0.988 1.868 2.995 4.372 5.998

Thus, typical pairs X, Y tend to be further apart under the uniform a4
compared with the multinomial distribution.

2.2. Subset distance. Compositions are in 1—1 correspondence with
subsets of size n—1 in a set of m+n—1 elements: arrange 1, 2, - --, m+n—]
in a row and circle the elements in the subset. The associated composition
has n parts corresponding to the number of elements between the circles,
Thus, with m = 4, n = 3, the composition (400) corresponds to 12 3 4 )
® while (013) corresponds to D2 @4 5 6. The composition (ky, ks, -- .,
k) corresponds to the subset {k1+1, k1 +k2+2, -+, ky+-- +kn-14n-1}.
Write s(z) for the subset corresponding to the composition z.

There is a natural metric on subsets which induces a metric on com-
positions. For z, y € C(m, n) define

dy(z, y) = (n — 1) — |s(z) N s(y)]

Thus for z = (400), y = (013); s(z) = {5, 6}, s(y) = {1, 3}, d(z, y) = 2.

The metric d, depends on the ordering: d,(50000, 11111) = 2
ds(05000, 11111) = 3. On the other hand the metric d, has the following
invariance property: the number of points in the ball {y : d,(z, y) < w}
does not depend on z. This follows from the invariance of the metric
(n — 1) — |s Nt| on subsets under the action of the permutation group
Sn+m—1. The main reason for studying d, is because of the frequent inter-
play between subsets and compositions in the combinatorial literature.

The following two results give the limiting distribution of d,(X,Y)
under the two distributions on C(m, n).

LEMMA 2.7. Let X and Y be tindependently chosen from the uni-
Jorm distribution on C(m, n). Then, for m,n / oo with m/n — ),
0 < A < o0, d, has a hypergeometric distribution. It is approrimately nor-
mally distributed with

mean = (n—-1)- n(n+--—m1121 ~ nA/(1+2)
(n —1)?m?

(m+n-1)2(m+n-2)

var =

nA2/(1+ )3

Proof. Using the correspondence, d,(X,Y) has the same distribution
as (n — 1) — |SNT| where S and T are randomly chosen subsets of size
(n—1) from {1,2,.--m + n — 1}. By invariance, S may be fixed at
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{1,2, ---, n—1}. Now, the distribution of |S N T| is hypergeometric and
the result stated is classical. o

LEMMA 2.8. Let X and Y be independently chosen from the multino-
mial distribution on C(n, n). Then, asn / oo, d,(X,Y) is approzimately
normally distributed with

mean ~ n/2

var ~ o?n  for some o2, 0< 0% < c0.

Proof. Choosing X = (X1,Xs, ---,X,) € C(n, n) from the multino-
mial distribution amounts to dropping n balls into n boxes with X; the
number of balls in box i. Let Y be similarly distributed. Now |s(X) N
s(Y)| = Cn-1 as defined in (1.2) applied to the variables X; + 1. The
result now follows from Theorem 1.2. See Section 4 below. 0]

Remark 2.9. Very similar arguments give results similar to Lemma 2.8
for general m, n.

2.3. Vassershtein distance. The final metric considered in detail
is the analog of a standard metrization of the weak star topology. For
z, y € C(m, n) define

minimum number of adjacent + 1
(2:2) dv(z, y) = switches need to bring z to y.
Thus dy (400, 112) = 5 from (400) — (310) — (301) — (211) — (202) —
(112). Rachev [18] discusses the history and literature for this distance on
probability measures.
From results proved there we have the following equivalent versions:
LEMMA 2.10. The Vassershtein distance dy on C(m, n) defined by
(2.2) satisfies

dv(z, v)

z?:l |1‘:" _y;'-l; $;+ I SRR NN

[max I>=ifi —vifil, Lipa {fillfi= fis1l €1 ,1<i<n}.

Remark 2.11. Note that dy depends on the coordinate ordering:
dy (300, 030) = 3, dy (300, 003) = 6. However, in the bootstrap applica-
tion, if the original sample values are ordered real numbers then adjacency
has a natural meaning and the Vassershtein distance becomes interesting.

LEMMA 2.12. Let X and Y be chosen independently from the uni-
form distribution on C(m, n). Then, as m,n / oo, with m/n — ),
dv(X,Y)/(n¥(2A(1 + X))3) converges in distribution to fol | Bo(t)|dt with
By(t) the standard Brownian bridge on [0, 1].
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Under the multinomial distribution, dv(X,Y)/(n3(22)%) converges
to the same limit.

Proof. We give the proof for the multinomial distribution, the proof
for the Uniform being similar.
Under the multinomial distribution

d n
(X, V)Y IXF - v

with X} and Y;* independent binomial (m, ). Thus, for i = fn, 0 <
8 < 1 fixed, (X} —Y;*)/+/n has a normal limit with mean 0 and variance
26(1 — 8)). Checking the covariances, we see that the increments have
the covariances of a Brownian bridge. To make the convergence argument
rigorous, we may appeal to Billingsley [3, Theorem 24.2). This asserts that
if &1, €, -+ -, €n are exchangeable random variables with sum zero, sum of
squares tending to 1, and max tending to 0, then the associated random
function converges to a Brownian bridge.

Multiplying and dividing the expression for dv(X,Y) by n we get
a Riemann sum for the integral. The result follows from the continuous
mapping theorem. 1]

Remark 2.13. Following work of Cifarelli and Regazzini [4], Shepp [22)
and Rice [21] carried out a careful investigation of the law of fol | Bo(t)|dt.
Shepp gives an elegant derivation of the Fourier transform in terms of Airy
functions and a recursion for moments. Rice managed to numerically invert
the Fourier transform to give highly accurate percentage points and the
following graph of the density.

00 0.2 0.4 0.6 0.8 1.0
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2.4. Other metrics. Compositionsin C(m, n) can be identified with
probability vectors of length n by dividing by m. Thus any metric on
probabilities can be carried over to compositions. Rachev [18] gives an
encyclopedic survey of metrics on probabilities and Vegelius et al. (23]
study measures of similarity between distributions. Two simple metrics
are the Hellinger and £, distances

~n by 1 n
dhe(z, y) = Z‘-=1(xi2 -y )2 dg(z’ y)= Zi=1(3i - yi)2

The first represents compositions as points on a sphere. The second has all
of the advantages of Euclidian space. Each has an easily derived normal
approximation under either the uniform or the multinomial distribution,
using the techniques of Section 2.1.

We conclude by mentioning two further metrics which do not have
natural versions on probabilities. The first is Hamming distance:

du(z, y) = [{i: zi # ui}|

This is invariant under permuting coordinates. It also has the following
invariance property: |{y : du(z, y) < k}| does not depend on z. Under
both uniform distribution u and multinomial distribution m, dgr(X, Y) has
an approximate normal limiting distribution, when m = n, the means and
variances are

Eu{du(X, Y)} = g-n Em{da(X, Y)} = 6n,
PR S
1-6=e? ZO G = 3085+
vary {du(X, Y)} = U4n varm {dg(X, Y)} = 0(1 - 6)
1
—2*[1—0—6_2zk:m]2

Our second metric may be called the childs metric

do(z, y) = miminum number of moves
AR required to bring X to Y
where a move takes (2, ---,z,) = (21-+-,2; — a, e Zita, -, 2y) for
any pair of coordinates ¢ # j and any integer a chosen so all coordinates
are non-negative. Thus d.(50000, 02300) = 2 from (50000) — (32000) —
(02300). If a composition is thought of as n piles of blocks, a move consists
of picking any number of blocks from a pile and depositing them on any
other pile. This metric has good invariance properties. Alas, R.L. Graham
(personal communication) has shown that computing d. is # — p complete.
Indeed, given z, y € C(m, n) form 2 = z; — ;. Let t be the maximum
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number of blocks in a partition such that z;, summed over each block, gives
zero. The d.(z, y) = n —t. However, deciding if dc(z, y) < n — 2 involveg
computing if some non-trivial subset sum of 2; is zero. This is a well knowy
NP complete problem.

Final Remark 2.14. Metrics on combinatorial objects offer a rich ares
of study and application. See Critchlow [5] and Diaconis [6, Chapter 6] for
examples in the space of permutations. We hope that some of the present
results will be found similarly useful for analyzing compositional data.

3. Coincidences for independent renewal sequences. This sec.
tion studies the number of coincidences between independent renewal se-
quences. Throughout we assume that {X;}$2, and {Y;}§2, are each in-
dependent and identically distributed random variables. With {X;} inde-
pendent of {Y;}. We do not assume X; and ¥; have the same distribution,
Assume further that all variables are strictly positive, integer valued, non-
arithmetic (g.c.d. {h : P(X; = h) > 0} = 1), non degenerate (not almost
surely equal to 1), and have finite second moments.

We let SX = X; +---+ X; and S} be the partial sums. The object of
study is the number of coincidences

C',.:]{i,jgn:S,X:S}'H.

We will prove a limit theorem for C,, when X; and Y; have the same law in
Section 3.1. We explain what happens when X; and Y; have different laws
in Section 3.2, which also contains a review of relevant literature.

Our motivation came from studying the metric d, explained in Sec-
tion 2.2 above. Under the multinomial distribution on C(n, n), this has
the same distribution as the number of coincidences between the two se-
quences {W1 +1, Wi+ Wa+2,--- Wi+ -+ Wao1 +(n -1} {Z) +
1, Z1+ 2542, -+, Z1+-+++Zn_1+(n—1)} where {W;}", are the num-
ber of balls in box ¢ when n balls are dropped into n boxes according to
the multinomial distribution and {Z;}?_, are independent, with the same
distribution. Heuristically, W; are approximately independent Poisson (1).
The limit theory in this section was developed to study such coincidences.
It turns out that the heuristic is wrong: the multinomial counts are tied
down and this matters, the correct results for the balls in boxes case are
explained in Section 4. The present results seem of independent interest.
We found a rigorous developement under minimal conditions challenging.

We conclude this introduction with an overview of the argument. With
notation as above, for the remainder of this introduction take X; and Y;
with a common law. Define

Let the common points of Rx and Ry be Ty < Ty < T3 < ---. There are
infinitely many common points from the renewal theorem (condition on
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the set Rx and use the renewal theorem on the renewal process SY). The
T; form a renewal processes. Moreover, the X and Y excursions between
successive T; are independent and identically distributed. Consequently, if
we define Uy, V,, by

(32) 5%, =5, =Ta
The successive (vector) increments of the two dimensional process
(33) (Un, Vﬂ)

are 4id so that (U,, V,,) is a random walk which is strictly increasing in
both coordinates. Theorem 1.1 of the introduction follows from a study
of this walk. Indeed, Cl, is just the number of points of the walk U;, v3)
that lie in the square [0, n] x [0, n]. This is because each point of the walk
corresponds to a coincidence of partial sums with (U, V;) giving the times
when the partial sums are equal. This coincidence is counted in C, if and
only if U;, V; < n.

We next explain (heuristically) why the limit law is the minimum
of two correlated normal variables. The argument is based on a useful
fact from renewal theory. Let Z;, Z,, ... be non-negative independent
and identically distributed, integer valued random variables with E(Z;) =
B, var (Z;) = o2, 0 < 0% < co. Let SZ be the partial sum process. Define
Wi = |{n:SZ < h}|. Then, as h / o,

Wi — hﬂ_l
Vg

where £ has a standard normal distribution. This is an immediate conse-
quence of the ordinary central limit theorem since P{Wj < n} = P{S? >
R}.

Now consider the renewal process (U;, V;) defined above. As noted, C,,
is the number of points of this sequence in the square [0, n] x [0, n]. This is
clearly the same as the minimum of NV, NY where these are respectively
the number of points in the renewal sequences Uj, V; in [0, n]. Now Hunter
[13] showed (NY — np=1)/\/n, (NY — nu=1)//n has a bivariate limiting
normal distribution.

Thus C, suitably normalized converges to the minimum of two nor-
mals.

To make the argument rigorous, we must study the distribution of
(U1, V1). We show this has a non-degenerate covariance matrix in Section
3.2 which also contains further remarks and references.

3.1. Time between coincidences. Throughout we assume {Xi},
{Y:} satisfy the assumptions of the first paragraph of Section 3. We study
the moments of T, and (U, V;) defined in (3.1, 3.2). We need a preliminary
lemma, for which we introduce notation.
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Let F(z) = Zf:o Pyz", |z| < 1, be the probability generating function
of the increments of a renewal process Sy,. Let U(z) = 3 peo un2z”, where

(3.4) up = Zio P{S. = h}
is the renewal measure. Then U(z) = 1/(1 — F(2)).

LEMMA 3.1. Assume p = F'(1) < oo. Then, the increments have
finite variance if and only if

1 © 1
U(z) - -2 PO ;)Zh

stays bounded as z — 1. In this case, U(z) — ,,(11_,) — “gt‘;:"i with o2
the variance of the increment.
: 1-2)-(1=F

Proof. U(2) - missy = = ~ Wiw = AWEeRoR =

EORSERE®D. Since 35 — (1) = pasz /L, sup U() -
<z

F(Tl'-'z'jl < ocoif and only if F(z)—1—(2—1)F'(1)=0((1 - z)?) asz /1.
Now ‘

F(2)=1=(=DF'Q) _ " ooy 41— (1
(1-2)? —/0 F'(1-1(1-2)) (1 -t)dt

By monotone convergence, the right hand side stays bounded as z — 1
if and only if F”"(1—~) < oo if and only if the increments have finite variance.
o

The next result shows that the increments of the renewal process T;
defined at (3.1, 3.2) have finite variance.

PrOPOSITION 3.2. Let {X;}2,, {Yi}{2,, be independent and ident-
cally distributed non-arithmetic, integer valued random variables with finite
means px, gy and finite, positive variances o}, a%,. Let {T;}32, be the
intersection places (cf. 3.2) of the partial sum processes. Then, {T;} isa
renewal process with iid increments Z; = Tiy1 — T; having E(Z;) = pxpy
and var (Z;) = 0%(Z;) < .

Proof. Let uZ be the renewal measure defined at (3.4). Clearly pZ =

ufu{. Hence up — p}lu;,l as h / co. So pz = pxpy < oo. Now, with

notation as in Lemma 3.1,
1 1
qu - ___(
Bxpy  BY

1 1 1 1 1
X Y X Y

uf = =) ——(u; — —)+(uf, ——)(u .___.).
h ) (h ) (h )(h

U0 g = 3 (076~ ] + 3 [ - ]
+ 00 (W - &) (o - %) -
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By Lemma 3.1, the first two terms on the right hand side stay bounded as
z /' 1. So, using Lemma 3.1 again, it suffices to show that the third term
stays bounded.

Using the Cauchy-Schwartz inequality it suffices to show
©0 1 2 (o] 1 2
5 lim (ux——) r2h = ( X—-———) < 00

and the same with Y replacing X. Using the Plancherel Theorem, the first
sum in (3.5) equals

1 2
i

This last is finite since

2

dt < sup
Jzl<1

1 2

px(1— reit)

L
Bx(1~2z)

UX (ret) — UX(z) -

1 11
px(l—z) ~ 1-F(z) px(1-2)

is continuous on |z} < 1: The only singularity could be at z = 1 but the
argument in Lemma 3.1 shows convergence for z — 1 as long as [2] < 1. O

U*(z) -

Remark 3.3. We do not know how to relate higher moments of X and
Y to those of Z. We have shown that if X and Y have finite moment
generating functions then Z does as well.

The next result of this section shows that the bivariate vector (U1, W;)
of (3.2) has a finite, nondegenerate covariance matrix.

PROPOSITION 3.4. Let {X;}2,, {Yi}2, satisfy the assumptions of
Proposition 3.2. Let (U;, V;) be the times of intersection of the two par-
tial sum processes (cf. 3.2). Then (U;, V;) are iid with finite, rank two
covariance matriz and E(U;) = px, E(V;) = py.

Proof. By Proposition 3.2, ETf < co. But U; < Tj and V; <
Ty. Thus the second moments are finite. For the means, condition on
{Yi}2,. Then, U, is a stopping time relative to {X;}32,. Since T} =
Y Xi, E(Ti{Y:)}) = E(U1|{Y;})ux by Walds Lemma (see e.g. Gut
(10, Theorem 1.5.3(i)]). Hence E(T1) = E(U;)ux but E(Ty) = pxpy by
Proposition 3.2 so E(U;) = pux. A parallel argument gives E(V;) = uy. O

The difficult part of the argument is showing that the covariance matrix
of (U1, V1) is rank 2. If the covariance matrix is singular, then al; +bV; +
¢ =0 a.s. for some a, b, ¢ not all zero. We may take a, b, ¢ integral. Now
@ =b = 0 implies ¢ = 0 which is excluded. Hence without loss a # 0. We
may further assume a > 0 and that a and b have no common divisors > 1.
The argument proceeds in two cases:

Case 3.5. b > 0. Then, aU; < —¢ so Uy < —c/a almost surely. This
is impossible since P{U; > M} > 0 for any integer M by the following
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argument. We will assign values to X1, X3, -+, Xp and Y1, Yy, -, Y,
(for some n) which are taken with positive probabilities and are such that
SK # S]Y foralli < M, j < nand S < S¥Y. Thus SX # S}’ for a])
i< M,j <nandsoU; > M. To do the assignment, start with any x,
and Y1 # X;. If say Y3 < Xj, choose Y; such that SY # SE = X,.
If SY < S, Choose Y3 but if SY > SX, choose X;. Continue, always
choosing the next value in the sequence with the smallest sum. This jg
always possible since there are at least two allowed values for each variable
and only one of these is excluded by the construction. The construction
stops when X4 is to be chosen.

Case 3.6. b < 0. Let # = —b > 0. The solutions to the diophantine
equation all — BV + ¢ = 0 are of the foom U = up = ug+ Bh, V =
v = vp + ah for some ug, vo > 0 and A = 0, 1,2, --.. Consider the
sequence {SX — S¥ }n»o. This is a random walk (starting at SX — S¥ )
with increments distributed as Sg‘ — SY. Since the starting point and the
increments take on at least three possible values with positive probability,
there exists, for each M > 0, a possible realization of {SX — SY }2_, for
some n > 0, with all terms # 0 and |SX — SY | > M. This corresponds
to a realization of {X;};=, and {¥;};2, such that (U1, V1) # (ua, va) for
every h < n. Thus, by the assumption alUy +bVi +¢ =0, U1 > upy,
and V) > va4) for a.e. continuation of {X;}, {Y;}. If M is chosen large
enough, every integer larger than M is a sum of possible values of X; and
a sum of possible values of Y;. Hence if say SX — SY < —M, there are
possible continuations {X;}{2F?. |, with b > 1, and Xu, 41+ -+ Xu, 45 =
S¥ — SX . This gives a realization {X;};=1*, {Y;}iz, with S¥X ., =S¥,
and thus V; < v, which is a contradiction. "

Remark 3.7. It is the nondegeneracy of the covariance matrix which

gives a non-normal limit in Theorem 1.1. We have no real hold on any of
the elements of the covariance matrix.

Proof of Theorem 1.1. Suppose now that {X;}, {Y;} have common
distributions. From Proposition 3.4, the bivariate random walk (U;, V;)
has E(U,) = E(V1) = u = E(X;) and finite rank two covariance matrix

o2

>-(7. "
"\ po? o?
Hunter [13] shows

. NV —npu-? NY —nu~! }
m P2 <q, 2 ——u< =®,(a,
i (i < R <o} =0den

with ®, a bivariate normal distribution with mean 0, variances 1, and
correlation p.
From this, (C, — np~1)/+/n converges to min(Z1, Z;) where (21, Z2)
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is bivariate normal with mean 0 and covariance matrix
( o2u=3  polu3 )
pou=3  g2y—3
a

Remark 3.8. Under the assumptions of Theorem 1.1, standard renewal
theory (e.g. [10, Theorem IL.5.1]) shows L NY — u~1as. and INY - pu-t
a.s. hence %C,, —pu~las.

3.2. Remarks and related literature.

1. Consider the number of coincidences under the conditions of The-
orem 1.1 when X; and Y; have different distributions. Proposition
3.4 and Hunter’s Central Limit Theorem [13] can be used to show
that if the means differ then C,, has a normal limit. If the means
are equal, then C,; has a non-normal limit as above.

2. Under the assumptions of Theorem 1.1 the number of coincidences
among the partial sums of j #id random walks is distributed as the
minimum of a j-variate normal (with suitable norming).

3. Things change radically if the increments are allowed to take nega-
tive values. Then, the sequence of partial sums will tend to fill out
an interval and stochastic fluctuations take place at the fringes.

4. Proposition 3.2 of Section 3 is closely related to the regenerative
phenomena studied by Kendall and Kingman [14] [16]. They study
the Abelian semi-group of renewal sequences {u,}3%; under the
coordinate wise product. A masterful summary of this work is in
Kingman [16]. Fristed [9] gives recent developments. A survey of
its extensions to the theory of delphic semi-groups can be found
in the work of Kendall and Harding [15]. This includes a survey
of the work of Rollo Davidson which has connections to several of
the authors of the present paper.

Specialize the set up of Proposition 4.2 to the case where
X1 and Y; have the same distribution. There is then a map from
measures to measures (from the Law of X; to the La.w of Z1)
this corresponds to squa.rmg the renewal measure: uZ = (uX)32.
Evidently this map is one to one and continuous. To see that
it is not onto, we observe that if P(Y = 1) = P(Y = 2) =
the corresponding renewal sequence does not have a squa.re—root
Kendall [14] classified the infinitely divisible renewal sequences,
showing they form a convex set with a countable set of extreme
points.

5. The problem of coincidences among renewal sequences arises in the
analysis of coupling arguments (see e.g. Lindvall [17]). Here the
focus is on the occurrence of the first coincidence.
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4. Coincidences with tied down sequences. This section gives 3
proof of Theorem 1.2, restated here for the readers convenience. Consider
n balls, placed uniformly and independently in n boxes. For 1 < j < n, let
Sj equal j plus the number of balls in boxes 1, ..., j. Let {$F:1<5< n}
and {SJY : 1 £ j < n} each be jointly distributed as {S; : 1 < j < n} and
be independent of each other. Define

41) - Ca=Ca({SF){SY) =#{G, 5):S¥ =57}

to be the number of coincidences among the partial sums.

THEOREM 4.1.
(4.2) w%z asn— oo,

7

where Z is normal with zero mean and positive finite variance.

The steps in proving Theorem 4.1 are:

(1) reduce to a one-sided local Central Limit Theorem (CLT);

(2) Poissonize;

(3) use the Poisson representation to embed in a renewal problem;

(4) apply a known local CLT to the renewal problem to prove the
one-sided local CLT.

We begin with step 1, a reduction to Theorem 4.1’.

THEOREM 4.1." There exist ¢ > 0 and ¢ satisfying sup; é(n, k) — 0
as n — oo, such that for all integers n and k,

(4.3) P(C,=k)> (e-(n—2k)’/(2nga) — d(n, k)) _

oV2tn

To see that this implies Theorem 4.1, let f : R — [0, 1] be any contin-
uous function, and let W,, = (C,, — n/2)/+/n. Then

1 2 2
. C e —(n—2k)?/(2n0?)
hn}'mf Ef(W,) > )Lngo l}ln_l’gf E s e

k:|k—n/2|<Ayn

£ (k= n/2)/ym)
. A
Jim /  [(2)d6(z)

[ @6,

where G is the distribution of /2 times a standard normal. Replacing f
by 1— f shows that Ef(W,) — [ f(z)dG(z) for all bounded continuous f,
establishing the implication.
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For step 2, we construct a version of the process {S;} from a Poisson
point process.

PROPOSITION 4.2. Let {N; : t > 0} be a rate 1 Poisson point process.
Then the conditional law of the process {Nj+3j:7=1238,..) given
Np = n is the same as the law of the process {S;} above.

Proof. One way to assign n balls uniformly and independently into
n boxes is to generate n IID random variables {T;}, uniform on the real
interval [0, ), and then to place ball j in box [Tj|. The values of {Si}
arising in this way will be unaffected if the sequence Ty,...,T, is replaced
by its ascending rearrangement, T(1), - - -» T(ny- But the times of the Poisson
process {N;} conditioned on N, = n are distributed as the order statistics

of n independent draws from [0, n), and therefore {N; + 5} z {S;}. o

Step 3 is to construct a version of C,, via the Poisson representation.
Let {N/} and {NY} be independent rate 1 Poisson processes. Let Ty = 0
and inductively define T}, to be the least integer k > T}, _; such that

N,-X +i= Njy +Jj =k for some integers ¢ and j .

In other words, Ti, T5,... are the joint renewal times of the independent
renewal processes {N]-X + 7} and {Njy + j}, whose increments are each 1
plus a Poisson of mean 1. Let R¥ = RY = 0 and define R (respectively
RY) to be the integer i for which NX +i = T} (respectively NY +i = Ty,).
Then the triples {(Us, V&, Zi) : k > 1} defined by

44 (Us, Vi, Zi)= (R¥ - R, RY -Rl_,, Tu - Th_y)

are IID. In words, the blocks between joint renewals are IID, and these
blocks contain the information: number of renewals in first process, number
of renewals in second process, total time from last joint renewal.

This is an example of the situation studied in Section 3. In particular,
Propositions 3.2 and 3.4 show that Uk, Vi and Z; have finite variances and
EUk=EVk=E(N1+1)=2a.ndEZk=4.

Let C, = sup{k : T < 2n} denote the number of joint renewals before
time 2n. Let G denote the event {NX = NY = n}. Proposition 4.2 implies
that the conditional law of {NX +1, N]-Y +3:1<14, j <n}given Gis
the same as the law of {SX, S}’ :1 <4, j <n}. Observe that on the
intersection of G and {Cy, = k}, one has R = RY = n. Denoting

Pnik = P(Ri‘ = Rky =n, T =2n),
we then have

(4.5) P(Cn=k)=P(C, = k|G) = _Pnk_ ,
j Pn,j
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Finally, step 4 consists of applying a local CLT to {(Uj, V;, Z;)} o
derive Theorem 4.1’ from (4.5). This is done in three substeps. First we
show that

— %, n—2k, 2n—4k
(4.6)  pni=ck™?exp (‘ = n2k - )) +9(n, k),

where @ is the quadratic form obtained by inverting the covariance matriy
of the triple (Uy, Vi, Z1) and

k—oo n

TAY
lim sup k%' <1 + @) lg(n, k)| = 0.

Secondly we show that

— .93/2,-3/2 _(“ ~ 2k)?
4.7 Pk = c2°%n exp ( ona? + h(n, k),
where
— 2k)?
(4.8) Jim sup k2 (1 + ("—kl> Ih(n, k)| = 0.

Thirdly, we show that (4.7), (4.8) and (4.5) imply Theorem 4.1’.

Step 4a is an application of the local CLT from Bhattacharya and Rao
(2, Theorem 22.1, Corollary 22.3]. The conclusion (4.6) follows immediately
once the following hypotheses are verified:

(1) E(Ul, Vl, Zl) = (2, 2, 4);
(i) E(UE + V2 + Z}) < oo
(i) P(Z; > t) < C1e~** for some Cy, C> > 0;
(iv) (Ur, Vi, Z1) generates a truly 3-dimensional lattice.

Of these, (iv) is obvious, (#11) is a consequence of an easy coupling argu-
ment, and (¢) and (i) are consequences of a remark above.

Step 4b, the derivation of (4.7) from (4.6), begins with the easy obser-
vation that Q(z, z, 2z) is nondegenerate, and can be written as z2/(20?)
for some positive finite o. [For if this fails, summing (4.6) in k contradicts
limy, .o P(RX = RY = n) — 0] Letting (4.7) define the quantity h(n, k),
it remains to establish (4.8). In other words, we must show that

n — 2k)? _ n — 2k)?
E(n, k) = (2k) 3/2 €Xp (—(—mz—)—) -_n 3/2 exp (_(_#)
(4.9
satisfies sup, £(n, k)k%%(1 + (n — 2k)?/k) — 0. Fix k, and consider first
the case |n — 2k| > k%-55. The exponential terms in (4.9) are then at most

e=**" which establishes (4.8). On the other hand, when |n — 2k| < k%%,
then the mean value theorem gives

In=3/2 — (2k)%/%| < Ck~%/%|n — 2k| < Ck~195.
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Also, for sufficiently large k,

|exp (—w) — exp (—M) (n—2k)? _ (n—2k)?| _ |n—2k|2

2no3 4ko? | — 4dnkg3

2no3 4ko?

which gives a contribution to (4.8) of

(n —2k)? |n—2k)? In— 2kJ3 |n = 2k)5
U+ ) e SO+

This tends to 0 if |n — 2k| < k®, for any § strictly less than 0.6, this yields
(4.8) in the case |n — 2k| < k035,
The final substep, 4c, is accomplished by showing

(4.10) lim limsup 2okilk=n/2l> Ay/7 Pk _

A—00 pn_00 Ek Pnk

0.

For this shows that given ¢ > 0, we can choose A such that for sufficiently
large n, all but mass ¢ of the conditional law of C, given G is contained in
the range [—A+/n, Ay/n], from which is is immediate that (4.7) and (4.5)
imply Theorem 4.1'.

Firstly, from (4.7),

;p,.,k > Y pax22/m [cn—3/2 exp (~2/(e%)) - sup h(, k)] ,

k:[k—n/2|< VR

and this is at least ¢/n~! for some constant ¢ and sufficiently large n.
Secondly, let co = sup, ; |h(n, k)k*/2(1 + (n — 2k)2/k)|. Thus |h(n, k)| <
cok~'/%(n — 2k)~2. Estimating the numerator of (4.10) gives

Z Pn,k

k:lk—n/2|>AV/T

Z en~3/2 exp (_Q‘;T::ﬁ) + h(n, k)

kifk—n/2|>AVE

Z en=3/2 exp (_ (n;::)z) + E hiny )+

kilk=r/2]>AVE k<n/3

Z h(n, k).

k>n/3, lk—n/2i>AVR

The first of these terms is 2r~1(1 — ®(24/c)) plus an error term going
to zero as n — oo (uniformly in A, though we don’t need the uniformity).
The second term is at most

co E k=M% — 2k)~2 < 9con=3/2 .
k<n/3
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And the third term is at most

-1/2¢9\-2 o €0
2602 (n/3)712(25)7* < .
i>An

These three estimates establish (4.10), thus finishing step 4 and the proof
of Theorem 4.1, |
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