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ABSTRACT

Zeros, Critical Points And Coefficients Of Random Functions

Sneha Dey Subramanian

Robin Pemantle, Advisor

Traditional approaches to the study of random polynomials and random analytic
functions have focussed on answering questions regarding the behavior and/or lo-
cation of zeros of these functions, where the randomness in these functions arises
from the choice of coefficients. In this thesis, we shall flip this model - we consider
random polynomials and random analytic functions where the source of randomness
is in the choice of zeros. While first chapter is devoted to an introduction into the
field, in the next two chapters, we consider random polynomials whose zeros are
chosen IID using some distribution. The second chapter answers questions regard-
ing the asymptotic distribution of the critical points of a random polynomial whose
zeros are IID on a circle on the complex plane. The fourth chapter describes the
asymptotic behavior of the coefficients of a random polynomial whose zeros are 11D
Rademacher random variables. In the third chapter, we consider a random entire
function that vanishes at a Poisson point process of intensity 1 on R. We give results
on the asymptotic behavior of the coefficients as well as the resulting zero set on

repeatedly differentiating this function.
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Chapter 1

Introduction

Interest in the zeros of a function can be traced back almost to the time in mathe-
matical history when the concept of “function” came into being. Be it the Riemann
Zeta function, the study of stable polynomials or the entire field of algebraic ge-
ometry, the zeros of a function form the center of the universe of many areas in

mathematics.

Numerous questions have been asked and answered about the relation between
zeros and critical points of a function. One of the oldest among these is the Rolle’s
theorem - a theorem that describes location of critical points, provided the function
has all real zeros. For polynomials with complex coefficients, the analogous result,
called Gauss-Lucas theorem, tells us that the critical points are all contained in the

complex hull of the zeros. Despite a very natural interest in the idea of deriving



information about critical points from the zeros of a function, generalizations of
Rolle’s and Gauss-Lucas theorems have been few. This fact is demonstrated by two
long standing conjectures by Blagovest Sendov and Steve Smale, both of which have
been proved and studied extensively for special cases, but in their full generality,

still remain open.

Sendov formed his famous conjecture in the 1950’s, which states that if the
roots z1, 29, ..., 2, of a convex polynomial all lie inside the closed unit disc, then for
each root of the polynomial, the closed unit disc centered at the root must contain
at least one critical point. In some ways, this problem seems only a small step
away from Gauss-Lucas theorem, but given that it has been open for six decades,
it clearly is not so. Smale’s conjecture states that, if f is a polynomial of degree n

with at least one root 0 and f’(0) # 0, then,

mm{kg8>

’uNOZO}SK,

where K =1 or ”T’l

Mentioned above are only the deterministic results about the function character-
istics. An interesting route in thinking about zeros and critical points is by bringing
randomness and probabilistic results into the picture. Recently, the area of random
polynomials and random analytic functions has been a very active one. In the most

classical problems, a “random polynomial” is formed by fixing its degree and having



its coefficients be identically and independently distributed (IID) random variables
with some desired law. Questions regarding the properties of the zeros of these
functions are then explored. For example, Mark Kac [8] gave an explicit formula
for the expected number of zeros of a random polynomial in any measurable subset
of the real numbers, where coefficients of the polynomial are IID standard normal
variates. Jon Ben Hough, Manjunath Krishnapur, Yuval Peres and Balint Virag,
in their book [7], study the probabilistic properties of zeros of a complex analytic

function whose coefficients are IID standard complex Gaussian.

A natural variation from the classical random function questions is to flip the
model. That is, if we start with the zeros of a polynomial or an analytic function to
be IID random variables, then form these functions in a canonical way, how much
can be said about properties of this random function, including its coefficients and

critical points?

Very recently, this approach was explored by Robin Pemantle and Igor Rivin in
[14], where it was conjectured that if f is a polynomial of degree n, whose n roots
are chosen IID using a law p on the complex plane, then the empirical distribution
of the roots of f’ converge weakly to u as n — oco. In Chapter 2, we shall prove that
this is indeed true in the case where the zeros are chosen IID from a distribution

that is supported on a circle in the complex plane.



In Chapter 3, we shall consider a random polynomial of degree N whose zeros
are 11D +1 with probability % each. We shall show that the coefficients of this

random polynomial exhibit a sinusoidal behavior asymptotically.

In the last chapter of this thesis, Chapter 4, we shall consider a random entire
function, f, that vanishes exactly at the points of a Poisson process of intensity 1 on
the real line. We shall prove that ratios of alternating coefficients in the power series
expansion of this function display a curious convergence behavior. This fact, along
with the fact that the critical points of the function is translation invariant over
the choice or origin, will lead us to show that the resulting zero set on repeatedly
differentiating the function f converges to a uniform random translate of the set of

integers.



Chapter 2

Critical points of random

polynomials

2.1 Notations and Background

Say, Zy, Zs, ... is a sequence of points chosen i.i.d. with respect to some distribution
w on the unit circle. Write, Z; = exp(2mify), so that {f;} is a collection of IID

random variables whose common law is supported on [0, 1], which we denote by v.

Let

pn(z) = (2= 20)(z — Z3)..(2 — Zy),

and ™, y$™ ...,y be the roots of p/,(z).



For k > 1, let ¢, = E(Z*), where Z ~ p. Denote by Z(f) the empirical distribu-
tion of the roots of a random polynomial f. That is, if f has roots X, Xs, ..., X,,,
then Z(f) = - >y 0x;. We shall write D for the open unit disc, and C for the

unit circle.

In their paper, [14], the authors conjectured that, for any distribution p on the
closed unit disc, Z(p/,) converges weakly to p. That paper also proves the following

proposition.

Proposition 2.1.1. Let p be the uniform measure on C. Then Z(p.,)) converges to
C in probability, that is, P(Z(S) > €¢) — 0) for any € > 0 and any closed set S C D,

disjoint from C. 0
In this note, we shall generalize this to prove that

Lemma 2.1.2. For any distribution u on C, Z(p.,) converges to C in probability.

In fact, if p 1s not uniform on C, the convergence is almost everywhere.

The above leads us to prove our main result, which is a special case of the

aforementioned conjecture in [14]:
Theorem 2.1.3. For any distribution p on C, Z(p,) converges weakly to v on C.

The proof, as shall be seen in forthcoming sections, can be divided in to two

parts, the latter following a pattern similar to the proof of Weyl’s equidistribution



criterion (see, for example [1]). The former requires the following theorem (proved

both in [11] and in [2]) regarding a companion matrix of the critical points.

Proposition 2.1.4. If 2y, 29, ..., 2, € C, and y1,ys, ..., yn_1 are the critical points of

the polynomial p,(z) = (z — z1)(z — 22)...(2 — 2n), then, the matriz

D <[ - i) + (2.1.1)
n n

has y1,Ys, ..., Yn—1 as its eigenvalues, where D = diag(z1, 22, ..., 2n—1), 1 is the iden-

tity matriz of order n — 1 and J is the (n — 1) X (n — 1) matriz of all entries 1. [

2.2 Proofs of Lemma 2.1.2 and Theorem 2.1.3

We first begin by proving a small lemma.

Lemma 2.2.1. Let pu be a distribution on the unit circle C with c;, = E(Z%), where

Z ~ . Then ¢, =0 for all k > 1 if and only if p is uniform on C.

Proof. Clearly if p is uniform on C then ¢, = 0 for all £ > 1. Now say p is not
uniform on the circle but we still have ¢, = 0 for all £ > 1. Then the law v is not
uniform on [0, 1]. Now, if Z;, Zs, ... are points on C, chosen i.i.d. using u, and if we

write Z; = exp(2mib;),j = 1,2, ..., then 61, 65, ... are points in [0, 1] that are i.i.d. v.



By the Strong Law of Large Numbers, for all £ > 1,

28+ 25 + 2y as

n
and so by Weyl’s criterion, for any 0 < a < b <1,

21 Loseletl) as,
n

b—a.

But 19,eapy,J = 1,2, ... are i.i.d. random variables taking values 0 or 1 with

expectation v([a, b]). Therefore,

T’Lf :ﬂ' jcla a.s
2]71 {936[ 7b]} _) I/([a, b])
n

Since v is not uniform on [0, 1], we have arrived at a contradiction. So, there must

exist at least one non-zero cy. O
We proceed to use this fact for the proof of Lemma 2.1.2.

Proof of Lemma 2.1.2. Assume p is not the uniform distribution on the circle (as
the uniform case has been taken care of in [14]). Then, as mentioned above, there is
at least one non-zero ¢;. Thus the power series function f(z) = > po, Crr12" exists
at every point z € D, is analytic there (since |cx| < 1,VEk), and so has only finitely

many zeros inside any r-ball, where r < 1.

Define




V., has n — 1 zeros, which are exactly the zeros of p/ (z), and n poles, which are
exactly the zeros of p,(z). Thus V,,(z) is analytic inside D. We shall show that as
n — oo, V, converges inside the disc to — f, uniformly over compact sets. To see

this, note that for z € D,

1 ¢ _1/Zj o~ 7k+1 k S —k+1_k
Vn(Z):E.Zl——z/Zj:_ﬁZZZj z :—Zan z",
j=1 j=1 k=0 k=0

Zv+ 25+ 42k
n

where, we write a®*! for the kth power sum average . By Strong Law

of Large Numbers, a® *% ¢, for all & > 1.

Let 0 < r < 1. Given any 6 > 0,dK > 1 such that
o0 k
E_ T é
Zr =— <7
k=K

Corresponding to the chosen K, there exists an N > 1 such that,

o(1—r)
—5

k

|y — x| <

Vn > N and Vk = 1,2, ..., K — 1. Therefore, ¥n > N and all z € B,(0),

=

-1 00
Va(2) + f(2)] < |al — cp|r* + Z lak — cp|r”
k=0 k=K +1

4]
—-(1+r+r2+...+rK*1)+2-Z—l<5,

which proves uniform convergence of V,, to —f over compact sets.

Using Hurwitz’s theorem (see [3]), given any 0 < r < 1, there exists an M > 1
for which V;, and f have the same number of zeros inside B,.(0) for all n > M. That

9



is, p/, and f shall have the same number of zeros inside B,.(0) for all n > M. But, as
discussed above, f has only finitely many zeros inside B,.(0). Thus Z(p),) converges

to the unit circle almost surely. O]

Our main result, Theorem 2.1.3, will be a consequence of the following proposi-

tion.

Proposition 2.2.2. Given any sequence of points zy, za, ... with |z,| < M for all

CRE R () o

n, and . — ¢, as n — 00, Vk > 1, the critical points y; ", ys .y Yy

pn(2) = (2 — 21)(2 — 22)...(2 — 2z,,) also satisfy

() 4+ () 4+ ()
n—1

—> ¢ as n — oo,
Vk > 1.

Proof. Note that, it is easy to see that this theorem holds true for k = 1, because
the average of the critical points is exactly equal to the average of the roots (by com-
paring the coefficients of 2"~ in p,(z) with 2”2 of p/,(2)). To prove the result for
general k, we use Proposition 2.1.4 to see that for k > 2, (y\"™)F, (™), ..., (y™,)*

are the eigenvalues of [D (I — 1.J) 4+ 2 J]*, and so,
1 2 1"

W)+ S+ o+ ) =T {D (1 - EJ) + E"J} .

Note that the expansion of [D (I — £.J) + 2 J]* is the sum of all terms such as
Iy I Ik
pu (27 (Z—"J>l3 pi (~2T) (Z—”J)ZG Y A (@])l?’k
n n n n n n
(2.2.1)

10



where the exponents [y, ls, ..., I3 are non-zero integers, with ls;_o+13;,_1 +13; = 1 for
all j = 1,2, .., k. Clearly the number of such terms is 3%, which does not depend on
n, and so, if we find that the trace of the matrix in the expression (2.2.1) converges as

n — 00 to ay .. then the trace of [D (I — %J) + ‘%”J]k converges t0 Y iy 1y lsp-

..l3k;7
Henceforth, we fix [y, ls, ...Isz. Now, note that J™ = (n — 1)™"1J™"! for any

m > 1, and

(D 7)(D) = (Z ) (D),

for any p,q > 0.

The above tells us that there exists p, q, so, 51, S2, ..., Sg_1 > 0 such that, term

(2.2.1) is of the form

s n—1 51 n—1 52 ne1 E_1)\ Sk—1
(—=1)P- 29 . <n__1> " (Zz‘l ZZ) . (Zil Zf) <—Zi1 2 1) - M,
n n n n

(2.2.2)

where the numbers p, ¢, So, $1, ..., Sx—1 are determined solely by the /;’s (and so, are
independent of n).

Also, M can only be one of the following terms: D* or % or %Dm for some
m,my, mo > 0, which are fixed, < k, and dependent only on the [;’s. Furthermore,

the scalar coefficient in (2.2.2) is always O(1).

11



Observe that, if M = D*, then the scalar coefficient in (2.2.2) is equal to 1 and

_T’“gLM) — ¢. On the other hand, if M = %a then

Tr(M) = FARE (A SN A — o(n),
n

and if M = —DW;IJDmQ,

Tr(M)=Tr (Dmﬁmz’i)

n

ZIn1+m2 +zgl1+m2 + . +Zzljfrm2

= = o(n).

n

Thus,

Tr (D (I-1J) + 2=J]"

n

—> C, as n — 00.
n

]

We now have all the tools required to prove our main result, namely Theorem

2.1.3.

Proof of Theorem 2.1.3. Say we write,
yj(.n) = r§") exp(27rigz§§-n)),j =1,2,...n—1.

The proof will consist of three major segments. Our first task is to prove that

12



In fact, unless p is uniform on the circle, we will show that

n—1
]_ n a.s.
D ()L
j=1

Next, we shall use the above information to show that

exp(2k7ri¢§n)) + exp(2km’¢§n)) +...+ exp(?k:m@(ln_)l)
n—1

— Ck.

(Again, the convergence is almost sure, unless y is uniform on C.)

Finally, using arguments analogous to those in the proof of Weyl’s equidistribu-

tion criterion, we shall arrive at our final result.

Assume, initially, that p is not the uniform law on C. For the first task as noted

above, observe that, by Lemma 2.1.2, given any € > 0,

n—1
1 a.s.
—n 1 Zl ]l{r§n)€[176’1}} — 1.
J:

Now, for any fixed positive integer k, (1 — €)*1 (r( ))k <1, and so

i e-eny S
1 1 n—1
Nk (n)\k
(1-of — Zlﬂ{rgmel oy S Z( )<L (2.2.3)
Clearly then, a simple squeeze theorem argument gives us
1 n—1
— S 5, (2.2.4)
j=1

Now, from Proposition 2.2.2, for any positive integer k,

(n)\k (n)\k (n)
-+ —+ ... a.s.
(?Jl ) (?Jz n)_ : + (yn 1) Ck,

(rYF exp(2kmigt™) + (r$V)F exp(2kmigl™) + ... + (r7))F exp(2kmigl™ )
n—1

13
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Note that (2.2.4) gives us that

n—1 n—1
1 ()\k -, (n) 1 (M)\ky @S,
— j:1(1— (r;")") exp(2kmip;”)| < — ;(1 — (r;")") =0,

and so,

exp(2km¢§")) + exp(2km’¢§n)) + ...+ eXp(Qkﬂi(bfmn—)l) L (2.2.5)

n—1

Now, for the final stage of our proof,
e, = E(Z%), where, Z ~ p.

= ¢, = E(exp(2k7iO)) = E(cos(2kmO)) + iE(sin(2k7O)), where, © ~ v.

So, (2.2.5) gives,
cos(2k‘7r¢§n)) + cos(2k;7r¢§n)) + ...+ cos(2k;7r¢£1n_)1) 2% E(cos(2km0)),

n
sin(2k7r¢§n)) + Sin(%ﬂfn)) + ...+ sin(2k7r¢£zn_)1) LN E(sin(2kmO)).

Then, for any trigonometric polynomial ¢(x),

n—1 (n)
25214095 ) as, E(¢(O)). (2.2.6)

n
Let f be a continuous real-valued function on [0, 1] and fix € > 0. By Stone-

Weierstrass theorem ([16]), there exists a trigonometric polynomial ¢ such that

|f —4q| < e So,
n1 o) ne1 o) et )
Zj:l g(@ ) _E(f(0))] < Z]:l 7{:(% ) B Z]:l§(¢] )
n—1 (n)
| ZE ) o)) + Elate) - f©))

14



The first and third terms on the right hand side are each < e while the second term

goes to 0 almost surely, by (2.2.6). Hence for any f continuous on [0, 1],

n—1 (n)
2 F057) 25 E(f(O)), (2.2.7)

n
and this holds for complex-valued continuous functions as well (which is easily seen
by comparing the real and imaginary parts). Thus, the joint empirical distribution
of ¢§"),j =1,2,...,n — 1, converges weakly to v, which means that the joint em-

pirical distribution of exp(27ri¢§n)),j =1,2,...,n — 1, converges weakly to p. This,

along with Lemma 2.1.2, gives us the desired result for p not uniform on C.

Now suppose p is the uniform law on the unit circle. Then,

n—1
1 P
n—1 Zl :ﬂ'{r](»n)e[lfe,l}} » 1,
J:

and as before, using (2.2.3) we get,

for any positive integer k.

Note that the above is a slightly weaker version of (2.2.4), since the convergence

is now in probability, and not almost sure.

For the rest of the proof, we can follow the same arguments as in the non-
uniform case, except that the almost sure convergence in each of the statements

15



will be replaced by convergence in probability. Thus we shall arrive at

n—1 (n)
2 2 6 gey)

n

for any continuous function f : [0,1] — C. Then, as before, the joint empirical
distribution of gb§n) ,j=1,2,...,n—1, converges weakly to v (which is the uniform law
on [0,1]), and so, the joint empirical distribution of exp(27ri¢§”)),j =1,2,...,n—1,

converges weakly to uniform on C. Lemma 2.1.2 then gives us the desired result. [J

16



Chapter 3

Rademacher zeros

3.1 Introduction and statement of the main re-

sult

Let X1, X5, X3, ... beidentically and independently distributed Rademacher random
variables (that is, P(X; = —1) = 3 = P(X; = +1)). A random polynomial that

takes X1, Xo, ..., Xy to be its zeros is

() :=ﬂ<1—%) 2 €C.

j=1 J

Note that, the coefficient of z¥ in fy is just (—1)*ex n, where, e v is the kth ele-

mentary symmetric function of Xy, Xs, ..., Xy.

The main theorem in this chapter explores the behavior of ej y asymptotically
as we let N — 0o,k — oo, and k?/N — 0. As demonstrated in the picture below,

17
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a_k 1 Blug: k= 47|

normalized PInk: K =47 -1
Green: k=41 -2
t Red: K= 4" - 3
1 Black: Blug + Green
0.5

- 0.5

this theorem explains a sinusoidal behavior displayed by the elementary symmetric

functions of these Rademacher random variables, when suitably normalized.

Theorem 3.1.1. Let Xy, X5, ... be w.i.d. random wvariables with each X; taking
value —1 with probability 1/2 and 1 with probability 1/2. Let ey n be the kth

elementary symmetric function of X1, Xs,.. Xy, a = L\/w and © =

\/k/N6k+1

() 05

(27)~tarctan (E’V—N) Then, if dg is the Hausdorff distance between

18



and

Vi
= . " CrytvE <£)t o =0 4 8 o Mo
7 N 7\/%7 \/E? Y

GZ,N + %eiﬂ
where | M |y is the highest value that is < M and equals a multiple of 4/v'k, and

M s any positive integer, then

dy 250

as k — 0o, N — oo under the constraint that N/k* — oo.

This theorem is proven by using a method of “steepest descent”. The idea is
to first express the elementary symmetric polynomials as an integral, as described

here. Using Cauchy’s integral formula, we have

o) = 2 [ I8y,

C2mi Jp 2R+
where I' is a simple continuous loop around the origin. Note that, f](\f)(O) =
(—1)kk’!€k7]\7. SO,

VoM

; k1
2me Jp 2R

€k, N =

We then try to choose the loop I' such that it is has only two points where the
integrand is not negligible, thus allowing us to approximate the above integral with
respect to the values the integrand takes at the said points. This gives an expression

for the ey n’s that is easy to analyze.
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In the next section, we define a function ¢, x that is analytic away from the real
line, and study its higher derivatives as well as its critical points. As demonstrated
in the subsequent sections, this exercise is crucial to obtaining a loop of steepest

descent, and hence the formula for e, x’s discussed above.

3.2 The function ¢, y and its derivatives

Define

orn(z) =log (fzx;iz)) '

Clearly, ¢,y will be holomorphic in regions that are away from the real axis. Let
or,n be a critical point of ¢y n (i.e. opn is a zero of ¢ y). We shall show below
that its conjugate, o, v, is also a critical point, and shall use a convention by which,

oy, n refers to the critical point on the positive side of the imaginary axis.

Let us write, b := X; + X5 + ... + X. Then, we can write fy as
fu(z) = (1= 2)"(1+2)"",

where 2n +b = N. Note that, b/N £ 0, and b/v/ N N N(0,1).
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Thus, we can write,

Orn(z) = (n+0b)log(l — 2) + nlog(l + 2) — klog z,

n+b n k

/ P — —_ -
¢k,N(Z)_ 1—Z+1+Z Z? and7

() o _ n—+b VAT L k
¢k,N<Z) - (T 1)' (1—Z)T ( 1) (1+2)T o sl

3.2.1 The critical points of ¢ v

Lemma 3.2.1. For N sufficiently large, ¢ n(z) has two roots, that are complex
conjugates. Moreover, if we name the roots o n and oy n, then as N — oo,k —

00, N/k — o0, we get,
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Proof. The zeros of ¢y y(z) are given by

QS;C,N(Z) - 07

n—+b n k
_ + — 2 =0,
l1—2 142z =z

—n+b)z(1+2)+n(l—2)z—k(1—2)(1+2) =0,
(2n+b—k)2> +bz+k =0,

(N —k)2* +bz+k=0.

Therefore, there are two zeros, namely,

—b+ /02— 4k(N — k) —b:l:\/k(N—k),/k(]S—z_k)—éL
B 2(N — k) '

2(N — k)

Since b*/(N — k) LN N(0,1), we have that

v
k(N — k)
Thus, with probability — 1,
b2
———— —4<
v —k) =0

and so, the roots of ¢} y(z) are complex conjugates.

Next, write,

—b+i\/4k(N — k) — b?
kN 2(N — k)

K b | b2
VN %k [z\/mﬂ\/l_ 4/<:(N—k;)]
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Thus as N — 00,k — 00, N/k — oo, we have,

Similarly,

3.2.2 Higher derivatives of ¢, y at o n

Lemma 3.2.2. Forr > 3,

and consequently,

3
Ug,Nﬁbé%\r(Uk,N) P, 1
21k

as N — oo,k — 0o, N/k — oo.

(2)
P . .
o ThN) — 1, which gives, for any n < %

In the case of r = 2, =55

k" .

2
[Ulz,N¢li,3V(0k,N)_1] .0
2k ’

as N — 0o,k — oo, N/k — oo.

Proof. We have, the formula,

() n+b 1 1
opn) = (r =D [ = (-1
¢k,N( k,N) ( ) < (1— O'k,N)T ) (1 —i—ak,N)’“
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Now, for r > 3, the dominant term is —%—, since the first two terms will be of order

=
Ok,N

N and the last term is of order k(N/k)™/2. Hence, for r > 3,

¢£,N(0k7N)T _ o1
(=17 (r = 1)IN2k' 2
Then,
3 (3) L —2NB2IT32 = o4,
O NP (OkN) ~ N e i
Next,
@ n+b n k
o = — o +
Prn (OkN) (1—orn)? (1+okn)? Uz,N

—(n+0b)(1+ Uk,N>2<71€7N —n(l— O'k,N)QO']iN + k(1 — opn)?(1 + op.n)?
(I —own)*(1 + ok n)?o}
a,iN(—N +k)— 2b0,%7N — 0,%7N(N +2k)+ k
(1= on)2(1+ ox,n)207
—k?/N + 2ik%? /N 4 2k + 3k/N

~ =k —2N —3—2iVk ~ —2N.
ZhIN k 3 vk

Lastly, note that,

(1 _Uk,N)2(1+Jk,N>2 ‘

2
Ul%,NCbl(e}V(Uk,N) =

While the denominator converges to 1, as N — oo, and the first two terms of the
numerator converges to 0 as N — oo and k/N — 0, the last two terms of the

numerator equals

N+2k  D(N+2k) . N + 2k b’
J— 2 e p— e — e —
i (N +26) +h =k + h—— 2(N—]€)2+Zb\/E(N—k‘)3/2 1 TRk
So,
—oinWV A2 Ak 8k P(N+2) . b(N+2k) [ B
2k 2(N —k)  4k(N —Ek)2  VE(N — k)32 4k(N — k)’
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Then, for any n < 1/2,

1 [_UE,N(NZZ 2k) +k 1] P

Thus,

o2 (2) o
e [ k,N¢k,N( k,N) 1 LO.

2k

We define, for t € [—m, 7],

G () = o (o ne™).

Note that, in any ball that does not contain the origin, ¢y n(z) is analytic. There-
fore, taking € > 0 to be smaller than /2, we can use Taylor’s expansion for the
real and imaginary parts of g n(f) over t € [—€, €], to get that, there exist 1,y in

(—e€, €) such that,

t2 t3 _
9 (t) = gk (0) + i 5 (0) + 590 (0) + 57 (Regidh (1) + ilmgy (1))

Lemma 3.2.3.
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Proof. We have,

gllcw(t) = Uk,Niei%;c,N(Uk,Neit) .

9N () = —opne S (o ne’) — 0 ne? 6N (op ne™).
G (t) = —op nie" Q) (o ne™) — Bio? ye? PN (o ne) — o} e N (or ne™).

Then, at t = 0 we get,

9en(0) = 03 Nid), n(okn) = 0.

9w (0) = —orndi v (05.8) = oL NN (01),
®
— gk]\;(k) N 1, by Lemma 3.2.2.

Also, by Lemma 3.2.2,
9N (0) = oy, nidh y(onn) — 3107 NS N (0rN) — 107 b N (on ) = O(K).

Now, for any ¢, s € [0,27], and writing w = oy, ye', y = oy ye'*, we have,

13w pN () + W h (w) — 320N () — P oEN ()]
3w? 3y 3w? 3y
N R s ] I R e s
2uw3 293 23 293
<”+b>‘<1—w>3‘<1—y>3 +n’(1+w)3 1+y)

lw — y|lw +y — 2wy|
(1 —w)*(1—y)?
lw — yl|w? +wy + y* — 3wy(w + y) + 3wy?|
(1 —w)3(1—y)?

jw —yllw+y+ 2wyl Jw—yllw® +wy + 5 + 3wy (w + y) + 3wy’
+2n

=3(n+0b)

+2(n+10b)

+ 3n

(1+w)?(1 +y)? (1+w)(1+y)°

= O(k) + O(K*?/V/N) = O(k).
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Next,

00 = ] = |~ + O+ (D
w—1y w—vy

A= w)(l—y) +7”‘<1+w><1+y>'

—b(1+wy) — N(w +y)

1w -y +w)(+y)

= ‘—(n—{—b)

=|w—y\\

‘ = O(k).

The above show that, if we substitute s = 0,

gix(t) = O(k).

3.2.3 The ratio %, where r < M -Vk

In this section, we shall give approximations for

fN(Uk+r,N)

F(oen) < M- \/E,

(M being a constant) as N — 0o, k — 0o, N/k?* — cc.

We may write oy as

k b2 b

. . . k 0, N
kN = [\/1_414:(N—k)+22\/m] :u/me . (3.2.1)

Lemma 3.2.4.

P
fN(O'kJ\[) . eXp(naz’N + bO’kyN) — 1,

as, N — 0o,k — oo, and N/k* — oo.
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Proof. We have,

fn(onn) = (1= op x)"(1 = o),

— log[fn(okn)] = nlog(l — O'z’N) + blog(l — ox. ),

Then,
o 4 g 6 o 2 (o) 3
| log[fx (or.n)] + 102y + by x| < n | k’QNl i ’“éN‘ +---‘+|b| | ’“’QNl i ’“i;)N‘ +‘

S n Ho'k,N|4 + ‘0'197]\7‘6 + ‘ + ‘b’ Hak,N’Q + |Uk,N’3 + |

onn|* onn|?
|0k, 1 |0k~ |

1_’0'k,N| 1_‘0'k,N|

(L)Q _k »

= = SN
- 1— /%=
as, N — 0o,k — oo, and N/k* — cc.
Thus,
fn(okn) - exp(nog y + boy n) 1, (3.2.2)

as, N — 0o,k — oo, and N/k? — oo.

]

Lemma 3.2.5. Write o := b/\/ﬁ Letr < M-k, M > 0 being a constant. Then,

fN(UkN> (T . ar ) P
——-eX — 4+ — 1,
In(Oksr,N) P2 2k

as N — 0o,k — 0o, and N/k* — oo.

28



Proof. From (3.2.2),

fN(Uk,N)

-exp(n(og y — Opprn) + 0(OkN — Okirn)) Iy, (3.2.3)
fn(okr)

for r < M - Vk, for a constant M > 0, as N — oo, k — oo, and N/k* — oo. Thus,

we need approximations for
exp(n(oy n = Opgry) + b(OkN = O, N)).

Towards this, we have,

koo k .
n(al%,N - UI%JFT,N) =n <_m6219k’]\’ + $62’¢k+r> )

So,

k k+r
lexp(n(o} v — o prn))| = exp {n (_N oy cos(20y. n) + J cos(29k+r,N)>}

~oo o (55 (1- v )
k4

TN, (1_2(k+r)(?\27—k—7“)>)]

= exp {n((N_k)(zifv—k—r)_%2<(N—llc—r)2_(Nik)2)>}

. N —b rN n nb?>  r?—2rk+2rN
= X _—
PIT NN —k—1) 2 (N—K2(N —k—r)

Note that, for r < M - Vk, #M%%O%N—)oo,k—)oo,N/kZ%

0o. Also,

(N —b)Nr _ N2y brN
(N—k)(N —k—r) (N—k)(N—k—r)+(N—k)(N—k—r)’

29



where, for r < M - vk, the second term again goes to 0 in probability, as N —

00, k — 00, N/k? — oo. As for the first term, we see that,

I, N? }: {—2Nk+k2—rN+rk
(N—Fk)(N—Fk—r) (N—Kk)N—-k—r) |’

which, again, for r < vk clearly goes to 0, as N — oo,k — oo, N/k* — oc.

Therefore,
N
lexp(n(o} v — orn))| € 2, (3.2.4)

as N — 0o,k — 0o, N/k* — oc.

Next,

ko k+r .
N _k Sln(20k7]\[) + N——k—’r’ Sln(20k+r7]\[)>

k . .
=n {_N — k(sm(%kw) — sin(20k1rn))

_ k k+r
+sin (2054, ) (_N — + N T 7’)] . (3.2.5)

arg [exp(n(02y — o2en))] = (—

From (3.2.1), we get

. o b _ b2
SIn(Ditr) = VE+)N —k—r) \/1 4k +7)(N —k—r)’

which makes the second term in (3.2.5) into

rnN B rnNb\/4(k +7)(N —k —r) — b2
N—k)(N—-k—r)  2k+r)(N—Fk)(N-—k—r)?

sin(20y+, ) (
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Thus,

rnN br raNby\/A(k+r)(N —k —r) — b br
N—k)(N—-k—r) 2Nk  2k+r(N—k)(N—-k—-r)2 2Nk
b {nN%NEJMk+ﬂUV—k—ry—N_J}

2v/Nk (k+r)(N=Fk)(N =k —r)? '

While the term inside the braces goes to 0 in probability as N — oo, k — oo, N/k* —

sin(26x4. n) (

00, we know that b/v/N SN N(0,1). Therefore,

rnN B br L 0
N—k)(N—k—r) 2J/Nk ’

Sin<2¢9k+r7]\[) (

which as N — 0o,k — oo, N/k* — oo.

The first term in (3.2.5) is

—nk —nk b b
sin(26 — sin(20y4, = —
N—k:( (20x,n) (20k47.v)) N—k<\/k:(N—k’) \/(k—l-'r’)(N—k—r))
1 1
_ —bnk ~ K(N=K) ) (N—k—7)
- N o ]f 1 1
VE(N=k) T \/ (k+7)(N—k—m)
—2rk+rN—r2
—bn . (k+r)(N—k—r)
N — k)2 1 1 ’
( ) VE(N=k) + \/ (k+r)(N—k—r)

which tends to 0 in probability as N — oo, k — oo, N/k? — oo, for r < M - VEk.

Using this, along with (3.2.4), we get, for r < M - V/k,

. br P
e 2 g2 ‘e {—<f+-———)}—%1, 3.2.6
XP(”(%,N 0k+r,N)) Xp 5 ZZ\/W ( )

as N — 00,k — oo, N/k* — co.
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Finally,

|k b , b?
b(ak—0k+r,N)=b<z N—k;<_2 —k(N—k:)+Z\/1_—4k(N—k)>
—i, k+r _ b w1 b2
N—k—=r\ 2y(k+r)(N—k-—r) Ak +r)(N—Fk—r)

The imaginary part of the above expression is

b? —r
/L— .

2 (N—k)(N—k—r)

which, for r < M -Vk, converges in probability to 0 as N — 0o, k — o0, N/k* — oo.

As for the real part,

k+r b2 [k b2
b( N—k—r\/1_4(k+r)(N—k—r)_ N—k\/1_4k(N—k)>

is equal to

kit (1 _ b2 ) k& (1 2 )
b N—k—r (k1) (N—k—r) N—k IR(N—F)
k+r ’
\/N—k 7"\/1 k—i—r) N k—r) + \/ \/1 N 1k(N—k)
which evaluates out as
- v < 1 - )
(N—k)(N—k—7) 4 "\ (™

\/1 4(k+r)(N — r)+\/N k\/l 4k(N k)

e

r b2 r2-2Nr42kr P
2 1

~b. N4 - — 0.

2

L3
N

These give us
b(O’k - Uk+r,N) i) O, (327)
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for r < vk and N — oo, k — 0o, N/k* — oo.

Thus, we have from (3.2.3), (3.2.6) and (3.2.7),

fn(okn) (7” . br ) P
LB Lexp | =44 — 1,
In(Okirn) P2 2v/ Nk

for r < M -Vk and N — 00,k — 00, N/k* — oo, which proves the theorem. O

3.3 The asymptotic sinusoidal behavior of e; x

Going back to the Cauchy integral expression we had for e n,

(CDf [ ),

€k, N = -
2w Jp 2ktL

We now choose I" to be the circle centered at the origin of radius oy y|. Clearly then,
I" passes through both o4 x and 7 y. We divide I" into four regions - I'y, Ty, T, and
I, as follows. Any point z € T’ can be written as z = oy ye',t € [—m, 7). We let
'y be the set of all points 2z = oy, ye' € T, for which [¢t| < k~°, where § is fixed and
% <0< % We let T'; be the collection of points in I' that are complex conjugates
of the points in I'y. I'y and I', are the regions on the remaining left and right arcs

respectively.
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3.3.1 Evaluating the Cauchy integral over the “nice arcs”

Lemma 3.3.1.

kzw — 2y <—,k1_5> — 0 as, N — oo,
exp(gk,n(0)) 2

where y(z,y) represents the lower incomplete gamma function.

Proof. We may use the Taylor’s expansion of gj n(t) in the previous section to get

k9 3
z ) t )
fZJ\LSl) dz = z/ exp {ghN(O) — Cyat® + G (Reg,(jj)v(tl) + z[mg,fj)v(tg)ﬂ dt,

Fl ]C*‘s

where Cv i = 07 yoS N (04n)/2 (which is ~ k) and t1,t, € (k0 k7).
Because g,(f])\,(t) = O(k) (Lemma 3.2.3), we have that, for t € (—k=°, k79),

t3
5 (Reg,(j])\,(tl) + i]mg,f])v(tg)> — 0, and so,

t3
exp (E (Reg,f])\,(tl) + z']mg,f])v(tg)>> — 1,
the convergence being uniform over (—k=°, k=9).
Next,

k k

= Vkexp(—kt?) lexp (( - %) k:t2> — 1}

vk [exp (—% : k;t2> - exp(—ktz)] = Vkexp(—kt?) [exp (—% kt? + kt2> - 1]
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As [t| < k70, kt* < k', Since § € (3, 3), Lemma 3.2.2 gives us

<1 — C]gk) kt* — 0, which means,
CN,k 2 2
Vk |exp % kt* | —exp(—kt*)| — 0,

where, as before, the convergence is uniform over (—k=%, k~°).

Finally,

k=0 k=9
/ exp(—kt?)dt = 2/ exp(—kt?)dt
k=96 0

1 f1—26 _1,

——dx, where, x = k;t2
\/_ \/_
1 1
- -, k1—25) )
Vi (2

Stitching all of this together, we have,

Vi 2 Jr, — iy (l,kl‘%) — 0.

exp(gr, N(O)) 2

[]

A similar result holds for I'y, which can be proved by simply taking conjugates

in Lemma 3.3.1.

Corollary 3.3.2.

! 1
Vi i (0)) — iy (5,1&—5) — 0 as, N — oc.

eXp(gk N
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3.3.2 Evaluating the Cauchy integral over the “bad arcs”

In this section, we see that when the Cauchy integral is evaluated over the arcs 'y

and I}, it turns out to be negligible with respect to exp(gx n(0)).

Lemma 3.3.3.

Ullz,N In(2)
\/EfN(Uk-,N) r, 2
Vi UII:,N In(2)

fn(own) T 2+l

dz — 0, as, N — oo, and,

dz — 0, as, N — oo.

Proof. We have, for z = oy ye'* € Ty UT%,

Fu(2) B (1- UhNeit)”H’(l +O'k,N€it)n

Inlorn) (1= opn)™ (1 + opn)”
(L= o2y (1= e
I=oiy)" (=)

2t UI%N " i\ OkN ’
kN ,

For the first term above, note that,

b2 . b b2
TN ko L= vz +1 W_F) L= mv=m
1—-02, N b2 . p2
kN L= sviv=m — inun—s k— AN=F)
k
= —— - X s
N

where ay — 1. Therefore,

. o2 n
{1 + (1 . 621t) k,é\f }

17‘7k,N

; — 1.
exp(—%ka]\;(l — e2it))
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Now, 1 — e?* =1 — cos 2t — isin 2t = 2sin’¢ — i sin 2t.
1 o .y t?
Qk -2sin“t = ksin“t > k?’ for, [t| < 1.39.

Then, as [t| > k9,

1 k-2 11
5]{:-2sin2t > 5 — 00, since, § € (5,5) )

Likewise, for |7 —t| < 1.39, since |1 —t| > k~° as well in I'y and I'y, we have,

1 1 k1—26
5]{ - 2sin’t = §k - 2sin®(m —t) > 5
Next,
1— o0 i
Ok.N X k 4k(N—k) \/k(ka) . k B
— = . =1 [
1_0k,N N —k 14 b _Z\/k . b2 N —Lk N,
2(N—k) N—k  4(N—k)?

where, Sy — 1. So,

b b
{1+(1—e’“)%} :{1+(1—e“)u/ﬁ.5]v}
=<1 int b ] 1 )1/ b b
= —f-ﬁNSln m—f—lﬁj\[( — COS ) m

Because k/vN —k — 0, and |b| < AV/N, we get that there exists a constant C

for which,

b
{1 + By sint ﬁ +i6n(1 — cost) ﬁ}

exp(CVk)

is bounded.
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Therefore,

A b
{1 (1 ety

\/EfN—(Z) ~ VEexp (—%lm]v(l — 62“)) exp(CVE) -

fn(okn)

eXp(C\ / O’kyNk)

and so, Vz € I'y,

\/E—fN(Z) — 0,

fN(Uk,N>

with the convergence being uniform over I's.

Thus,
k
1 In(2)

Vi 2kN fN(Z)dz < Vi |22 dz] — 0.
~NOEN) Jr, 2 = |og.N| Jr N(OkN
Futoen) Joo % = Toenl Joy Y | Fatoem) | 1

Similarly,
k
1 In(2)

Vi 2kN fN(Z)dz < Vi |22 dz] — 0.
NOEN) Jrr 2 T |og.N| Jr N(OkN
Felonn) Jo, 7 2 = Tonl Joy V¥ (o) |

3.3.3 An expression for vk - er.N
Using Lemmas 3.3.1, 3.3.2 and 3.3.3, we get the following expression for ey y.

Proposition 3.3.4.

N\ k2 | |
\/E * €N = (T) Re {Zk (ﬁ + yk,N) fN(O']@N)e_lkek’N} ,

where Vg y — 0 as N — 00,k — 00, N/k — oo, where 0y, y = arg (ok,N - g)
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Proof. We have,

\/E(—l)’“ek,N—ﬂ.( Inz) fN(Z)dz—i—/ Inz) +/ fN(Z)dz).

omi \ Jr, 2 s Skt , ZFH

o.k
Now, using Lemmas 3.3.1 and 3.3.2, we have, Vk - —&~— . % fFl fz’)c’fl) dz equals,

In(ok,n)
NG g 1
Vi =T (—,k1‘5)
[ iexp(gn(0) ' \2

1
- k,l—(s
+ /y (2’ ) )
and, vk - TNt 1 fr zk+1 2z equals

IN@kN)
fn(z)
Vi 2 T Z—% i ¥ (1 k”) + (1 k”)
i exp(gr,n(0)) 2 2
where the first terms in the [—] brackets in the above equations are complex con-

jugates of each other and converge to 0 as N — oo,k — 0o, N/k — oo. Also,
note that, as y(z,y) is the lower incomplete gamma function, and as 0 < 1,

v (3,k'70) = /7 as k — oc.

Therefore, applying Lemma 3.3.3 to [;, ]; ¥ 72 and fr/ 5 G) iz, we get,

Vi(=Dfern = — {M (VT +Vin) + M (\/_+ykN)}

2 ok v OrN"
_ 1 fn(okN)
- Re{(ﬁ“”“”> o }

where Vi v =V}, y/7 — 0, a8 N — 00,k — o0, N/k — oo.
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P . 0
Furthermore, writing oy v = |ox n|€"*, we have,

VE(=1)*exn = Re < —l—ykN) M}

|Uk,N|2k

{ k
{ —+ykN (NT_IC)ka(ak,N) (—z’ ﬁ) e ko

N —k\*? .
(g o) (55) )

k/2
— \/_ekN = (T) Re {ik (% + yk,N) fN(Jk,N)e_ikek’N} )

We write

1 .
Gy =i~ (ﬁ + yk,N) I (g ) e H0my

so that,

N —k\"?
\/E * e N = (T) Re(gk’]\/).

As a final step to proving Theorem 3.1.1, we want to evaluate the ratio % asymp-

totically for r < M - vk, M > 0 being a constant, as N — 0o, k — 00, N/k* — oo.

3.3.4 The ratio gg:f, for r < M -Vk

Lemma 3.3.5. Let a = b/\/ﬁ and r < M - \/E, M > 0 being a constant. Then,

e ( roar ) P
—i)" cexp | —= —1 — 1,
(= gkN P\ 72 4k

as N — 0o,k — 0o, and N/k* — oo.
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Proof. We have,

1
Gkyr,N . Nz + VetrN ) fN(Uk—i-r,N) ) ei(kak,N_(k"‘T)ekJrr,N)
Oi,N \/L;r + Vv In(oew)

From Lemma 3.2.5,

fN(O'kN) (7” . ar ) P
0 exp | =4i—= | — 1,
IN(Okgr,N) P2 2k

where a = b/v/N, as N — 00, k — 0o, and N/k* = co.

So we now need to look at e’ (Wi, = (k) ) We have,

b b
/E(N—k k+r)(N—k—r
kOi.n — (k4 1)+, Ny = karctan Lb: — (k + r) arctan 2y )
1 - 4k(N—F) \/1 4(k+r) N k—r)
b
k(N— r r
= k |arctan _ VR — arctan vkt )(N )
1- \/ 1-
T(N—F) A(ktr) N Ikt (N—Fk—1)
b
— rarctan 2V ()N ) (3.3.1)
\/1 4(k+r)(N ke—r)
Now, note that, as N — oo, k — oo, and N/k* — oo,
rarctan( W )
2
wbrzw’m Py
2VEN
Since b/v/N N N(0,1), this gives,
b
T T b
rarctan V(N k) S N) (3.3.2)
\/1 2vVEN
4(k+r)(N k—r)
(3.3.3)
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Next,

b b
2,/k(N—k) 24/ (k+r)(N—k—r)
arctan | - arctan v
b
L= 4k(N—F) \/1 4(k+r)(N k—r)
b
2/ k(N —k) . 2\/(k+r)(N k—r)
2 2
— arctan \/1_4k(]b\f—k) \/1_4(k+r)(bN—k—r)
- b b
1+ 2y/k(N—k) 2¢/(k+r)(N—k—r)
2 2
\/174k(§)\77k) \/174(k+'r)€N7k7'r)
b — 1 12
2 / 4(k+r) N k—r) \/(k—i-r)(N—k—r) 4k(N—k)
= arctan
1-— 1-— 1
\/ 4(k+r)(N k—r) + 4 \/k k+r)(N—k)(N—k—r)

Since the numerator of the expression inside arctan is ~ MW, we get

b b
! lmaﬂ (m) reton ( B )}
P

/ b2 b2
174k(N7k) \/174(k+r)(N7k7r)

- — 1
1V/Nk
as N — 00,k — 0o, and N/k? — oco. Again, since b/vV N N N(0,1), this gives,
b b
- T T b
k |arctan _VENED ) arctan 2y (k) S N 0,
1— b \/1 4V Nk
(N—F) A(etr) N k) (N—Fk—r)

as N — oo,k — 0o, and N/k* — oo. This, along with (3.3.2) and (3.3.1), gives us,

ar P

— 0,
Nk

kOrn — (b +7)0kir N +
as N — 0o,k — 0o, and N/k? — oco. Hence,

(_Z-)rngrr,N exp (_f e )
Ok N 2 4k

1

_Vx + VitrN (fN(Uk-i-r,N) o (_T _par )) ( i(kOk, N —(k+7)0k 17N ) |

_ i X - exp _ §— - le - e
7= + VN In(okn) 2 2Vk

P
— 1,

as N — 0o,k — oo, and N/k? — oo.
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3.3.5 Completing the proof of Theorem 3.1.1
We now finish the proof of the main theorem in this chapter, namely Theorem 3.1.1.

Proof. From Lemma 3.3.5, if r is a multiple of 4, we get,

ra
G € WE — Grypn e

OrN

f

Py o T/2
N Opn - € GktrN - € P
|G~
R e — T2
. e(Gen - e Grir,N - € )i>0
|Gk~

Re (G, n) cos <4\f) + Im(Gg n) sin <4f> Re(Grirn) - € —r/2
\/Re Gin)?+ Im(Gi n)?

Multiplying numerator and denominator by \/LE (T_k)k/ 2, and noting that,

1 (;k)m

vk k er/?

1 (N—k—r)k/Z ’
Vk+r k+r

we get,

k/2 2
e cos (£5) + de (%) 1@ sin (15) = exer - (750"

— 0.
\/Bi’N‘i‘ 1 (N k) [m(gkN)

(3.3.4)

Next, let B n denote the argument of Howw) . Then, from (3.2.2), we get,

lc,N

¢ exp{nlm(of ) + bIm(op) + ks

9 -+ kak’]\/} — 1,

as N — 0o,k — 00, N/k* — oco. We wish to show that 8; y does now come too
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close to  too often. Observe that,

2 — k b —b2
nIm(of x) +bIm(ogy) = n—p (‘ NCOED) \/ LR = k))

_ (1— Nik) bm\/l—%.

Next,
__b
O,y = arctan _VRY M + g
b
1 1k(N—Fk)
b b 3 b 5
B 24/k(N—k) 1 2/k(N—k) n 1 24/k(N—k) n
2 1 b2 3 1 b2 5 1— b2
1k(N—k) 1k(N—k) 1k(N—k)
ba/ -t
T 1 N—k 1
= kb, =k—+ - —
g 2 * 2 1— b (\/E )
1k(N—F)
Therefore,

Im(o2) + bIm(oy) + kb = (1 — ——— )b b 1— v ya
RETAGE) T OETAGR) T A%k = N—k)'VN—% (N —k) "2

2
1_41@(12[%) \/E

T 1

=k=4+0(—

0 ()
+ W R— oY i1
1 N —k 4k(N — k) 2

4k(N—F)
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Let

= e (W) () o]

TE(N—F)

_k_

~—7 does not hover too close to multiples

We shall be done if we can show that ax x
of Z. Notice that aj,n/Vk LN N(0,1). Let () denote the cumulative distribution
function of the standard normal distribution and N denote a standard normal

variate. Choose an € > 0 that is < 1. Then, the intervals [mm — €, mm + €] are going

to be disjoint over m € Z. Then, fixing M > 0 (to be chosen suitably later),

k
N —Fk

mm — g, N

§6>—P( inf ‘mw—Nﬁ’Se)

0<m<MVk

P ( inf
0<m<MVk

k
= P _

0<m<MVk

§e>—PQmW—N¢ﬂ§eﬂ

By Berry-Esseen’s theorem, there exists a constant C' such that each term inside

. . . C
the sum at the right hand side above is < N TE Thus

k CMVk
P inf mm —a < —P inf ‘m —./\/'\/E’< ) <
<0Sm§Mx/E S T 6) (OSmSM\/E " =€) = vN —k

(3.3.5)

which goes to 0 as N — 00,k — oo, N/k* — oo. Also, using Berry-Esseen again,

Se) <P (akw Nk ? > —G—I—MT(\/E)

C —€
<——— 4 1-®(—+Mnr).
=Nk (@ ”)

k
N —k

mmT — QN

P ( inf
m>MVk

We now specify our choice of M to be large enough so that ® (=1 + M7) > 1-4§/6,
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so that,

k C
P inf |mm—a <e| < —— +0. 3.3.6
CWM@ o N—k-—>- Nk (330)
Finally,
P ( inf ‘mﬁ —N\/E‘ < 6) = _IQ/de
0smIMVE 0<m<MVk

1 mr — €\ > 2€

. (( )) %

2 — VEk Vk

2¢

1
SRV TS p——

From (3.3.5), (3.3.6) and (3.3.7), we get that, given any § > 0, we can find N, k, N/k?

S

— 0. (3.3.7)

sufficiently large, so that

P | inf K < < 0
in —a —.
mez+ | NN T = S g
By symmetry, we get,
P int Folce) <o (3.3.8)
in — ) 3.
meZ mn TN N—k|— ¢
By Lemma 3.3.5,
Orin Pije
Ok, N
Re(Gr41,n) Im(Gg, ) Im(Gry1,n)
Re(g:N + \/—Re(gk N) < Re(g:N) - \/E> P
) — 0.
1+ it
( &.N)
Using (3.3.8) we get,
Re(gk+1 N) ]m(gk N) P
—— /e — — 0
Re(Gr.n) \/_Re(gk,N)
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Again, multiplying numerator and denominator by \/LE (—_k)k/ ?

; , and noting

that,

ka)k/2

)k/Z ~ \/Ev

k

(T

H

<)
Ead

—

[y

k+

/_k
N—f%Ck+1,N

€L.N €L,.N

we get,

N k)2 m\Yk,N
S <g’)i>o (3.3.9)

Sl

_|_

Therefore, from (3.3.9) and (3.3.4),
k 1"/2
€kNCOS(4\[)+\/N k€k+1NSIH(4W>—€k+r,N'(—_k) p
\/ei,N + g (erpn)?
k )1‘/2

€k+r,N (m

— 27T@> -
\/ei,zv + 75 (err1,n)?

ro
4

o

— —sin<

This clearly gives us

€k+r,N * (Nk k)tf/Z

\/%N"’ s <€k+1N)

sup inf |—sin (g _ 271'@) .
t=0,4/VF,...[M]o \ 0S5=M A

Also,

P

k tvVk/2
) — 0,

Cktr,N * (N &
\/ekN+Nkk(ek+1N)

and owing to the uniform continuity of sin (£ — 270) in [0, M], we get,

ke \tVE/2
. . (S« Ck+r,N * (N—_k)

sup inf —sin (Z — 27r@) —
0s<M t=04/VE,...|M]o \/e%,N + 75 (er1,n)?

inf —sin (ﬁ — 27?@) —
t=0,4/Vk,..., | M o 4

L5 0. (3.3.11)

The equations (3.3.10) and (3.3.11) together imply that,
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Chapter 4

Poisson point process

4.1 Introduction

4.1.1 Overview and Notations

Let {X, : j € N} represent points of a Poisson process of intensity 1 on the real line.
In this chapter, we wish to define an entire function, f, that vanishes at exactly the
points Xj;,Vj, and explore the resulting zero set on taking repeated derivatives of
the function f. As we shall see, answers to questions regarding the resulting zero
set are locked in with the behavior of the coefficients of powers of z in the power

series expansion of the function f.

Although Weierstrass’s Product rule does ensure the existence of (infinitely

many!) entire functions that vanish at exactly the points X;,Vj, we are interested
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in a class of functions f,,x € R, that are defined as
fz(2) == lim H 1- =
v o N—oo X '
31X —z[<N J
As we shall see in the next section, Vo € R, f,(2) is entire and the critical points of

fz are translationally invariant with respect to z.

We shall write

. z
ok T (-5)
JIXI<N I
The coefficient of z* in the power series expansion for f will be (—1)* times the
elementary symmetric function of %’s, given by
J

S T o S
ke N—o0 X '

X' X oo ;
1<*j1<j2<'-~<jk5|le|<N Ji1<*J2 Ik
° '2 Ibf[a-ill ReSUItS

The two-step ratio of the elementary symmetric functions, ey o/e; display an in-
teresting convergence property as k — oo, as we shall show with the following

theorem.

Theorem 4.1.1. Let { X, : j € N} represent points of a Poisson process of intensity

1 on the real line, and let,

S T o R -
ke N—o0 X

X X .. X
1<1 <2 <...<jit| X |SN ©I1TTI2T Ik
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Then,

2
Kero P o
€L

as k — 00.

Note that the behavior described in the above theorem holds true for the function
cos(mz) + Y sin(mz), where Y has a standard Cauchy distribution. The zeros of this
function are Z 4+ U, where U ~ Uniform(0, 1). Following this link, we arrive at the

following result.

Theorem 4.1.2. Let {X; : j € N} represent points of a Poisson process of intensity
1 on the real line, and let,
f(z):= lim H (1—1)
T N—o0 X '
7:|XG|1<N /
The zero set of the nth derivative of f, f™, converges in distribution, as n — 0o,

to Z+ U, where U ~ Uniform(0,1).

4.1.3 The Cauchy Integral expression for ¢

As in the previous chapter, we shall express the elementary symmetric functions
in terms of a Cauchy integral about a loop of steepest descent, and evaluate that

integral over different arcs of the main loop.
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By Cauchy’s Integral formula,

f(k)(o) _ k_‘ f(z)d

= z
2mi Jp 2k
where I' is a simple continuous loop around the origin. Note that, f(k)(O) =

(—1)k1€!€k. SO,

= dz. 4.1.1
o 271 /FZ’““ - ( )

Define

on(2) = log (f (Z)) |

ok
Away from the real line, ¢, is analytic. As in the previous chapter, the critical
points of ¢, determine the loop of steepest descent, and the higher derivatives of

¢ help in solving the Cauchy integral in (4.4.1).

4.2 Existence of the function f and its properties

Despite not following the Weierstrass’s Product rule, we shall show that the function
f still exists and is entire. Towards this, we first need the following result about

1>
sums of St

Lemma 4.2.1. For everyr > 1, x € R and z € C, the sum

1
> GoX)

J: X —x|<N J

converges (conditionally) almost surely to a finite complex number, as N — oc.
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Proof. This result may be proved using a slight variation of Kolmogorov’s three-
series theorem.

We have, given any A > 0,

S ]

where D(w, p) denotes the ball of radius p centered at w. Thus, fixing M > A=Y,

ZP(mZA) :ZP<{XJ»EW}H{|XJ-| gM})

J

< Z[P (IX;] < M) =E (Z 11|Xj|<M> = E(Rw),

J

where Rj; denotes the number of points of the Poisson process within [—M, M].

Note that Rj; has a Poisson distribution with mean 2M. Thus,

1
E Pl——>A4) <2M < .
= \|lz =X
J
1

By Borel-Cantelli Lemma, this implies that for j sufficiently large, X < A

almost surely. Write,

Thus,

|
> GoX)

JilXj—z|<N J

converges as N — oo if and only if

>

Ji|Xj—a|<N
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converges as N — 00.

Next,

E( > Y |=EE| >  Y|Ry|,

J:| Xj—z|<N Ji| Xj—x|<N

where Ry denotes the number of points of the Poisson process within [-N +x, N +
x]. As before, Ry has a Poisson distribution with mean 2/N. Moreover, conditional
on Ry, the poisson points inside [—N +z, N +z] is i.i.d uniformly distributed inside

that interval. Thus,

El Y. Y| =ERy-@Ql,

Ji| Xj—z|<N
where
N4z
@ 2N CNie (2 —w)" ﬂ{ﬁy‘}du
N+x

2N s Z—u ﬂlz u|>A- 1/Tdu.
T

For r > 1, if z is not real, we can choose A large enough, so that

N 1 [ 1 1 1
7" du = — — ,
2N Naw (2= )" 2N [r—=1|(z=N—-2)! (24 N—a)!

N—oo
J:| Xj—z|<N

and if z is a real number, then

11 1 2 1
QT—W {r—l{(z—]\f—x)r—l AT (z+N—x)7"—1H

— lim [ Zyjz—z

N—o0 Ar—1’
31X —z|<N
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a finite limit in both the cases.

For r = 1, writing z = re:f, if z is not real, we get,

N+x
d
1 2N/N+m <A} !

N+zx 1
:W/NﬂrcostLzrsmﬁ—u {=a=

/N” rcosf —irsinf —u
" 2N Niw (rcos® —u)2 + r2sin® 0 {Iz o]

A}du

<A}du

Ntz rcosf —u
{ <A}du
2N Ntz (TCcosO —u)? +r2sin® 0 Us—ul

irsing [NtT 1
- 5 { <A}du
2N nin (rcos® —u)2 +r2sin®§ Ul
1 N+4+xz—2z 1 ) N +x —rcosb
= — —— | — —— arctan
ON BN _—z+2| 2N rein0

n 7 ; —N 4+ x—rcosb . 1 loe A ; . Al —rsing
— arcta — 1o ——aca - .
2N retan rsind 2N & N retan rsind

Therefore, limy_,o E (Zj:|xj—x|§N YJ> exists finitely. If z is real, then,

N+zx
1 QN/N.HU — iSA}du
N+z—=z 1
1 — |+ —log A,
“oN BN _—axz| ToN 8

and again, limy_, ., E (Z] X~ <N YJ) exists finitely. Thus, forallr > 1, E (ij|Xj—x|§N Y;)

has a finite limit as N goes to infinity.
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Next,

1
E Z |Y}|2 :[[RN'ﬁ/

Ji1X—z|<N —N+z |Z - U’|2r

N4z 1
:/ —2,,,1|27U|2A71/Tdu
—N+zx |Z - U’|

N4z 1 1 1 ,
- Ntz L Z—2\2—u Cz_u ]llz—u\zA—l/rdu,

which would again have a finite limit as /N goes to infinity. Now, using Kolmogorov’s

N4z 1
1|zu>A1/Tdu1 y

inequality, we get,

1
- — . —_— . 2
P ma | > Y- > Y| =ARy | < SE ) V3| Ry
jm<|Xj—z|<n jm<|X;—z|<n Jgm<|Xj—z|<N
1
- — . —_— . 2
— P Jax, g Y, - L E Y| >A] < )\Q[E E Y;1* ],
jgm<|Xj—z|<n jm<|Xj—z|<N Jm<|Xj—z|<N

where Ry denotes the number of poisson points inside [—N, N]. Thus, as

me( ¥

Ji1Xj—w|<N

exists finitely, given any € > 0,

P | limsup Z Y; — limsup Z Y; > e

N=oo X, —al<N N=oo X, —al<N
<P |2 max E Y, - L E Y; > €
1<n<N
Jgm<|Xj—z|<n Jm<|Xj—z|<N
4
< 5E |Y;|2 ’
€2 § :

Jm<|Xj—z|<N

which converges to 0 as m — oo. Hence limy_,o Zj:|Xj—x|§NYj exists, almost

surely, which in turn implies that limy_,oo Y X, —a|<N L__ exists almost surely.
: = J

(z2=X;)

]
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The above lemma sets the stage to prove our result about the existence of f.

Lemma 4.2.2. Define, for x € R,

= I (1-5).

JilXj—z|<N J

Then, as N — oo, fy n(2) converges almost surely and uniformly on compact subsets

of C.

Proof. Let K be a compact subset of C. Let M = max{|max{|z|: z € K}|+1,z}.

Then, if | X; —z| > 3M, |2/X;| <1/2,Vz € K, and so

So, for |X; — x| > 3M, we can take the principal logarithm of 1 — 2/X; as an

analytic function on K, and we have,

! N o 22 N 23 N
o —— ===t =—=+-—=+..].
ST X, X; " 2x? T 3X?

J

— 1 1 zZ VA Z2 + ZS + 24 +
P O _—— —_— — pr— .
& X;) X |2x7 T 3xE T ax] :
< |z| |1 N 1 =z N 1 22 N
SIXGE2 T3 X, 4 X2 ’
_ B FEUE SN U
SIX P23 2712 ’
ER
X1

=

3M<|X;—z|<N

<Y o

1
< M? .
Z ’X'j‘z

3M<|X,—z|<N

4 z
—los (12} - =
Og( Xj) X;
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. . . 1
Since X1, X5, ... are Poisson points, Z3M§\Xjfx|§N X,z Converges as N — o0. Thus,

by the above inequalities,

2.

3M<|X,—x|<N

zZ VA
—log (12} - =
Og( Xj) X;

converges as N — oo, and moreover, this convergence is uniform over K, as it is
dominated by the convergence of the sums of inverse squares of |X;|. So, we may

write
S (-2 )=— Y L4,
X X
3M<|X;—z|<N 3M<| X, —x|<N
where Gy converges uniformly over K. Also, from Lemma 4.2.1 the sum
> %
X

3M<|X,—z|<N

converges (conditionally) as N — oo. Hence,
1
.oy L
3M<|X;—z|<N
converges (conditionally) uniformly over K as N — oo. Therefore,
z
1 1——
2. log < Xj)
3M<|X;—a|<N

converges uniformly over K as N — oo, which implies that,

(5

X
3M<|X,—a|<N

converges uniformly over K as N — oo. Multiplying this by

z
| | 1-— =
( ‘ij) ’
|X,—z|<3M
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which is, a.s., a finite product, we have that,
H 1=
Xj
|X;—z|<N
converges uniformly over K. Thus we have the a.s. uniform convergence in compact

subsets of C, which also implies that

R = Jim fov() = Jim T (1-5)

|X;j—z|<N
is an analytic function on C that vanishes at exactly the Poisson points X7, Xo, - - -.

O

Now that we have established that for each x € R, f, exists and is entire, we
are going to state and prove the following result on the translation invariance of the

critical points of f,.

fon

Toys converges almost surely
z,

Lemma 4.2.3. The logarithmic derivative of f, N,

and uniformly in compact subsets of C to a function independent of x.

Proof. Assume, without any loss of generality that, x > 0. We shall show that

! /
. N _Jon
lim =2~ = lim —=—, as., Vz € R,
N—oo fx,N N—oo fO,N

so that,
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We have,

and so,

a/:N(Z) B féN(z) _ 1 _ 1
fan(2)  fon(2) j:XjZmKN =X j:?;ﬂv i

1 1
- —X, 2. P X,

z
j:X;€(N,N+xz] 7 jiX,;€[-N,—N+z) J

Now, let Ry (z) be the random variable denoting the number of Poisson points in

(N, N + z]. Then,

1 1
El Y e = EE > X Ry (z)

z
J:X;€(N,N+a] J:X;€(N,N+a]

Taking N large enough so that |z| < &, we get,
2

AN _1X‘ < EE > %RN<$)

z
§: X, €(N,N+a] J j:X;€(N,N+xz]

Now, note that, since the X;’s are a Poisson point process of intensity 1 on R,

Ry (x) has Poisson distribution with mean N + x — N = x. Therefore,

1 4x
E <——0
. Z z — Xj - N2 ’
J:X;€(N,N+z]
as N — oo. Thus, by Fatou’s Lemma,
2 2
Ellim > ! < limE| > ! =0
N—o0 z—X.| T Nowx - X 7
§:X;€(N,N+x] J §:X;€(N,N+a] J
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Therefore,

1 a.s.
— 0.
. Z zZ — Xj
j:X;€(N,N+z]
By symmetry,
Y g
. - X]
J:X;€[-N,—N+z)

Thus,

which proves the lemma.

4.3 The logarithmic derivative of f

4.3.1 Expectations of various power sums of %’s
J

In this segment, we shall compute the expectations of some crucial quantities that

tend to occur throughout the proofs of the main theorems of this chapter. We first
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introduce some notations, for ease of writing:

S ¥

* JiX5I<N
- 1T
N—oo
* JXGISN

Ry = Z]lxje[—N,N], and,

J

E(-|N,Rn) := E(:|X; € [-N, N], Ry poisson points in [—N, N]).

Lemma 4.3.1.

if z is in the upper half plane, and,

E [Zz_lxj] ="

*

if z is in the lower half plane.

Proof. Note that, conditioning on Ry, the poisson points X; that are contained

in [N, N| are identically and independently distributed as Uniform[—N, N]. So,
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writing z = re?

1
E
[Z_Xj

, we get,

1 1
N Ry| = — d
’ N} 2N 2€[-N,N] # — L v

1 1
= — dx
2N Joe-nNyTCOSO +irsing —x

1 rcosf —irsinf — x
- T
2N Jiei-nn) (rcosf — x)% + 12 sin? 4

1 rcost —x
- T
2N Joei-nn) (reosf — x)? + r2sin® 6

irsin 6 1
2N Jyep-non (rcos® — )% 4 r2sin® 6

N
AN N 2N

-1 N —z

N
oIN BNtz

-1 ' — 6
= — log[(rcosf — ) + r*sin” 4] ‘N ~ ' arctan (ﬂ>
- rsin 0

-N

) ; N —rcost . 1 . —N —rcost
— —arctan | ———— —arctan | —88 | .
2N rsinfd 2N rsind

Therefore,

N —z

N+ z

. 7 ; —N —rcosf
—arctan | —M
2N

rsind

N —z . N —rcost . —N —rcost
—— | —tarctan| ———— | +rarctan [ ——
N+ 2z rsind 7 sin 6

1 -1
E = —1
Z z || =Rw l °8 2N 7 sin 0

i (N—rcos@)
— —arctan [ ——=

— L Z ! ' = — log

for z in the upper half plane, and,

E [Zz_lX}] = i,

* J

for z in the lower half plane. n
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Lemma 4.3.2. For any m € N with m > 2,

1
E —0,vz €C.
[; (2 — Xj) ]
Proof.
1 1 1
oo | VR Ty ————dx
{ (z — X;)m N] IN Joepw (2 — )™
_ 1 1 1 - 1
TON m—1\(z— Ny (N
Then, noting that R has Poisson distribution with mean 2N,
1 Ry { 1 1 }
E Ry | = - |
a‘:);ﬂv (2= Xm0 2N = 1) L= Nyt (N 4 2)m
— L _ { B }
j:|);|<N (2 — Xj)m_ m—1[(z—N)m1t (N+z)m!
Thus,
L 1
- = - =0.
Lemma 4.3.3.
E Z : = _VzeC
— |z — X,[2|  [Im(2)] -
Proof.
1 1 1
x| VR = —/ —_dx
|:’Z_Xj|2 N} 2N Joei-nn (z—2) (2 —2)
1 1 1
= — |:/ dl’ —/ — dl.:|
2N(Z - Z) QTE[—N,N} Z— X LUE[—N,N} 7
1 1 1
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Thus,

JSH R S

So, using Lemma 4.3.1, if z is in the upper half plane,

1 T
" [Z !z—XjP] ~Im(z)’

and if z is in the lower half plane,

1 T
- [E |z—Xjr2] EIE)

which proves the result.

Lemma 4.3.4.
E Z 1 = m and
— |z = X[t [Im(2)P"
L 1 B 3T
2= X550 4lIm(z)]>
Proof.
1 1 1
E| —— N,RN} = — ——dx
[|Z - X 2N Jye-nn 12 — 2|
1 1
= — dx
2N Joer-nn (2 —2)(2 — x))?
1 1 1 1 \?
- — — = dz
2N Joepenn (=22 \2—2 Z-x
11 ( Lo, 2
IN G2 Jrepw \G- 27 G-aP Jz-af’



Therefore,

N

26 (| )
— " [|z—1xj|4} o [E(cz —1Xj>2) *Wﬁ) - (ﬁ)] |

From Lemmas 4.3.2 and 4.3.3,

1
E| —— N, R
LZ—XH4 ’ N)

' Lz—lxm} = TP

Next,

1 1 1
F|l—— [N, RN] S —C ix
LZ — X6 2N Jye-nn |2 — 2[°

1 1

dx

TN Sy (2= 2)(Z - 2))?

- NG T /xe[_N,m [(z T EF
R CEr - A e o M o

- 1 1 B 1 B 3(z —2) .
a 2N(z — z)? /ze[N,N} {(2 -z (Z—x)P |z—za dr.

Therefore, using Lemmas 4.3.2 and 4.3.3,

r 1 - 3T
|z —2;|9]  A[Im(z)]>
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4.3.2 The function ¢; and its derivatives

We have,

" j
1 k
- J

Let us make a change of variables by assigning y = £, so that the expression for

z
L

¢r(z) becomes

1 1
;ky—xj_i

Write,

1
% J

Lemma 4.3.5. Let K be a compact subset of C that is either contained entirely
in the upper-half plane or entirely in th lower-half plane. Then, there exists an
M > 0 corresponding to K such that, for every 6 > 0, there exists kg € N for
which, P(sup,cx [h,(y)] < M) > 1 —0,Vk > ko. Thus, with high probability, for
k sufficiently large, h), is uniformly bounded on compact subsets of the upper half
plane and compact subsets of the lower half plane.

Consequently, hy, and its higher derivatives are Lipschitz on compact subsets of

the upper half plane and compact subsets of the lower half plane.
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Proof. Let y € K and | = ming Im(y). We have,

1
n <k
<k L
- (kRe(y) — X;)? + k2Im(y)?
1
< k(S, + S
b2 Geey) = X e = FS F 5,
where
S Z L and
1= — N2 2727 )
1, ket FREW) = X5)7 + kA
1
o= ) (kRe(y) — X,)? + k212

J:1X51>k| Re(y)]

Let, Ry denote the number of poisson points between —kL and kL, where L =
maxg Re(y). Then,

Rer
Sl < W

Now, since R L has Poisson distribution with mean 2k L, there exists k; such that,

Vk > ky,
> 2kL)™
P(Rip > 8kL) = > e‘m¥,
m=|8kL]+1 m:

o0

< 2e~ 2L Z e g

m=|8kL|+1

|8kL|
< Qe kL <Z> < 272k

= _ 2kL)™
S 2 e 2kL ( —
T e (2)
m 1

N s
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where the second inequality above follows from Stirling’s formula. If we write Axp,

to be the event {Ry < 8kL}, we get that on AL,

8kL 8

S < —= = .

PSRz kL
Next, let I,,, denote the interval (k:|Re(y)| + kw, k|Re(y)| + km(mH ] Then,
| X;| > k|Re(y)| & |X;| € Un>1ly,. Write Ry, to be the number of j such that
| X;| € I,,. Then, Ry, has Poisson distribution with mean 2km. Following similar

computations as before, there exists ko such that, Vk > ky and Vm > 1,
P(Rim > 8km) < 2e 2™,
Thus,
P(Rym > 8km for at least one m > 1) i —2km < 92k,

Hence, there exists k3, such that, Vk > ks,

P(Rym > 8km for at least one m > 1) <

l\'>|<>n

If we write By to be the event, {Ry,, < 8km,Vm > 1}, then, on By,

1
Z 2 (kRe(y) — X;)? + K212

m=1 j:|X; |€Im

where s is an infinite sum that converges and is independent of k.
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Therefore, writing kg = max kq, k3, we have, Vk > kg, on A N By,

8 8 8(1+ Ls)
/ < ) =N T
< (o + ) = 2L,

8(1+L
yeK L

9

where, we note that P(Ax, N By) > 1— g +1-— g —1=1-9, which proves the first
part of this lemma.

Now, write ¢(K) to be the convex hull of K. Then ¢(K) is also a compact set
that is contained entirely either in the upper half plane or the lower half plane.
Now, using Mean value theorem, we know that, given any two points y,y2 € K,

there exists a point w in the line segment joining y; and y, such that,

i (y1) = P (2)| < [y = wel g (w))].

Since y1, Yo, w € ¢(K), then applying the first part of the lemma to ¢(K'), we have

that, given any § > 0, there exists ky > 1 such that Vk > ky,

8(1+ Ls)

P (1)~ mutoe) < S

|y1 —y2|) >1-—9.

Finally, to show that higher derivatives of hj; are also uniformly Lipschitz on
compact subsets of the upper half plane or lower half plane, with high probability,
for sufficiently large k, we simply use the Cauchy’s integral formula. Given K, there
exists r > 0, such that K, = {z : Jy € K such that |z — y| < r is also a compact
set that is contained entirely either in the upper half plane or in the lower half

plane. So, we can apply the uniform Lipschitz condition to K. For p > 1 and any
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y,y2 € K,

! hi(w) p! hie(w)
h(p) yp) — h(P) yo) = p_/ k—dw — —/ ———dw.
k ( 1) k ( 2) omi oy [=r (w _ yl)p+1 271 lw—ya|=r (w - yl)pﬂ

If we make the substitution, w = y; + re® in the first integral, and w = y + re® in

the second, we get,

| 2w it | o it
hy@ﬁ‘*ﬁkw%=£i/ ﬁﬁ&iﬁiLﬁ—fa/ hi(ye +ret) o,
0 0

27 rPeipt 27 rPeipt
_ P /% hi(yr + 7€) — hy(yo + reit)dt
- 2mre et '
Thus,
() ®) p[ : :
1 (1) = b ()] < 5 / \hi(yr + re’') — hy(yo + re')|dt
wrP Jg
p!
< = My — s,
r

with probability > 1 — § for k& > k.

]

Lemma 4.3.6. Let B, be a ball in C such that its closure, By, lies entirely in the
upper half plane and the radius of By, is k=20 where 0 < 6§ < % Then, there
exists g > 0 such that, for all n > 0o, P(sup,cp |he(z) +in| > k7/2H1) — 0 as

k — 0.

In particular, if By, has radius k='/3, then the above condition is satisfied for ny = %

Proof. By Lemma 4.3.1,
Ehi(y) = —i,
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if y is in the upper half plane, and,
Ehi(y) = i,

if y is in the lower half plane. Also, by Lemma 4.3.3,

™

~ [Im(ky)

Varlin(y)] < Elin(y)P R

= sup Var|hi(y)| < —.
yEBy

By Cauchy Schwartz’s inequality, if y € By,

2
8% 2 = g2k,

1
P (1) + il = 5441) <
Now, let Ej be the event {w : sup g |hi(y)(w) + in| > k7Y/*™1}. Since By is
compact, the supremum of |hg(y)(w) + im| is attained at, say, yx € Bg. Thus,
using the fact that hj is uniformly Lipschitz over compact sets, we get that, for k

sufficiently large, for all w € Fj,

k—l/2+n

() (@) + 7] > .

for all y € By, that are at a distance k~'/2*7=¢ from the center of the ball, where
1 > 0 is chosen so that 7 — e < §. Thus,

—1/24n

m {z € By : |hi(y) + im| > } > gk~ Y € By

k—1/2+77
2

= bm {Z € By : |hu(y) + in| > } > P(Ey) - mk 122
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Also, using Fubini’s theorem,

o k—1/2+77
ﬂim{zeBk:\hk(y)+i7r|> }:/

2

By

k—1/2+77
P <\hk(y) +im| > i ) dm,

< 7T]€_1+26 X 871'2k'_277 _ 87r3k_1+25_2’7.
Therefore,
[P(Ek) < 87T2k2(57277+6).

Thus, we shall be done if we choose € small enough and 7y large enough so that
0—2n+¢€>0,Yn > np.
In particular, when the ball has radius k~'/3, we find that all of the above holds

1 1 . .
true for n > 35 and € < . Thus, in this case,

P <sup |hi(y) + im| > k_1/2+1/11> — 0, as, k — o0.

yEBy,

Lemma 4.3.7. With probability — 1, the equation

1
hk(y)—gzo

has a solution in the upper half plane of the form % + o(k=V/2V1YY and a solution

in the lower half plane of the form _71 + o(k~1/2H1/1Ly,

Proof. We shall first show that a solution to the equation hk(y)—i = () exists inside a

1/3

ball centered at i /7 of radius k~'/°, and then demonstrate that this solution must be

of the form £ + o(k~!/#¥1/11). The proof for a solution of the form =+ o(k~/2T1/11)
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is similar.

From Lemma 4.3.6, we know that

P sup \hi(y) 4 im| < BV 51 as b — oo
yi|ly—£|<k-1/3

Writing Ay, as the event {w : SUD,, i <173 |hi(y) (w) + im| < kY211 e have

4
™

that, Vw € Ay, and all y such that [y — £| = k=3,

()= 2) = (i =3 )| = I + i

Y

< RV ‘—zﬁr 1
Yy

Y

for k sufficiently large. Thus, by Rouche’s theorem, hy(y)(w) — 111 and —im — gl/

1/3

have the same number of zeros inside the disc centered at i/7 of radius k~'/%. Since

—im— i has exactly one zero, namely i /7, this implies that h(y)(w) — i has exactly

one zero as well.

Now, let y; denote this solution in the upper half plane. Then, by Lemma 4.3.6,

hi(yr) = —mi (1 + Ckk_1/2+1/11) ’

o .
where ¢, — 0. Since y, = i (lyk),

Y = ﬁ (1 + ckk:_l/2+1/11)_1.
s
On choosing k large enough so that M < v/,

Y = (1 kY2 Czk—1+2/11 . Cik—3/2+3/11 4 )

L] .

_ 1o (k71/2+1/11) _

)
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The solution in the lower half plane is obtained by simply taking conjugates in the
above equations. Thus, as P(A;) — 1, with probability — 1, the two solutions

to the equation

are y, and yg, where
Uk = K o (k:_l/2+1/11) .
™
O

We shall write o, = kyy = k (£ 4 o (k=*/*7/11)). Thus, from the above lemma,
with probability — 1, ¢f.(ox) = 0 = ¢}(7%). We now try to get estimates on the
higher derivatives of ¢y.

1

11

2
H‘(féﬁiﬁﬁﬁ-—1> 50,

Lemma 4.3.8. For any r <

N =

k

and,

5 (2)
]gT(w_l) Poo.

Proof. We have,

oy (ky) ; (ky—Xj)2 + k22’

K22y (ky)
k
o2o (o)

— BTy e ()

—1=1y’h}(y)
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By Lemma 4.3.5, hj, is Lipschitz in compact subsets of the upper half plane, and is
hence Lipschitz in a ball around % that lies entirely in the upper half plane. Now,

from Lemmas 4.3.2 and 4.3.4 we have, for any fixed y in the upper half plane,

En,(y) =0, and,

T
Var(h,(y)) = ————.
) = )P
Thus, by Cauchy-Schwartz Inequality,
k71/2+6 T
P ( |k, (y)| > < AR
(> =) < g
S 47_{_2]{:—257

when y = i/7. So, using the fact that hj, is Lipschitz, we get,

/ / i /e
Ry (k) — by, <;>‘ > 5 )

k—1/2+6
Y,

/ —1/2+6 / ~1/2He
P (I (u)| > k724) <P ([(y)| > =5 — ) +P

7
Yp — —
T

<Ax’k 2 4+ P (

M being a constant. Note that y, — £ = o(k™"/2T/11). Therefore, if we take
d = 1/11, the right hand side of the inequality above goes to 0, which implies that
Ry (yr) = o(k~Y/2+1/11) Thus, for any r <

L1
2 1

2
kT(M_l) Py

The result for 7 is obtained by just taking conjugates.
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4.4 Evaluating the Cauchy’s Integral expression

for e,

As seen in equation (4.4.1), the elementary symmetric polynomials of %/s can be
J

written as

(i),

—1)re, = 4.4.1
(Dfer =5 | Seerds (4.4.1)

where I' is a simple continuous loop around the origin. Let us take I' to be the
circle centered at the origin, with radius |oy|. Thus it passes through both ¢} and

Of.

Let us take I'; to be an arc of I' that passes through o, and extends to an angle
of k7 on both sides, where § lies between 1 and 1 (thus, § < 3 — ). Let T'; be
the arc that has points that are conjugate to I';. Finally, let I'y are [, denote the

remainder arcs on the left and right respectively, so that 'y, T';, 'y and T together

complete the full circle T'.
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4.4.1 Evaluating the Cauchy integral over the “nice arcs”

In this subsection, we will give approximations of the integral in (4.4.1) over the

arcs 'y and T'y. Define

ge(t) == gp(one™), t € [0, k7°].

Lemma 4.4.1.
&) 4, 1 k-2
$—2ﬁ7 (—7—) dti)O, as, k‘—)OO,
exp(gr(0)) 2 2

where y(z,y) represents the lower incomplete gamma function.

Proof. Note that gy, is continuous over [—k~°, k%] and infinitely differentiable over

(—k=%, k~%). The Taylor’s expansion of gi(t) gives us,

2 t3

/ t :
91(t) = 91(0) + t93,(0) + 597(0) + = (Reg? (1) + ilmg (1))

where t; and t, are points that lie between 0 and ¢.

Now, ¢,(0) = iopd(ox) = 0. Also, g2(0) = —026\”(0%). Thus, be Lemma 4.3.8,

1

for any r < e

N |
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Next, note that for any ¢ € (—k=°, k~9%),

g,(ﬂg) (t) = —iakeitgbﬁc(ake“) — 3i0262it¢g)(akei ) — wke?’”gbk (ope’ )

— —ik {yee” hi(yre™) + 3yZe” bl (ype™) + yie* h? (yke“)] :
Now, since hy,(yx) = 0, using the Lipschitz condition on hy we get that |y (yre®)| <
M|t] < Mk=°, where M is a constant. Similarly, since hj, is Lipschitz near i/7, and
R (yi) = ok~ /21 we get that [h) (yee™)| < o(k™/2H1) + O(K™°) = O(k™),

uniformly in probability.

Next, from Lemma 4.3.4,

[Eh,(f) (i> =0, and,
0
’ 32
Varh? (=) = 2.
arit s 4k

Thus, using the same methods as in the proof of Lemma 4.3.8 and above, and the

fact that hl(f) is also Lipschitz near *, we get, hl(f) (ype™) = O(k™?), uniformly in

probability. Thus,

t3
sup —g,(:’)(t) 0.
<k 6

Now,

f2), t? o) P ®) -
oz =1 exp |gx(0) + =g, (0) + — <Regk (t1) + z]mghN(tg)) dt.
VA _ k-6 2 6

Iy

So, stitching everything together, we get,

dz kt?
\/_fr1 Zk“ 2\/_/ exp ( ) I}

eXp gk
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But,

k9 2 k9 2
kt kt
/ exp | —— | dt = / exp | —— | dt
_k.—(S 2 0 2
1 k.1726/2 —z 2
= —/ e—dx, where, x = —ki,
v2k Jo \/E 2
1 1 k2
-~ ()

Thus,

F2) 15 1 p1-20
N ( )dtim.
exp(g:(0)) 22

Corollary 4.4.2.

L I@ g, 1 -2
%—i\/ﬁv(—, )dti>0, as, k — oo.
exp(gx(0)) 22

Proof. The proof of this is direct - by just taking conjugates in the statement of the

above lemma. ]

4.4.2 Evaluating the Cauchy integral over the “bad arcs”

In this section, we shall show that

1 (2)

flog k+1
(Uk) ry ?

1 /f(Z) P
dz — 0.

f(ol-ck) I Zk""l
9k

dz 25 0, and,

2
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To do so, we first show that, when K is a subset of the circle I' lies outside the

“nice arcs” I'y and I'y, and is far away from the real line,

f(z)
f(ow)

P
— 0,

sup
zeK

which automatically implies that integrating f(ik) Il K ka(i)l dz 25 0. Next we show
Tk
7k

that, this condition holds true even when K contains the axis (for this part we have

given only a sketch of the proof - details shall be filled in later).

Lemma 4.4.3. Let 3 be a fized angle that is strictly less that 5. Then,

f(aked)

P
k—?gl?gﬁ f(ox) 0 and,
flowe™)| P
k—ilgl?gﬁ f(ow) 0
Proof. Define
o f(ore™) ’ -5 s
)= [LP v g, -k, ),

We can then write,

flowe®) f(ore™)

Ul =g
s ogi€ f(ope™) f(are™ ") — aie™ f(ope™) f'(dre™™)
= %t = P ’
it (e L) el
= ¢k(t)( k Floge™) k Flowe)

=—=2-(t)- Im (0;@6”{:0((5—%) :

Thus, v}, vanishes at ¢ = 0, —2 arg(oy) and at other values of ¢ for which

i (0re")\
Im (ake Flowe®) > = 0. (4.4.2)
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We shall now try to study the behavior of g and ¢’ over [—3, —k~°] U [k9, 3].

When t € [k, 3], we know that

/ k’i it .
R = (5) =me o

d

where C' is a constant that depends on 3. Then, letting E} be the event

w: sup > k0%,
telk=0,4]

Using the fact that hy is uniformly Lipschitz over compact sets, we get that, for &

since § < 1/2. In fact,

k—é
2 — Y

I (kiet)

f(k%e ) +

(w) + im

sufficiently large, for all w € Ej,

-5 f' (kze") - - -5
m{te[k 0] i ezt)(w)—i-m ]>—}>7rk ,
-5 f' (kze") ~ k0 5
— [Em{te[k: B Tl zt)( w) + im >7}ZIP(E;€) ik

Also, using Fubini’s theorem,

s o | f (kLe™) . K [P f (ke | s
[Em{tG k=%, 8] W(M)—I—m > —/ka[P W(w)+zw > 5 dm,
< (B—k70)-CE1F.
Therefore,

P(E)) < CRE~1 — 0.
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f/ k%eit . _ . "(k
W + 47| < k™. Since ];((kg)) = hi(y),

Thus, with probability — 1, sup;cp,-s g
which is uniformly Lipschitz in compact subsets of the upper half plane, this implies

that,

Next, we know that,

opet = k ¢ 4 o(k_1/2+1/11)) - (cost +isint), in probability,

g

1
+1i { (— + o(k:_l/2+1/11)) cost 4 o(k~1/2L/ sint}} .
T

P
—1

(_ + O(k_1/2+1/11)> sint—l—o(k_1/2+1/11) cost
T

So,

[/ (ore™)

I it'—
m(WQ Florei)

> =k[(1+O0(k™))sint + O(k™°) cost] .

Since t > k7% in this case, ksint is the dominant term here, and is > 0. Therefore,

¥5.(t) < 0 here - that is, ¢y, is decreasing. Moreover, sup,c-s g % L .

Similarly, if t € [-3, —k77],

f'(ore)

JATRE ) —1/2y) sin —1/2) cost] .
f(akeit» E[(1+O0()) sint + O(k~"2) cost]

Im (Uke” .

Since t < —k™° in this case, ksint is the dominant term, and is < 0. Therefore,

W' (t) > 0 here - that is, 1y is increasing. Also, infte[,@,k—ﬂ zig; i> -
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The rest of the lemma is now immediate from applying the following claim to
I(t) = logg(t) on [-B3,—k™%] and to I.(t) = —log(t) on [k~°, 8], while noting
that ¢y is maximized at oy and oy, where it takes the value 1 (meaning log ¢, takes
value 0).

Claim: Let l(t),k > 1 be a collection of functions defined on an interval (a,b),
that are continuous and differentiable there. Suppose that I} (t) > 0,Vt € (a,b) and
that limy_oo SUpse(qp) lp(t) = 0o. If there exists M € R such that [(t) < M, Vt €

(a,b),Vk, then,
li inf [p(t) = — t b).
dim inf K(t) = —00,Vt € (a,b)

Similarly, if there exists € R such that l;(t) > m,Vt € (a,b), Vk, then,
lim sup [;(t) = +o00,Vt € (a,b).

k=00 te(a,b)

Proof of Claim: Look at the case with the upper bound first. Given t € (a,b),

choose ty € (a,b), with ¢ty > t. By the Mean value theorem, there exists t; € (t, o)

such that,

(1) = li(to) + (¢ = to)ly, (1),

<M+ (t—to)l(t1).

Taking limits & — oo on the right hand side gives —oo. Thus, limy_, infic(ap) lx(t) =

—00,Vt € (a,b). The case with the lower bound follows similarly.
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Lemma 4.4.4. For any [ lying strictly between 0 and 7/2,

dt — 0, and,

[ Sl
t=p f(Uk)

-8 f(o_keit)
d .
/t: arg(o) f(Uk) b0

Proof. We give here a sketch of a proof:

Let K be a compact subset of the quadrant {z € C : Re(z) > 0 and Im(z) > 0}.
Let hi(z) = >, FIXJ We know that hy(z) = —mi + O(k~'/?) uniformly over K.
Now, let z € K and s,t € [0,7/2) such that ¢t > s and |z|e" = 2. Writing z, = |z|e®,

we have,

kz —kz,
= lim 1+
N—oo x; —kz
Jilwi| <N
So, by Fatou’s lemma,
kz)|? kz — kzg |
[E'f(kz) < lim E 1+Z—kz
f(k) T v ! TR
kz — kz,|?
= lim EE 1+ —-—=
Nsoo . H + x; —kz N, R
Jilzs|<N
2\ Rn]
— lim E ([E‘l—i— kz — kz, ) :
N—o0 u—kz

where Ry ~ Poisson(2N), and u ~ Uniform[—N, N].
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Now,

kz —kz,
u—kz

Ef1+

2
1 — — 1
=1 — E — E —
+ (kz — kzs) (u — k:z) + (kz — kzs) (u — kz)

1

+ |]€Z$ — k’Z|2[Em

Note that, as zg, z are in the upper half plane, by Lemmas 4.3.1 and 4.3.3,

2N[E( 1 )—>7rz',
u—kz

L 1 . T
lu — kz|? kIm(z)

2N

2

1 - 1
. . : _
< Jim o (21h ke (2 ) N e ()

1
INK?|z, — 2|?PE———
+ |25 — 2| ]u—k:z|2>

2
= exp <k:(z — zg)mi — k(Z — Z5)mi + k%)

= exp <—2k:7r[m(z) + 2kmIm(zs) + l{;7r|;;1—?z§|2>

—2Im(2)? + 2Im(z)Im(z) + |zs — z|2>
Im(z2)

~ex 7T—2]m(z)2 + 2|z|? — 2Re(z) Re(z5)

- () )

— exp (k”2R€<Z>{R[eT<:€i)_ Re(zs)}) .

= exp (lm

Note that, as 0 < s <t < /2 and z € K, Re(z;) > Re(z) > 0 and Im(z) > 0.

Therefore,

2
— 0. (4.4.3)

Flk=)
. ’ 7(k2)
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Thus, by Fatou’s lemma,

f(kzs)
f(kz)

L50,Vz € K.

In fact, using Borel-Cantelli, we can even show that

S (kzs)

R 0,vz € K. (4.4.4)

In order to prove the lemma using this fact, we only need to show that the

f(kzs)

775y s uniformly continuous, so that (4.4.4) will hold true for z = ye®,

function

where ¢ is between 7/6 and 7/3. In that case, we can apply Lemma 4.4.3 with (

equal to /3 to show that

-8 f(o.keit>
—d .
/t; arg(og) f(o-k) Pt

The proof for

m—arg(o) it
/ f(owe )dt — 0,
t=p f(0k>

is exactly the same, with K lying entirely in the quadrant {z € C : Re(z) < 0 and

Im(z) > 0}.

4.4.3 An expression for vk - e,

As a consequence to the results in the previous sections, we obtain the following
expression for ey,.
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Proposition 4.4.5.

where Y, i) 0.

Proof. We have,

\/E(—l)kekzi( JE oy [ 13y f(>d+//Mdz>.

A1 Zh+1 Zk—l—l Iy Zk+1 Zk+1

Now, using Lemma 4.4.1 and Corollary 4.4.2, we have, vk - U’f A fl“l I Ldz equals,

[f%f @,@)W(#),

and, Vk - f];’(k .1 fr zk 2 4z equals

Vi S L (1 k1—25> L (1 k1—25)
iexp(ge(0) V2 2T 2 ve Nzt o2 )

where the first terms in the [—] brackets in the above equations converge to 0 as

k — o0. Also, note that, as y(z,y) is the lower incomplete gamma function, and as

§<1/2—1/11, (1 K 25)—>\/_ask:—>oo

Therefore, applying Lemmas 4.4.3 and 4.4.4 to [, Zf,fi)l dzand [, ka(—f)ldz, we get,
2

o= {12 (5 0) 2 (545

= (v ) )

where Vi, = V. /7 LN 0, as k — oo.
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g

We write G, := <\/L27r + yk> f(g,g’“), so that V& - (—=1)* - e, = Re(Gy).

4.5 Convergence of the two-step ratio of the ele-

mentary polynomials

This section is devoted to proving the two-step ratio convergence in Theorem 4.1.1

4.5.1 The ratio Gy.2/Gx

Lemma 4.5.1.
k*Gpo P2
Ok
Proof.
flokq2)
Gr+2 _ ks 1 et Ve (4.5.1)
gk &kk) 0—2+2 C+yk . .O.
Ok
Note that,
12
T (4.5.2)
o
k+2
Next,
f(ffkk+2)
o = OXP (Gr(0k42) — di(ow))
7%

Using mean value theorem on both the real and imaginary parts of ¢, on the line

segment between o, and oj.2, we have that, there exists points s; and s, on this
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line segment, for which,

Or(Okr2) — dx(on) = (Orr2 — or){ Redy(s1) + ilme)(s2)}.

Next, observe that,

¢ (51) — Pr(on) = hy (%) — hy <%> _k + ﬁ,

— o) =0 =he () =t ()

where

But, we know that hy is Lipschitz near ¢/7 and so, we can find a constant M

for which

Ok+2 — Ok

)] < 2| 72

Y

since |s; — oi| < |op4e — or|. Similarly, we can get
k k+ k Y,

Ok+2 — Ok

Gh(s2)] < M| 2

So,

2
g — 0
‘¢k(0k+2) - </5k(0k)| < M%
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Therefore, to show that

Or(0k+2) — dx(ox) — 0,
we need,
‘O—k+2 - O'k‘ = 0<k1/2).

Now, writing o2 = (k + 2)yrre and o, = ky, we see that the above translates to

showing that

[Ykr2 — Y| = o(k71/2).

Since yi is the solution of the equation hy(z) —1/z = 0 and yy is the solution of

the equation hgi2(2z) — 1/z = 0, we shall be done if we can show that

|2 (Yrro) — Bic(yr)| = o(k™13),

since hy takes value near —im.

Now, note that hyia(yri2) = hi(y).), where y;, = %ykﬁ. So,
k2 (Yrr2) — Pa(yn) | = [ (yy) — R (un)]
< vk — vel P (W),

where y} is a point on the line segment joining y; and y;,. Now, note that hj (i/7) =
o(k~Y/2+1/11) " Owing to the Lipschitz condition satisfied by hj and the fact that y;

is at a distance o(k~'/2T/1) of i /7, we get, hi (yy) = o(k~/2+1/11) which implies,
[Preya(yrr2) = hae(yi)| < o(k™F21),
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flog42)

Uk
which proves that ¢y(ogi2) — ék(ok) L. Thus, —&5 LA So, equations

o

(4.5.1) and (4.5.2) give us

k*Gria P
Mt N

Ok

4.5.2 Proof of Theorem 4.1.1

In this section we shall prove the first main theorem of this chapter, Theorem 4.1.1.
We first need to show that the one-step ratio of the elementary symmetric functions
cannot be too small, and use that to check that the argument of G, stays away from
odd multiples of 7 with high probability. This fact, along with Lemma 4.5.1 gives

us the proof.

Lemma 4.5.2.

k
sup P (‘ €k+1
k €k

§5>—>O, as, 0 — 0.

Proof. (Sketch) Note that the total variation distance between the Poisson point
process {X,}; and the Poisson point process taken together with an independent
X ~ Uniform(—k, k) converges to 0 as k — oo. Thus, if Q denotes the probability

measure associated with the latter, we shall be done if we can show that

ke
sup Q (‘ €~k+1
k €k

§5>—>0, as, 6 — 0,
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€L —

where €, = e+~ But, we can bound the conditional probability @ (

kéki1
€k

< 5’ {X; }j)
by a function of § that goes to 0 uniformly in k. Taking expectations gives us the

result. O

Lemma 4.5.3. For every 6 > 0, there exists n > 0, and kg > 1, such that

@m+lr Arg(Gr)

[P(inf <77><6,Vk:2k0.
meZ

Proof. Following the same steps as in the proof of Lemma 4.5.1, it is easy to see

that,

s 2, in
Gk '

Suppose, the statement of this lemma is untrue. Then there exists 6 > 0, an

increasing sequence of positive integers {k,}, and a set As of measure > §, such

that, on A,
Im(Gy,)
— 00,
‘ Re(Gr,)
and,
gknfl N *
kngkn m
But,
) €hp—1 Im(Gr,—1) )
Oko-1 T _ Fnehy ' FaRe(Gr) L
k, - - Im(Gr,, )
€y —1 1 Im(G.,) s Im(Gr,-1) 1
B (knekn T Re(gkn>> T <_knRe(g_kn) w)
o - Im(Gry) '
141 Re(Gr,,)
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This implies that, on As,

ekn—1 | 1Im(Gg,)
kneg, m Re(Gr,,)
L+ 1R

— 0.

But,
_ 17 _ ) ] I
€k,—1 < m(gkn) _ €k,—1 +1_1 14 m(gkn) ’
knekn ™ Re(gkn) knekn s ™ Re(gkn)
1 — mighe=t
— ) ‘Imglg::) — 1.
" Re(Gr,)
Since, Z:((g:")) — 00, this gives, on As,

Ck,—1
knekn

— OQ.

But this contradicts the statement of Lemma 4.5.2, and thus we have arrived at a

contradiction, thereby proving the result.

O
We shall now complete the proof of Theorem 4.1.1.
Proof. From Lemma 4.5.1
FGria p,
Gr.
Re(Gri2) +iIm(Gri2) P 2
= k? : — =7
Re(Gi) + iIm(Gy)
Since ex-Vk = (—1)*Re(Gy), we will be done if we can show that k2 R;gg:f) Ly

We have,

. Re(Gx+2) 2 o Im(Gg+1) 2 Im(Gx)
2 Re(Giva) +ilm(Grys) o _ k2< Re(Ge) T 7 ) “( Re(Gr) T Re(gw)

. ﬂ- - ’
Re(Gr) + iIm(Gy) L+ ZZZ((S:))
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By Lemma 4.5.3, except with probability o(1), the denominator 1 —i—i% stays
sufficiently far away from 0, which makes k2% L —m?, and thus k‘Qe’;—f L
-

O

4.6 Convergence of the zero set of the nth deriva-

tive of f: Theorem 4.1.2

We begin by introducing the following notations:

= (k+1)if;1,

B =/ {Rler )2+ {(k + Dlerir )2,

k!
hi(2) = Tk cos(mz) —

(k + 1)!€k+1 S
B

R in(mz).

Lemma 4.6.1. For all m > 1, and any compact subset K of C,

sup [(—1)"
zeK ( ) Bn

where fy(,?)(z) and hy,m are polynomials that equal the power series expansion of

f™(2) and h,(2), respectively, up to the term z™.
Proof. Suppose |z| < M,Vz € K. We have,

(—1)”f(”)m(z) =nle, — (n+ 1)1ep12 + (n+ 2)2€n+222 — o+ (=D)"™(n+ m)menimz™
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nle, (n+1)le, nle, ™ 3
Z JR—

hnam(2) = = = 5, 2 5, 3

where, if m is even,

nle, ™™
n,m — -1 m/2_n_7
Ynm = (—1) 5,

and if m is odd,

Tnm = (_1)(m+1)/2 (TL + 1)!6n+1 gl .
, 6n m'

2,2 n+ 1le,1 w22
J (nt Dlenn +.

m
o+ YumZ

For ease of notation, I'll only write the proof for m even here. The proof is almost

exactly the same of m odd. We have,

(n) ,
(=1)" mﬁjz) — i (2) = n;" { ((n +1)(n+ 2)6222 + 7r2) %

+ ((n +1)(n+2)(n+3)(n+4)

€n

R ((n+ 1)(n+2)~-(n+m)ez:m - (_1>m/2ﬂm) Hm'}

en—i—l

4
Cnid 4> z
J— /7T E—

4!
z

- %{Qnﬂxnm)w +”2> 5

B
+ ((n+ 2)(n+3)(n+4)(n+5)

En+1

_ 1) En+m—1

+((n+2)(n+3)---(n+m .
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m —1)!

b



So, if M is such that |z| < M,Vz € K,

(n) e
sup (—1)nfm (Z) —hn,m(z) < (n+1>(n+2)m+ﬂ_2 [
zeK /Bn an 2'
n M3
+|(n+2)(n +3) 2 a2 S
Qp+1 3‘
n M1
+ (n+1)(n+2)(n+3)(n+4)aa+4 e .
n M°®
+(n+2)(n+3)(n+ 4)(n + 5) 2 _ gt 2
Q41 5'

G,
Thus, by Theorem 4.1.1, since m is fixed here, the above inequality gives,

0.

<—1>"% = ()

sup
zeK

O

Lemma 4.6.2. Given 6,¢ > 0 and a compact set K, there exists m sufficiently

P (Sup > 6) < 0.
zeK

Proof. Let K; = {2 € C: |z —w| <1, for some w € K}. Then, as K; is compact,

large, such that

fMe) ()

Bn Bn

there exists m sufficiently large so that

P (sup 1f(2) = foem(2)] > e) < 0,Vn > 1. (4.6.1)

zeKq
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By Cauchy’s integral formula,

d"(fo+m) _nl / flw) — fn+m<w)d
w:|w

HJw—z|=1 (w o Z)n+1 7

f(n)(z) _

RACENACETCY I W= Lot g,

— sup| ) (z) = L)) < 2= 5up 1£(2) = Jarm(2)] - 2m.

P { sup
zeK

However, the statement of the lemma needs (3, in the denominator, and not just

Thus,

f™() ()

n! n!

Ze) <0,Vn > 1.

n!, where we note that 8, = nly/(e,)? + (n+ 1)%¢2,. Thus, we wish to be able

to modify the expression in (4.6.1) so that we can have \/(e,)? 4+ (n+ 1)%€2_, in
the denominator. This will be true if the higher symmetric functions of 1/X’s
are decreasing very quickly. So we wish to show that given any compact set, K,

there exists [ > 1 sufficiently large such that ) 2| < ele,|,Vz € K, with

§>n+l e

probability > 1 — 0. Now, let M = sup,x |z|. Then,

e < >0 1GIMP

Jj=n+l j=n+l
_ Z f(%’) M
J
j>nti| 95
< M™ max (‘M ) Z M
= : T iti-1
j>ntl o = |0-n—:]l+] 1
< M. f(on) S P i MM
- o ’ I+j—1 ‘
n i>1 19nf1+j—1
Ml-‘rj—l
—Mn"g”"z ]
j>1| ntl+j— 1‘
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By Lemma 4.5.3, there exists 1 such that, with probability > 1 — 4, |G,| < n|en|.

Also, as the infinite sum > ¢ < 00, we can find [, such that, for all [ > [,

7‘17'7"

M=l
V-1 >
J ‘ 17

|0n+l+j 1

Therefore, with probability > 1 — ¢,

Z le;j 27| < €len],Vz € K,

j>n+l
which proves the desired result.

O

Lemma 4.6.3. Let w, be a zero of the function h,(z). Then, given any € > 0 and

any p € (0,1), there exists N (depending on €) such that
P(f™ has a zero within distance p of w,) > 1 — €,
Vn > N.

Proof. We have,

— ha(2)] <

where Vm. Note that,

|hn,m(z) - hn(z)| <

222 izt b0
cos(mz) — | 1 — 5 + TR + ..

1
+ —
™

sin(wz)—(z— i + I
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Since the right hand side is completely independent of n and both cos and sin are
entire functions, this means that given any compact subset K, and any n > 0, there

exists m, such that,

sup | (2) — hy(2)| < n,Vr > m.
zeK

Thus, using Lemmas 4.6.1 and 4.6.2, given any n > 0,

P (sup
zeK

Notice that, we can write h,, as

" (2)

(=1) 5,

— hy(2)| > 77) — 0.

hn(z) = —sin(7(z — d,)),

where d,, = % arctan(e,/(n+ 1)e,+1). So the zeros of h, are exactly d,, +Z. Let w,
denote one such zero, say, w, = d, + [, where [ € Z. Then h,, has exactly one zero
inside the disc of radius p < 1 around w,,. Also, the value of h,, at any point w,, + pe®
on the corresponding circle is —sin(w(d, + [ + pe' — d,,)) = —sin(w(l + pe')) =
— sin(wpe®), which is independent of n and the choice of the zero of h,. Therefore,

we can write

0= inf h,(2),

|z—wn|=p

which will be positive and independent of n and the choice of the zero of h,,. For

)HL

this 9,

f™(z)
Bn

N |

— hn(2)| <

(="

P sup
|z—wn|=p
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Writing By to be the event sup,_,, -, ‘(—1) e hn(z)’ < ¢, we have that, on

By,

sup
|z—wn|=p

Thus the logarithmic derivative of (—1)"% is well defined on the circle {z :

|z —w,| = p}. Moreover,

i@
lz—wn|=p (_1)nw hn(Z) -

Thus, on By,

@Y
[l )
jemunl=p (—1)n L5 jo—wnl=p Pn(2) | T

n

Now, since h,, has exactly one zero in the said disc, by Cauchy’s argument principle,

1 h'
- ﬁdz =1.
270 S| =p hn(2)

So, if § is chosen so that §/m < 1, we get, on B},

n ™))
1 (-0 52)
2mi e
21 |z—wn|=p (_]')n/j—n

meaning that f(z) has exactly 1 zero inside the disc of radius p centered at w,,.

Thus, there exists N (depending on €) such that,

P(f™ has a zero within distance p of w,) > 1 — ¢,
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We now have all the tools necessary to prove Theorem 4.1.2, a sketch of which

we give below.

Proof. From Lemma 4.6.3, we see that the distance between the zeros of f(™ and
the zeros of h, converge to zero in probability. Therefore, we shall be done if we
show that the zeros of h, converge to a uniform translate of Z. We know already

that h,, vanishes at Z +d,,, where d,, = %arctan( ). So, the zeros of f™ are

indeed very close to some translate of the integers.

Now, from Lemma 4.2.3, we have that shifting the origin by a certain amount
shifts the zeros of f™ by the same amount. However, the Poisson point process of
intensity 1 on R is translation invariant. Thus, adding a Uniform(0,1) variate to
each point of the process still gives us a Poisson point process of intensity 1 on R.

This implies that the limiting distribution of (d,, mod 1) has to be a translation

invariant distribution as well, which can only be Uniform(0, 1).
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