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1 Introduction

1.1 Motivation

The simplex algorithm is widely used to solve linear programs. It works well in practice,
though often one cannot prove that it will. A parameter in the algorithm is the rule that
selects one move among possible moves (“pivots”) that decrease the objective function.
Deterministic pivot rules are known to be possibly very far from optimal. For example,
consider problems with the number m of constraints of the same order as the dimension, n.
For virtually every deterministic pivot rule there is a problem for which the algorithm will
take exponential time, although it is conjectured (the “strict monotone Hirsch conjecture”
of [Z95]) that there exists a descending path whose length is O(n). Variants of the original
argument by Klee and Minty [KM72] are cited in [GHZ98]; for a summary of known results
as of 1995, see [Z95].

Randomized pivot rules appear to do better. According to [GHZ98], several of the
most popular randomized pivot rules appear to have polynomial – even quadratic – running
time. Rigorous and general results on these, however, have been hard to come by. When
one restricts to a narrow class of test problems, it becomes possible to obtain some rigorous
results. Gärtner, Henk and Ziegler [GHZ98] consider three randomized pivot rules. Relevant
to the present paper are their results on the random edge rule, in which the next move is
chosen uniformly among edges leading to decrease the objective function. They analyze the
performance of this rule on a class of linear programs, the feasible polyhedra for which are
called Klee-Minty cubes, after [KM72]. Such cubes are good benchmarks because they cause
some pivot rules to pass through a positive fraction, or even all, of the vertices. Recently
Matousek and Szabó [MSZ04] used Klee-Minty cubes and a recursive construction to build
an abstract cube (an acyclic uinique-sink orientation on the graph of the n-cube) for which
for the random edge algorithm takes time exp(cn1/3).

Nevertheless, it is known [GHZ98] that the expected run time of the random edge
algorithm on an actual Klee-Minty cube is quadratic, up to a possible log factor in the
lower bound:

Theorem 1 (GHZ) The expected number, En of steps taken by the random edge rule,
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started at a random vertex of a Klee-Minty cube, is bounded by

n2

4(Hn+1 − 1)
≤ En ≤

(
n + 1

2

)
.

Here, Hn =
∑n

j=1
1
j ∼ log n is the nth harmonic number.

Their lower bound rules out the possibility that En ∼ n polylog(n) which was twice conjec-
tured by previous researchers [PS82, page 29], [Kel81]. They guess that the upper bound
is the correct order of magnitude, and state an improvement in the upper bound from 1

2n2

to 0.27 . . . n2, whose proof is omitted.

The method of analysis in [GHZ98] describes the progress of the algorithm as a random
walk on an acyclic directed graph. In their model, vertices are bijectively mapped to
sequences of 0’s and 1’s of length n, and each move consists of flipping a 1 (chosen uniformly
at random) to a 0, and simultaneously flipping all bits to the right of the chosen bit. It was
in this form that the problem came to our attention. Indeed, the remainder of the paper is
framed in terms of a variant of this model, which we find to be an intrinsically interesting
model. Our main result, Theorem 2, closes the gap left open in [GHZ98], proving that the
upper bound is sharp to within a constant factor and obtaining upper and lower bounds
differing by a factor of less than 3.

For several reasons, we have moved the model to continuous time and made n infinite:
(1) from our view as probabilists this is the most natural way to frame such a model; (2)
a heuristic we learned from David Aldous is that to understand a limit theorem it is often
best to construct a limiting object or process; (3) we find natural generalizations in the limit
that would not be apparent in the discrete setting. Nevertheless, in order to keep everything
accessible to non-probabilists, we provide intuitive explanations of all probabilistic termi-
nology as well as references to what might be considered standard facts from the probability
literature. We emphasize that our results apply both to the setting of [GHZ98, Corollary 3]
and to the continuous setting, and that the proofs have combinatorial interpretations as
well. Although our model seems simple, we remark that we were unable to prove many
things about the model, including whether certain limits exist.
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1.2 Informal statement of the model

Place a 0 or a 1 at each point of the one-dimensional integer lattice, arbitrarily except that
there must be some point to the left of which lie only 0’s. There is a rate one Poisson process
at every site, that is, an alarm clock which, independently of when it has gone off in the
past and of all other sites, always has the same chance dt of going off in any time interval
[t, t + dt]. Because of the infinite extent of the lattice, there will be infinitely many alarms
going off in any time period. When a clock rings, if there is a 0 there nothing happens, but
if there is 1 there, then it and all (infinitely many) of the sites to the right flip as well –
0’s become 1’s and 1’s become 0’s. It should be intuitively clear that flipping is happening
at an unbounded rate as one moves to the right, but that each fixed site flips only finitely
often in a bounded time period, due to the condition of there being all zeros to the left of
some point. The description up to this point is of a continuous-time Markov process, which
will be formalized below as a random variable M taking values in the space of functions
from the time set [0,∞) to the space of legal configurations of zeros and ones; the value of
M at time t is denoted Mt rather than M(t).

The shift times, namely when the leftmost 1 flips to a 0 (and thus the location of the
leftmost 1 moves to the right), will be particularly important. If we sample Mt only at shift
times, and always describe the configuration relative to the position of the new leftmost 1,
we get a discrete-time Markov chain {Yn} which will also be important. We now give formal
constructions of these two processes. Readers who wish to avoid the formalities should at
least understand the notation for the times {ξi,j} at which alarms go off, the successive
times σn at which the position of the leftmost 1 changes, and the size jumpn of the nth shift.

1.3 Formal construction of the model

Let S be the subset of {0, 1}Z consisting of the all-zero sequence and the sequences of 0’s
and 1’s that have a leftmost 1 (equivalently, have finitely many 1’s to the left of the origin).
Let {N(j, t) : t ≥ 0}j∈Z be a collection of independent and identically distributed Poisson
counting processes. The reader may consult [Dur05, Section 2.6] for the formal construction
of such a collection on a generic probability space (Ω,F , P). Since these are at the heart
of the construction, we pause to explain the relevant properties of such a collection. Each
function N(j, ·) is a step function, whose range is the nonnegative integers, and which
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increases by 1 at random times. Denoting the times of increase ξj,1 < ξj,2, . . ., we have
N(j, t) = 0 for 0 ≤ t < ξj,1, N(j, t) = 1 for ξj,1 ≤ t < ξj,2 and so on5. The increments,
ξj,i − ξj,i−1 are independent for all i and j and distributed as exponentials of mean 1. The
exponential distribution, namely the distribution for which P(X > t) = e−t, is memoryless,
ensuring that the probability of an alarm in any time interval [t, t+dt] at any site j is always
≈ dt, independent of what has happened in the past. Associated with such a process is a
filtration. This is a collection {Ft : t ≥ 0}, where Ft is the σ-field of information known up
to time t. Formally, Ft may be constructed as the collection of all measurable functions of
the values {N(j, s) : s ≤ t}. The purpose of a filtration is to be able to make probability
statements that are “conditional on what you know up to time t”; these are denoted P(· | Ft)
and conditional expectations are denoted E(· | Ft); for any remaining details, the reader may
consult [Dur05].

Having constructed the Poisson processes {N(j, t) : t ≥ 0}j∈Z, and given a starting
configuration ω, we may construct a process {Mt}t≥0 directly as a function of these, with
no further randomness needed. Formally, for each t, Mt will be a random element of S, i.e.
a function from Ω to S, which depends on x ∈ Ω only through the values of the already
defined functions {N(j, s)}. In particular, the bit Mt(i) in position i at time t will depend
only on the times of alarms up to time t in positions in the interval [i0(ω), i], where i0(ω) is
the position of the leftmost 1 of the starting configuration, ω. Since N(j, t) is almost surely
finite, the size of the collection

C(i, t) := {ξj,k : i0 ≤ j ≤ i; k ≤ N(j, t)}

is almost surely finite, so, except possibly on a subset of Ω of measure zero, the following
inductive procedure produces a well-defined value for Mt(i) for all t ≥ 0, i ∈ Z.

For i < i0(ω), set Mt(i) := 0 for all t. Assume now for induction that Mt(j) has
been defined for i0 ≤ j < i, for all t, in terms of the quantities in C(j, t). To
define Mt(i), order the set of times in C(i, t) from least to greatest: call these
times 0 := time0, time1, . . . , timeZ(t) and let l(k) denote the location of the alarm
at time timek: the unique j such that timek = ξj,r for some r. Over each interval
t ∈ [timek, timek+1) each Mt(j) is constant. For t ∈ [0, time1) let Mt(i) = ω(i).
Assuming that Mt(i) has been defined up to time time−k , define Mt(i) for timek ≤

5By convention, these functions are taken to equal their limit from the right at discontinuity points.
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t < timek+1 to be equal to 1−Mtimek−1
(i) if Mtimek−1

(j) = 1(k− 1) and j ≤ i,
and to be equal to Mtimek−1

(i) otherwise. In other words, the bit flips if and
only if the alarm goin off at time timek is at a location where there is a 1 and is
at or to the left of position i.

It should be clear that our formal construction corresponds to the informal process of
defining the process on a finite interval, then adding positions to the right one at a time,
observing that the new bits do not influence the old ones. One may formally verify that
{Mt}t≥0 satisfies the time-homogeneous Markov property, namely for s < t,

P(Mt ∈ S | Fs) = P(Mt ∈ S |Ms) = PMs(Mt−s ∈ S) .

This is either obvious or impenetrable depending on one’s background, so we omit further
discussion. The end result is that we have constructed a continuous time Markov process
{Mt}t≥0 whose jumps occur at a countable dense set of times. If one restricts attention to
a finite interval [i0(ω), i)], then there are finitely many jumps in any finite time interval,
and renaming these times 1, 2, 3, . . . recovers the version of Gärtner, Henk and Ziegler’s
Klee-Minty chain that includes supressed moves (when an alarm rings at a site with a
zero).

We are interested in the speed at which the leftmost 1 drifts to the right. To motivate
the upcoming construction of a discrete-time Markov chain, we remark that it is easy to
see that the intervals between shift times are independent mean 1 exponentials. It would
therefore suffice to determine the long-run average of the sizes of the shifts, that is, the
moves to the right in the position of the leftmost 1. A natural way to do this is to show
that the process reaches some kind of equilibrium, and that in equilibrium the mean jump
size is finite. As will be seen, we cannot complete this but can go far enough on this path
to prove bounded speed. Clearly, the process as defined above does not reach equilibrium:
it is constantly drifting to the right. We therefore define a Markov chain {Yn} which is the
“view from the leftmost 1”.

Define the space Ξ := {1} × {0, 1}Z+
to be the subspace of sequences of 0’s and 1’s

indexed by the nonnegative integers consisting of those beginning with 1. We define two
functionals zeros and ones on Ξ by letting ones(x) ≥ 1 be the number of leading 1’s:

ones(x) := inf{j ≥ 1 : x(j) = 0}
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and letting zeros(x) ≥ 0 be the number of successive 0’s after the first 1:

zeros(x) := −1 + inf{j ≥ 1 : x(j) = 1} .

For j = 1, . . . ,∞ let onesj denote the set {x : ones(x) = j} which form a partition of Ξ,
and for j = 0, . . . ,∞ let {zerosj} denote the analogous partition with respect to the values
of zeros.

We now define a continuous-time Markov process {Xt} on the space Ξ whose law starting
from x ∈ Ξ is denoted Qx. Pick ω ∈ S such that the leftmost 1 of ω is in some position
i and ω(i + j) = x(j) for all j ≥ 0. With this ω as the starting position, construct the
continuous-time process {Mt}t≥0 as above. We construct the Markov process {Xt} on Ξ
as a function of {Mt} as follows. First, define σ0 to be 0, and i0 to be the position of the
leading 1 in ω. Now recursively we let σn be the first time after σn−1 for which N(in−1, ·)
increases. We let jumpn denote ones(σ−n ) and we let in = in−1 + jumpn. Informally, σn

is the nth shift time and in is the position of the leftmost 1 at (and just after) σn. For
σn−1 ≤ t < σn we let Xt ∈ Ξ be the configuration defined by Xt(j) = Mt(j − in(t)) where
n(t) = sup{n : σn ≤ t}. Informally, Xt is Mt shifted so that in−1 is at the origin (and
ignoring negative indices).

Finally, we sample the process {Xt} at shift times to produce a discrete-time chain.
Thus we let

Yn := Xσn

which is now a discrete-time Markov chain. We let Px denote the law of this chain starting
from x and Pν denote the law when the starting state is picked from the probability measure
ν.

1.4 Some problems associated with the model

Since the conditional distribution of σn − σn−1 given Fσn−1 is exponential of mean 1, it
follows that σn/n → 1. The distance the leading 1 has moved to the right by time t is the
sum

∑
n:σn≤t jumpn, and therefore the average speed spd(n) up to time σn is the random

quantity

spd(n) := σ−1
n

n∑
j=1

jumpj ∼ n−1
n∑

j=1

jumpj . (1)
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It is not only a priori unclear, but also in fact we cannot prove that spd(n) has a limit as
n →∞. Consequently we define

inf-spd := liminfnspd(n);

sup-spd := limsupnspd(n).

Problem 1: Show that the limiting speed exists.

Note that computer simulations indicate that the limit exists and it might be around 1.76.
The remainder of this section concerns ergodic properties of the continuous time model,
and could be skipped by readers interested only in the discrete results and their proofs.

The space Ξ is compact in the product discrete topology. The Markov chain {Yn} is
time-homogeneous, meaning that P(Yn+1 ∈ A |Yn = ω) is independent of n. Let µn denote
the law of Yn and νn := n−1

∑n
k=1 νk; the set of probability measures on a compact space is

compact, so although νn may not converge, there is at least one subsequential limit, call it
ν, in the weak topology6. It is elementary to see that any such weak limit ν is a stationary
distribution for the chain {Yn}, meaning that under Pν , each individual Yn will have law ν.

Problem 2: Show that there is a unique stationary distribution for the chain
{Yn}.

This would imply a positive solution to Problem 1. To elaborate, a Markov chain with a
unique stationary distribution is ergodic in the sense having a trivial invariant σ-field [Dur05,
Section 6.1] (this implies the more commonly understood notion of ergodicity). From this it
follows by Birkhoff’s Ergodic Theorem [Dur05, Chapter 6 (2.1)] that the averages converge
to the mean: with probability 1,

n−1
n∑

j=1

jumpj →
∫

jump1 dπ

where π is the unique stationary measure. Coupled with our indepedent proof that the speed
is bounded, we could then conclude existence of the limiting speed, as well as the indepen-
dence of this from the starting state. Although we do not have a solution to Problem 2, we
believe something stronger may hold.

6The measure ν is a weak limit for {νnk} in the product topology if νnk (A) → ν(A) for any finitely

determined set A of configurations, that is, any set of the form {ω : ω(jk) = εk, 1 ≤ k ≤ L}.
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Problem 3a: Assume there is a unique stationary measure, π, and let T jπ

denote the composition of the measure π with a translation by j bits, e.g., if A

is the event that there is a 1 in position r, then T jπ(A) = π(Aj), where Aj is
the event that there is a 1 in position r + j. Prove that T jπ → M , where M is
independent fair coin-flipping.

Informally, this says we believe that once the process has been going a while, the bits far
to the right of the leftmost 1 are nearly random.

Problem 3b: Prove or disprove that the unique stationary measure π is equiv-
alent (mutually absolutely continuous) to M .

Informally, this says that no definitive test can distiguish a single sample from π from
independent fair coin-flips, though the two measures may give different likelihoods for the
first few bits.

2 Statement of main result and lemmas

In this section we state the results that we do know how to prove, namely bounds on the
lim inf and lim sup speeds.

Theorem 2 Although the limiting speed of drift of the leftmost 1 is not known to exist,
both its limsup and liminf are bounded on both sides by constants:

1.646 < inf-spd ≤ sup-spd < 4.33 .

Relating back to the performance of the random edge rule on Klee-Minty cubes, we
have:

Corollary 3 For sufficiently large n, starting from a uniform random vertex of the Klee-
Minty cube,

0.057n2 ≤ En ≤ 0.152n2 .
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Proof of Corollary 3 from Theorem 2: Gärtner, Henk and Ziegler consider another
way of counting steps, where instead of choosing an edge at random among all those de-
creasing the objective function, they choose an edge at random from among all edges, but
suppress the move if the edge increases the objective function. For a vector x of 0’s and
1’s of length n, let L∗(xr) = L∗(xr, n) denote the expectation of the number N (r) of moves
starting from xr, including the suppressed moves, before the minimum is reached, where xr

is the vector of length n, with the first n − r digits 0 and the last r digits 1. They prove
the following identity [GHZ98, Lemma 4].

En =
1
2n

n∑
r=1

L∗(xr, n) . (2)

Including suppressed moves in the count corresponds in our infinite, continuous-time model
to counting the number of clock events (only among the first n vertices). Let T (r) be
the time it takes starting from xr to reach the minimum. To relate T (r) to N (r), note
that the numbers of clock events between any two flips of the leftmost 1 are a sequence of
independent geometric random variables of mean n: from the time the leftmost 1 enters a
position, j, the locations of clock events are a sequence of uniform picks from [1, n] ending
when j is chosen. The strong law of large numbers implies that the average, Ak of the first
k of these converges to n as k → ∞; in fact it is easy to see that Ak/(kn) → 1 as k → ∞
uniformly in n. The quantity N (r)/T (r) is such an average for a random k (the number of
shift times before all n bits are zero) and since k → ∞ in probability when r → ∞, we
have N (r)/(nT (r)) → 1 as r → ∞, except when k = O(1), which happens with vanishing
probability as r →∞. If the liminf and limsup speed are known to be in the interval (a, b),
then with probability 1,

r

b
< T (r) <

r

a

for sufficiently large r. Hence, for sufficiently large r, almost surely,

nr

b
< N (r) <

nr

a
.

Plugging into (2) and summing from r = 1 to n gives

n2

4b
< En <

n(n + 1)
4a

for sufficiently large n. Plugging in b = 4.33 and a = 1.646 proves the corollary. �
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The lower bound of Theorem 2 is proved in Section 4. The lower bound of 1.646 may in
principle be improved so as to be arbitrarily near the actual speed. For the upper bound,
we state some lemmas. Let

Hk :=
k∑

j=1

1
j

denote the kth harmonic number. Let {Sn} be a random walk whose increments are equal
k with probability 2/((k + 1)(k + 2)) for each integer k ≥ 1. Let S := SG−1 where G is an
independent geometric random variable with mean 2. Let Θ be a random variable satisfying

P(Θ ≥ j) = 1− FΘ(j − 1) =
∞∑

k=1

1
k

1
k + j

=
Hj

j
.

Assume {Sn} and Θ are independent of each other and of {Ft}; denote expectation with
respect to Px by Ex and let E denote expectation with respect to the laws of S and Θ.
Analogously with zeros(x) we define the quantity

zeros∗(x) := inf{j ≥ 0 : x(ones(x) + j) = 1}

to be the number of zeros after the first block of ones; thus zeros∗(x) ≥ 1, zeros∗(x) =
zeros(x) if and only if zeros(x) ≥ 1 and zeros(x) = 0 if and only if ones(x) ≥ 2.

Lemma 4 For any x ∈ onesj,

Exjump1 =
j∑

k=1

1
k

.

Equivalently, for any x ∈ Ξ,
Exjump1 = Hones(x) .

Our key lemma is the following statement. Recall that Y1 is the view from the leftmost 1
right at the first shift time.

Lemma 5 For any j ≥ 1, any x ∈ zerosj, and any integer L ≥ 1,

Px(ones(Y1) ≥ L) ≤ P(S + j ≥ L) ,

When zeros(x) = 0 then

Px(ones(Y1) ≥ L) ≤ P(Θ + zeros∗(x) ·B + S ≥ L)

where B is a Bernoulli with mean 1/2, and Θ, B and S are all independent.
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Since S + Θ + zeros∗(x) is an upper bound for both quantities S + zeros∗(x) and S +
Θ+ zeros∗(x) ·B appearing as stochastic upper bounds in Lemma 5, and since Hn increases
in n, we may put this together with Lemma 4 to obtain

Corollary 6 For any x,
Exjump2 ≤ EHΘ+zeros∗(x)+S .

�

Lemma 7 The conditional distribution of zeros∗(Yn) given Fσn−1 is always bounded above
stochastically by the law of Θ. In other words, for all j,

P(zeros∗(Yn) > j | Fσn−1) ≤ 1− FΘ(j) .

Proof of upper bound in Theorem 2 from the lemmas: It suffices to show that for
any x ∈ Ξ,

Exjump3 ≤ 2.92 .

(To explain the appearance of the 3: it suffices to show this for any jumpk, but it is false
for jump1 and jump2.) We simply iterate conditional expectations and compute. By the
Markov property, and Corollary 6,

Exjump3 = ExEY1 jump2

≤ Ex

(
EyHS+Θ+zeros∗(y)

)∣∣
y=Y1

.

Since Hn is increasing in n we may use the stochastic upper bound in Lemma 7 for any x to
see that this is at most EHS+Θ(2) where Θ(2) is the sum Θ1 + Θ2 of two independent copies
of Θ. The upper bound in Theorem 2 is completed by computing an upper bound for this.

The function H is concave and Θ(2) ≥ 1, so

HΘ(2)+j −HΘ(2) ≤ Hj+1 − 1

and we may therefore conclude that

EHΘ(2)+S ≤ EHΘ(2) + EHS+1 − 1 . (3)
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To compute the quantity EHΘ(2) , use the identity EHZ = 1 +
∑

l≥2(1/l)P(Z ≥ l) with
Z = Θ1 +Θ2. Breaking the event {Z ≥ l} into the disjoint union of events {Z ≥ l, Θ2 = k},
we have

EHΘ1+Θ2 = 1 +
∑

l≥2,k≥1

1
l
P(Z ≥ l,Θ2 = k)

= 1 +
∑
1≤j,k

1
j + k

P(Θ1 ≥ j)P(Θ2 = k) +
∑

k≥l≥2

1
l
P(Θ2 = k)

= 1 +
∑
1≤j,k

1
j + k

Hj

j

(
Hk

k
− Hk+1

k + 1

)
+

∑
l≥2

1
l
P(Θ2 ≥ l)

= 1 +
∑
1≤j,k

1
j + k

Hj

j

Hk+1 − 1
k(k + 1)

+
∑
l≥2

Hl

l2
. (4)

In a previous draft of this paper, we evaluated these quantities numerically, both rig-
orously and nonrigorously. The rigorous bounds for the first sum on the right-hand side
of (4) showed it to be between 1.9975 and 2.00093 and nonrigorous numerical estimates
show a result even closer to 2. While it is not relevant to the problem of the run time of
the random edge rule on Klee-Minty cubes, we were led to state an obvious question:

Problem 4 (now solved) Prove or disprove that∑
1≤j,k

1
j + k

Hj

j

Hk+1 − 1
k(k + 1)

= 1 .

In a surprising demonstration of computer assisted identity-proving, Carsten Schneider [PS04]
has since evaluated this sum as exactly

−4ζ(2)− 2ζ(3) + 4ζ(2)ζ(3) + 2ζ(5) = 0.999222 . . .

where ζ(s) :=
∑∞

n=1 n−s is the classical zeta function. Similarly, the second sum is shown
there to equal 2ζ(3)− 1 ≈ 1.4041138 . . .. Thus we have

EHΘ(2) = 2ζ(5)− 4ζ(2)(ζ(3)− 1)) = 3.4033 . . . . (5)
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For the other term on the RHS of (3), let φ(z) = EzS =
∑∞

n=0 znP(S = n) be the
generating function for S, so zφ is the generating function for S + 1. For any positive
integer j there is an identity∫ 1

0

1− zj

1− z
dz =

∫ 1

0
(1 + · · ·+ zj−1) dz = Hj .

Consequently, we may write

EHS+1 − 1 =
∫ 1

0

z − EzS+1

1− z
dz =

∫ 1

0
z
1− φ(z)

1− z
dz . (6)

To compute the generating function φ, first compute the generating function f for the
increments of {Sn}:

f(z) =
∞∑

k=1

2
(k + 1)(k + 2)

zk =
2z − z2 − 2(1− z) log 1

1−z

z2
.

Since φ is the sum of G − 1 increments, with P(G − 1 = k) = 2−k, and since the sum of k

independent increments has generating function fk,

φ(z) =
∑
k≥0

2−kf(z)k =
1

2− f(z)

and the integral in (6) becomes

EHS+1 − 1 =
∫ 1

0

2z(log 1
1−z − z)

3z2 − 2z + 2(1− z) log 1
1−z

dz .

One may evaluate this numerically to approximately 0.918797. In the appendix, we obtain
a rigorous bound which is only slightly worse: 0.91905. Adding this to the value of EHΘ(2)

gives 4.322 . . ., proving the upper bound in Theorem 2. �

3 Proofs of Lemmas

We employ below the usual notation Mt− for lims↑t Mt. The idea behind most of the
arguments here, which is equally valid in the discrete and continuous models, is that events
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of interest may be described combinatorially in terms of the relative orders of corresponding
clock events, which are invariant under permuting indices.

Proof of Lemma 4: By definition, each x ∈ onesj begins with j 1’s in positions 0, . . . , j−1
followed by a zero. The evolution of {Mt} decreases the binary representation

∑
k 2−kx(k),

whence M
jump−1

∈ onesk for some k ≤ j, that is, there is always a zero in some position in

[0, j]. Furthermore, once there is a zero in position k for some k < j, then there is always a
zero at or to the left of position k. It follows that jump1 is equal to the least k < j for which
ξj,1 < ξ0,1, that is, for which the clock in position k goes off before the clock at position 0.
The minimum is taken to be j if there is no such k.

It follows that Px(jump1 = j) = 1/j and that for 0 < k < j,

Px(jump1 = k) =
1

k(k + 1)
. (7)

To see this, note that jump1 = k if and only if ξ0,1 is the minimum of the variables {ξk,1 :
0 ≤ k < j}. Similarly, for 0 < k < j, jump1 = k if and only if ξk,1 is the minimum of the
variables {ξr,1 : 0 ≤ r ≤ k} and ξ0,1 is the next least of the values. Computing expectations
via (7) proves the lemma. �

Proof of Lemma 7: Again let us denote q = ones(x). We recall that P(jump1 = k) = 1/q

for k = q and 1/(k(k + 1)) for 1 ≤ k ≤ q − 1. We claim that for any k ≤ q,

P(zeros∗(Y1) ≥ j | jump1 = k) ≤ k + 1
k + j

. (8)

If we can show this, then we will have

P(zeros∗(Y1) ≥ j) ≤ 1
q

q + 1
q + j

+
q−1∑
k=1

1
k(k + 1)

k + 1
k + j

.

Changing q to q + 1 increases this by

j − 1
(q + 1)(q + j)(q + j + 1)

which is nonnegative. Setting q = ∞ then yields the upper bound in the lemma, and it
remains to show (8).

Observe first that it suffices to show this for k = q. This is because when k < q,
the event {jump1 = k} necessitates ξk,1 = min{ξr,1 : 0 ≤ r ≤ k}. Thus to evaluate
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P(zeros∗(Y1) ≥ j | jump1 = k) we may wait until time ξk,1, at which point if no bit to the
left of k has flipped yet, the new conditional probability P(zeros∗(Y1) ≥ j | Fξk,1

, jump1 = k)
is always at most (k + 1)/(k + j) by applying the claim for q = k.

Assuming now that k = q, we note that the event {jump1 = k} that we are conditioning
on is just the event

A := {ξ0,1 = min
0≤i≤k−1

ξi,1}

that the clock at 0 goes off before any clock in positions 1, . . . , k−1. Conditioning on A then
makes the law of ξ0,1 an exponential of mean 1/k without affecting the joint distribution of
{ξr,s : r > k}. Now let m1 be the position at time t0 := 0 of the first 1 to the right of k,
and let t1 be the time this 1 flips. Inductively, define mr+1 to be the position of the first 1
to the right of k after time tr and let tr+1 be the first time after tr that this 1 flips.

If the positions mr, . . . ,mr + j − 1 are not filled with ones at time tr−1 (define t0 = 0)
then it is not possible to have zeros∗(Y1) ≥ j and A and tr−1 < ξ0,1 < tr. That is, one
cannot get from fewer than j ones in the first block of ones to the right of k to at least j

ones at the time of the flip at 0 without having the leftmost one in this block flip. On the
other hand, if these j positions are filled with ones at time tr−1, then

P(zeros∗(Y1) ≥ j, ξ0,1 < tr |A,Ftr−1 , ξ0,1 > tr−1) ≤
k

k + j

since the event {zeros∗(Y1) ≥ j, ξ0,1 < tr} requires that the clock at 0 go off before the clocks
in positions mr, . . . ,mr + j − 1 (recall that conditioning on A has elevated the rate of the
clock at 0 to rate k). Similarly, P(ξ0,1 < tr |A,Ftr−1 , ξ0,1 > tr−1) = k/(k + 1). Therefore,

P(zeros∗(Y1) ≥ j, ξ0,1 < tr |A,Ftr−1 , ξ0,1 > tr−1)
P(ξ0,1 < tr |A,Ftr−1 , ξ0,1 > tr−1)

≤ k + 1
k + j

. (9)

The LHS of (9) is P(zeros∗(Y1) ≥ j |A,Ftr−1 , tr > ξ0,1 > tr−1), and considering (9) for every
r ≥ 1, we obtain that the RHS of (9) is an upper bound for the probability of zeros∗(Y1) ≥ j

conditioned only on jump1 = k. �

Proof of Lemma 5: Let x ∈ zerosj and first assume j ≥ 1. We prove the statement for
n = 1, the proof for greater n being identical, conditioned on Fσn−1 . It is simple to check
whether ones(Y1) = j. The bits in positions 1, . . . , j will remain 0’s until the leading 1 flips
at time σ1, so the only thing to check is whether σ1 = ξ0,1 is less than or greater than ξj+1,1.
With probability 1/2, ξ0,1 < ξj+1,1 and in exactly this case ones(Y1) = j.
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Now condition on this inequality going the other way: ξ0,1 > ξj+1,1. Let t1 := ξj,1. Let
j + 1 + k1 be the position of the first 0 of x to the right of position j + 1. Then at time t1,
the position of the first one to the right of j +1 is j +Z1, where Z1 is the least l ∈ [1, k1−1]
for which ξj+1+l,1 < ξj+1,1. If no such l exists, then Z1 = k1. We compute Px(Z1 = l) as
follows.

The variables {ξr,1 : r ∈ {0}∪[j+1, j+k1]} are independent exponentials. For 1 ≤ l < k1,
the event that ones(Y1) 6= j and Z1 = l is the intersection of the event A that ξj+1,1 is less
than ξ0,1 and ξr,1 for all j + 2 ≤ r ≤ j + l with the event B that ξj+1+l,1 < ξj+1,1. In other
words, among l+2 independent exponentials, the index of the least and second least must be
j+2 and j+1 respectively. The unconditional probability of this is 1/((l+1)(l+2)). Having
conditioned on the larger event {ξj+1,1 < ξ0,1}, the conditional probability is therefore equal
to 2/((l+1)(l+2)). This holds for l < k1, where Z1 = k1 with the complementary probability.
To sum up, Z1 is distributed as S1 ∧ k1 where S1 has the distribution of the random walk
increments described in the lemma.

The last step is to invoke the Markov property. Condition on Ft1 . The chain from here
evolves under the law PX(t1). Iterating the previous argument, there are two cases. The
first case, which happens with probability 1/2 is that the clock at the origin goes off before
the next alarm at location j + 1 + Z1. In this case, ones(Y1) = j + Z1. In the alternative
case, we let t2 be the time at which the clock at location j + 1 + Z1 next goes off. We let
Z2 be the number of consecutive 1’s at time t−2 starting from position j + 1 + Z1. Then
conditional on Ft1 , Z2 is distributed as S1 ∧ k2 where k2 is the number of consecutive 1’s
at time t1 starting at position j + 1 + Z1.

Iterating in this way, we have the following inductive definitions. Let t0 = 0. Let τ

be the least r for which the clock at the origin goes off after time tr but before the first
alarm at location j + 1 +

∑r
i=1 Zi. For each r ≤ τ , we may define kr to be the number

of consecutive 1’s at time tr−1 starting at location j + 1 +
∑r−1

i=1 Zi. We may then define
tr to be the first time after tr−1 that the alarm at location j + 1 +

∑r−1
i=1 Zi goes off, and

we may define Zr so that j + 1 +
∑r

i=1 Zi is the location of the first zero to the right of
j + 1 +

∑r−1
i=1 Zi at time t−r .

The upshot of all of this is that

ones(Y1) = j +
τ∑

i=1

Zi
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and that the joint distributions of τ and {Zi : 1 ≤ i ≤ τ} are easily described. Conditioned
on τ ≥ r and on Ftr , the probability of τ = r + 1 is always 1/2; as well, Zr+1 given
τ ≥ r + 1 and Ftr is always distributed as a truncation of S1. We conclude that ones(Y1)
is stochastically dominated by the sum of τ independent copies of S1, hence as SG−1 (we
say that X is stochastically dominated by Y , denoted X � Y , if for every t the inequality
P(X > t) ≤ P(Y > t) holds).

Finally, we consider the case where zeros∗(x) = l > zeros(x) = 0. Let q = ones(x),
so that x begins with q ones, followed by l zeros, followed by a one in position q + l. A
preliminary observation is that if we begin with a one at the origin, the position W (t) of
the leading one at a later time t is an increasing function of t; hence, if Tµ is an independent
exponential with mean µ, the distribution of W (Tµ) is stochastically increasing in µ.

Begin by writing

Px(ones(Y1) ≥ j) =
q∑

k=1

P(ones(Y1) ≥ j, jump1 = k) .

Let l∗ denote the number of zeros consecutively starting from position k at time ξk,1 if
jump1 = k < q, and l∗ = l if k = q. In other words, l∗ = zeros∗(x′) where x′ is the word
at the last time t that ones changes before the leading bit flips (t = ξjump1,1 if jump1 < q

and t = 0 otherwise). We may then describe ones(Y1) as l∗ + W , where W is the number
of consecutive positions starting from position jump1 + l∗ that turn to zeros between time
t and ξ0,1. Now we break into two cases.

Condition first on {jump1 = q}. The time ξ0,1 is now an exponential of mean 1/q, and
before this time, the bits from position q+ l onward evolve independently. We may describe
ones(Y1) as l + W (ξ0,1), where W is the number of consecutive positions starting at q + l

which have become zeros in the time from 0 to ξ0,1. The first part of this lemma established
that when ξ has rate 1, then W (ξ) � S. Our preliminary observation now shows, conditional
on {jump1 = q}, that W (ξ0,1) � S).

Next, let us condition on jump1 = k < q, observing that then l∗ ≤ q − k. In order to
have l∗ ≥ r, it is necessary that ξk,1 = min{ξs,1 : k ≤ s ≤ k + r − 1}. Having conditioned
on jump1 = k, the distribution of ξk,1 becomes an exponential of rate k + 1, so that the
conditional probability of this clock going off before r − 1 other conditionally independent
clocks of rate 1 is just (k + 1)/(k + r). Since the event {jump1 = k < q} has probability
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1/(k(k + 1)) if k < q and zero otherwise, we may remove the conditioning and sum to get

P(l∗ ≥ r, jump1 < q) ≤
q−1∑
k=1

1
k(k + 1)

k + 1
k + r

≤ P(Θ ≥ r) .

We also still have in this case W � S.

Putting together the cases jump1 = q and jump1 < q, we see that l∗ = l with probability
1/q and otherwise l∗ � Θ. The crude bound 1/q ≤ 1/2 gives l∗ � Θ + zeros∗(x) · B.
Since l∗ ∈ σ(Ft) and the bound W � S holds conditionally on Ft, we arrive at ones(Y1) �
Θ + zeros∗(x) ·B + S. �

4 Lower bound

The argument for the lower bound in Theorem 2 is a generalization of the argument for the
easiest nontrivial lower bound, which goes as follows.

Since the number of shift times in [0, T ] is asymptotically T , so inf-spd is the same as
the liminf average of the sizes of the first n shifts. The trivial lower bound is 1 since each
shift has size at least 1. We can improve this by showing a greater jump happens a positive
fraction of the time. States ω with ones(ω) ≥ 2 are helpful because from such a state there
is a chance of 1/2 that jump1 ≥ 2. On the other hand, if ones(ω) = 1 then the prefix of
length 3, which we will denote ω|3, is either 100 or 101. The more favorable prefix is 100:
although the first shift will have size one, the new state will have prefix 11, which generates
a shift of size at least 2 half the time. The least favorable prefix is 101, but here it can at
least be said that if the 1 at the end flips before the 1 at the beginning, which happens half
the time, we arrive at the prefix 100. Summarizing, we partition into the three prefix classes
11∗, 100∗, 101∗, and record the sequence of these. The long run transition frequencies are
not all known, but can be summarized in the following diagram, where transitions back to
the same state are permitted.

11∗

101∗

100∗
PPPPPPi

?

p ≥ 1
2

p = 1
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It is easy to show that the worst case consistent with this is 11∗ → 101∗ with proba-
bility 1 and 101∗ → 101∗ with probability 1/2. One finds that one prefix in four is 11∗,
generating a shift of size at least 2 one eighth of the time, so inf-spd ≥ 9/8.

To improve this argument, we do two things: (i) replace the prefix partition by a
larger one and (ii) take advantage of the fact that not every change in prefix counts in the
denominator of

size of shift
number of shifts

.

In fact the 1/8 above is immediately improved to 1/6 by noticing that there is no shift when
the prefix changes from 101∗ to 100∗ via a flip of the 1 at the end.

To carry out (i), consider a tree whose vertices are positive integers, identified with their
binary expansions. The root is 1, and the children of x are 2x and 2x + 1. Let T be any
finite binary rooted subtree, meaning that any vertex in the subtree has either zero or two
children in the subtree. The leaves of T are the prefix partition and we will pay attention to
precisely those bit-flips that change which element of the partition we are in. It will remain
to choose T judiciously. Associated with each node x is a set U(x) of other nodes to which
transitions are possible from x. The cardinality of U(x) is the number of 1’s in the binary
expansion of x and y ∈ U(x) if the bit string for y is obtained from the bit string for x by
flipping one of the 1’s in x, simultaneously flipping all bits to the right of this 1, and if a
shift occurs, also shortening the new bit string by the size of the shift. By convention, if
x is all 1’s and a shift occurs, the new string is 1 rather than the empty string. Note that
all transitions from x are to numbers less than x; in fact the reason we have encoded as
integers as well as bit strings is so that we may proceed by induction on x.

To carry out (ii), we define for each transition from a state x to a state y both a reward
and a counter as to whether we have observed a shift. The reward, denoted r(x, y) is defined
to be one less than the number of leading 1’s of x if a shift occurs, and zero otherwise. The
time counter increments by t(x, y), defined to be 1 if a shift occurs and zero otherwise.

The idea is now to assign recursively a least expected reward per time from each node of
T . We do this by assuming the worst possible values for information beyond the prefix we
are keeping track of. We improve on the naive argument in one more way: if the pessimistic
mean reward per time we have calculated at an internal node x is worse than it is for the
worst prefix, we can go ahead and look at some more information, arriving at some leaf of
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T . We will have to assume arrival at the worst one, but that is still an improvement. The
set of nodes, B, at which we do this will also be chosen judiciously.

We are now ready to state and prove the validity of the computing apparatus. Assign to
each x a mean reward and shift counter (r(x), t(x)) defined recursively as follows. Fix any
subset B of internal nodes of T that contains the root (on first reading, one may imagine
B to contain only the root). The base step of the recursion is to let (r(x), t(x)) := (0, 0) if
x ∈ B. The recursive step is to define

(r(x), t(x)) :=
1

|U(x)|
∑

y∈U(x)

((r(x, y), t(x, y)) + (r(y), t(y))) .

Lemma 8 An almost sure lower bound for the lim inf speed from any starting configuration
is given by the minimum over leaves x of T of 1 + r(x)/t(x).

The lower bound in Theorem 2 will follow from Lemma 8 together with an implemen-
tation of the recursion. At the URL

http://www.math.upenn.edu/~pemantle/papers/C-link

is some code written in C that implements the recursion for a complete binary tree of depth
15, with the set B chosen to give a good bound without much trouble. A look at the
data shows the minimum value of r(x)/t(x) on each level to be obtained when the binary
expansion of x alternates. In particular, the global minimum is at x = 349525 and has value
0.646 . . ., which proves the lower bound, assuming the lemma.

Proof of Lemma 8: Any finite rooted binary subtree induces a prefix rule, that is, a map
η from infinite sequences beginning with a 1 to leaves of T , defined by η(x) = w for the
unique leaf of T that is a prefix of η.

Given a trajectory of the Markov process {Xt}, define a sequence of elements of T as
follows. Let x0 := η(X0) be the prefix of the initial state of the trajectory. Let τ0 := 0. As
the definition proceeds, verify inductively that for τk ≤ t < τk+1, the string xk will be an
initial segment of Xt. The recursion is as follows. Let τk+1 be the first time after τk that
a 1 flips in the initial segment xk of Xt. Let x′k+1 be the string gotten from xk by flipping
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this bit and all bits to its right, removing any leading zeros and setting the string equal to 1
if it is empty. If x′k+1 /∈ B then let xk+1 be x′k+1. x′k+1 ∈ B, then let xk+1 = η(Xτk+1

); we
say the {xk} chain is “bumped” back into the prefix set at time k + 1.

Given j ≥ 0, let ρ(j) = inf{k > j : x′k ∈ B} be the next time that the {xk} chain is
bumped back to the prefix set. Given x ∈ T \B and j ≥ 0 for which xj = x,

R(x, j) =
ρ(j)−1∑

i=j

R(xi, xi+1)

denote the total reward from time τj until it is bumped back to the prefix set. Similarly, let

T (x, j) =
ρ(j)−1∑

i=j

T (xi, xi+1)

denote the total shift count until being bumped back.

Claim: The expected accumualations of reward and shift count between τj and τρ(j) are
given by r and t. That is, if xj = x, then

E(R(x, j) | Fτj ) = r(x)

and
E(T (x, j) | Fτj ) = t(x) .

Proof of claim: This is just induction on x. For x ∈ B both sides of both equations are
zero. Assuming this for nodes in U(x), observe that R(x, j) = R(x, xj+1) + R(xj+1, j + 1)
so by the Markov property, E(R(x, j) | Fτj ) is the average of r(x, y) + ER(y, j + 1) over
y ∈ U(x), which by the induction hypothesis is the average over y ∈ U(x) of r(x, y) + r(y),
which is equal to r(x) by the recursive definition. The same holds for T .

Returning to the proof of the lemma, the sequence of times defined by s0 = 0 and si+1 =
ρ(si) breaks the path of the {xk} chain into the disjoint union of segments [si, si+1 − 1].
For each i > 0, the state si is a leaf of T . Among those leaves x occurring infinitely often,
the strong law of large numbers implies that the average reward collected over intervals
[si, si+1 − 1] for which si = x is equal to r(x). Similarly, the average shift count increment
over such intervals is t(x). Therefore,

lim inf
i→∞

∑si
j=0 r(xj , xj+1)∑si
j=0 t(xj , xj+1)

≥ min
r(x)
t(x)
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where the minimum is over leaves x of T .

Finally, we note that the number of times the leftmost 1 moves up to time τsi is exactly
the total shift count

∑si
j=0 t(xj , xj+1), while the total distance it has moved is at least∑si

j=0 t(xj , xj+1) + r(xj , xj+1). Thus the liminf speed is at least 1 + min r(x)/t(x) and the
lemma is proved. �

We remark that the only place this last inequality is not sharp is when the number of
1’s flipping together exceeds the number recorded, because the present knowledge of the
prefix was a string of all 1’s and there were more 1’s after this that also flipped. Thus by
making the tree T big enough, even without increasing B, we can get arbitrarily close to
the true value.

5 Further observations

The following argument almost solves Problem (3a), and perhaps may be strengthened to
a proof. Lemma 4 of [GHZ98] is proved by means of a duality result. The result is that the
probability, starting from a uniform random state, of finding a 1 in position r after t steps
(counting suppressed transitions), is equal to half the probability that xr has not reached
the minimum yet after t steps (again counting suppressed transitions). The argument that
proves this may be generalized by introducing a simultaneous coupling of the process from
all starting states. The probability, from a uniform starting state, of finding a 1 in every
position in a set A after t steps, is then the expectation of the function that is zero if the
column vector of all 1’s is not in the span of the columns of the matrix whose rows are the
states reached at time t starting at xr, as r varies over A, and is 2−u if the column vector
of all 1’s is in the span and the matrix has rank u. The kernel of the matrix is the set
of starting configurations that reach the minimum by time t (the simultaneous coupling is
linear). Hence, as long as A and t are such that the probability of reaching the minimum
from any xr by time t goes to zero, the rank of the matrix will be |A| and the probability
of finding all 1’s in positions in A at time t will go to 2−|A|. In particular, if a window of
fixed size moves rightward faster than the limsup speed, then what one sees in this window
approaches uniformity. This is not good enough to imply uniformity of a window a fixed
distance to the right of the leftmost 1.
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6 Appendix: rigorous upper bounds for integrals

by Kate Davidson

To bound ∫ 1

0

2z(log 1
1−z − z)

3z2 − 2z + 2(1− z) log 1
1−z

dz

from above, we will use a trapezoidal approximation. For this to give a valid upper bound
we need to show

Lemma 9 The function

g(z) :=
2z(log 1

1−z − z)

3z2 − 2z + 2(1− z) log 1
1−z

dz

is convex on (0, 1).

Proof: Differentiate g twice with respect to z, plug in z = 1− exp(−x), and multiply top
and bottom by e3x to obtain the quantity h(x) = N(x)/D(x) where

N(x) := 2e5x + (20x− 42)e4x + (108 + 48x− 72x2 + 16x3)e3x

+(−92− 168x + 72x2)e2x + (18 + 112x)ex + 6 .

and D(x) is a power of ex times a power of e2x + (2x− 4)e−x + 3.

The Taylor series for D(x) is easily seen to have all nonnegative coeffiecients (just
check that the zeroth and first coefficients vanish and note that the general coefficient is
(2n + 2n − 4 + 3δn,0)/n!. In particluar, D(x) > 0 on (0,∞). To see that N(x) is positive,
note that the coefficient of xn/n! in the Taylor expansion is simply

108·3n−88
9

3nn2+
680
27

3nn+
16
27

3nn3+54nn−92 2n−42 4n−102 2nn+25n+18+18 2nn2+112n
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When n ≥ 6, we have (18n2 − 102n)2n > 0. When n ≥ 14, we have 2 · 5n − 42 · 4n > 0.
When n ≥ 17, we have ((16/27)n3 − (88/9)n2)3n > 0. Since 108 · 3n − 92 · 2n > 0 for all
n, we see that the coefficients are positive once n ≥ 17. Computing the first 16 terms, one
sees they are positive as well, finishing the proof of the lemma. �

Having proved this, we conclude that the integral on [0, 0.999] may be bounded above
by a polygonal path, with vertices at every multiple of 0.001 in the ordinate. This gives
an upper bound of 0.90523 for the integral on [0, 0.999]. For the upper end of the integral
we use the fact that the denominator of g is bounded below by 1 on roughly the interval
[0.85, 1] and provably containing [0.999, 1]. Thus∫ 1

0.999
g(z) dz

≤
∫ 1

0
2z

(
log

1
1− z

− z

)
dz

=
[
2 (z − 1) ln

(
− (z − 1)−1

)
+ z − 3/2 + ln

(
− (z − 1)−1

)
(z − 1)2 + 1/2 z2 − 2/3 z3

]∣∣∣z=1

z=0.999

≤ 0.01382

Thus we have shown that the whole integral is at most 0.91905. Finally, putting this
together with the upper bound for the double sum yields an upper bound of 2.91998 < 2.92.

The numerical computations showing that

0.9975 <
∑
1≤j,k

1
j + k

Hj

j

Hk+1 − 1
k(k + 1)

< 1.00093

are available from the authors, though we have omitted them because the exact value is
now known.
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