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Abstract

ADVANTAGE OF MUTANTS IN A STOCHASTICALLY

SELECTIVELY NEUTRAL ENVIRONMENT

Weichen Zhou

Advisor: Robin Pemantle

Fixation probability describes the probability for an invading mutant to

take over the entire population on a spatial model in a stochastically selectively

neutral environment. Our main goal in this survey is to study the advantage

of mutants on the specific model defined on a line with N vertices. In the

case when the variation is small, we compute the precise expression of the

asymptotics of the fixation probability. At the end of the survey, we discuss

a few possible future working directions on fixation probability modeling over

di↵erent geometries.
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1 Introduction

1.1 Background

Evolution dynamics in random environments is an interesting problem that arose in

the intersection of ecology, biology and mathematics in the past few decades and

has caught the interest of many scientists. The process considers di↵erent types of

cells that evolve following certain birth and death rules in a given environment. An

important factor that was taken into consideration is spatial randomness, that is,

the birth and death rate of the present cells are determined by their locations in the

environment. It is worth noticing that these studies perform a critical role in the

study of the evolution of cancerous cells. Cells located at di↵erent locations in the

body have di↵erent surrounding environments that directly lead to di↵erent access of

oxygen and nutrition levels that support the reproduction or dying of the cancerous

cells. Gaining understanding to the evolution process therefore contributes greatly to

the medical studies of finding treatments for cancers.

In the actual biological process, there are many principal factors that may a↵ect

the reproduction performance of cells and the biological interactions between two cells

are very complicated processes. The studies were then brought to a more theoretical

level, where the environment under consideration are graphs and there are only two

types of cells in the environment: the regular cells and the mutants. Moreover, a

reproduced cell can only take over a neighboring cell of di↵erent type if and only if
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the two cells are connected by an edge. Those studies focused on what is known as

the fixation probability, the probability that a mutant eventually takes over the entire

system. Markov Chain methods, branching processes and di↵usion approximations

are the three main methods that were used when studying the fixation probability,

starting with the work by Fisher[1], Haldane[4], and Wright[10] in the early 90’s, then

to Kimura[5] in mid-90’s, eventually extending to the work of Mahdipour-Shirayeh,

Darooneh, Long, Komarova, Kohandel, Farhang-Sardroodi and Nikbakht [8][2] in

2017.

To model genotype evolution by environmental interaction, we introduce a Moran

process, a process of evolution that captures the behavior of the birth and death

process of cells in the system naturally. A Moran process can be described as the

following: we start with a fixed population of N cells where each cell is associated

with a fitness factor that determines the probability for the cell to reproduce or die,

one cell is chosen at random to die and another cell is chosen at random to reproduce,

then the newly produced cell will replace the one that died keeping the total number

of cells constant.

The fixation probability on a ring with N cells (one of which chosen at random to

become the first mutant) was studied in [8] and the following results were found:

• When the mutant and regular cells have the same fitness at a given location,

the mean fixation probability is 1
N .

• Let r be fixed and �i be a random variable with mean 0. On site i, a regular
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cell has fitness r + �i and a mutant cell has fitness r � �i, then the fixation

probability is greater than 1
N .

• When the fitness for regular cells and mutants at each site i are either randomly

sampled from the same mean zero distribution or the fitness of regular cells

are shu✏ed given the location of the first mutant in the system, the fixation

probability is greater than 1
N .

Similar results were also observed when considering a complete graph with N ver-

tices. An interesting finding was that on a complete graph, the processing being a

birth-death process or death-birth process a↵ects the fixation probability [8].

In the second result above, the fitness values of regular cells and mutants are sam-

pled from certain probability distributions, so it is natural to ask whether this ran-

domness accelerates or delays fixation. Further studies in [2] by Farhang-Sardroodi,

Darooneh, Nikbakht, et al. shows that on complete graphs with N vertices, random-

ness accelerates fixation for all N , whereas on a ring with N vertices randomness

delays fixation only for large enough N. And the speed of fixation depends on the

distribution that the random quantities �i are sampled from.

In this survey, we will start with studying the fixation probability on a line with

N sites indexed 1 through N . Each site is associated with a random mutant fitness

and a random regular fitness. The goal is to give a rigorous expression for the asymp-

totics of the fixation probability when the initial mutant is placed at site 1. We will

also start with some works on generalizing the line model when the initial mutant is
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placed at a di↵erent site and exploring fixation probabilities on di↵erent geometries.

Lastly, we will state a conjecture and several possible directions for future studies.

1.2 Line Model Setup

Let N be a positive integer. We shall start with constructing the model on a line with

N sites. Let (⌦N ,FN ,PN) be the underlying probability space and fix � 2 (0, 1). For

1  k  N , we define the following quantities for the site indexed by k:

(a) Rademacher random variable Bk and B0
k;

(b) Regular fitness at site k: µk = 1 + �Bk;

(c) Mutant fitness at site k: ⌫k = 1 + �B0
k.

Here, we require that all Rademacher random variables {Bk}Nk=1 and {B0
k}Nk=1 to be

independent.

Our initial configuration has only one interface, that is where an edge of the graph

connects a mutant cell and a regular cell, since the initial mutant is at site 1 and all

remaining sites are holding regular cells. We can see that the number of interfaces will

always be 1 unless the evolution reaches one of the two absorbing states: the mutants

die out, or, the mutants take over the world. And if some mutants are still present

after some time of evolution, we will reach the configuration where mutants occupy

the the sites {1, 2, · · · , k} for some k and sites {k+1, · · · , N} are occupied by regular

cells. In this way, we can identify the configurations by {0, 1, 2, · · · , N �1, N}, where

0 corresponds to the configuration where mutants die out, 1 corresponds to the same
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configuration as our initial state, N corresponds to the configuration where mutants

take over the world, and in particular, k corresponds to the intermediate configuration

mentioned above.

Let ⇠(i,j)t denote a rate 1 Poisson process for 1  i, j  N independent of all

Rademacher random variables defined. We want to use this Poisson process to keep

track of the evolution. By the nature of the geometry, cell type exchange can only

take place across the edge that acts as an interface, so we also restrict that |i�j| = 1.

It is very important to keep in mind that each site can only a↵ect its neighboring one

or two sites.

This is a continuous time process, but we can discretize it by only sampling on the

time stamps where the configuration changes. Suppose that after some time into the

evolution process, the interface is between site k and k+1 (for generality, we suppose

1 < k < N), we can denote this time by ⇠(k,k+1). There are only two edges connecting

site k, hence in the next time stamp where the configuration changes, there are only

two possible outcomes:

(a) The mutant at site k reproduce, and takes over the regular cell at site k + 1,

leaving the configuration as {1, · · · , k + 1} being mutants and {k + 2, · · ·N}

being regular cells;

(b) The regular cell at site k + 1 reproduces, and takes over the mutant at site k,

leaving the configuration as {1, · · · , k�1} being mutants and {k, · · · , N} begin

regular cells.
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We define the random quantity representing the relative fitness level of site k:

�k :=
µk

µk + ⌫k
(1.1)

The evolution process is indeed a Markov process. At state k, the process either

evolves to state k+1 or state k�1. We can explicitly define the transition probabilities:

P(k, k + 1) =
�k+1

�k+1 + (1� �k)
, (1.2)

P(k, k � 1) =
1� �k

(1� �k) + �k+1
. (1.3)

1.3 Main Theorems

We mentioned earlier that there are only two absorbing states for the evolution: (1)

the mutants die out, and (2) the mutants take over the world. Let G1 = G1(�) be the

event that the mutant takes over all N sites on the line. The subscript 1 here is to

indicate the position of the initial mutant is at site 1. Then, the fixation probability

is denoted by PN(G1(�)). Following the setup, we will prove the following theorems

in this survey.

The first theorem considers the asymptotics of the the fixation probability given

N ! 1 and �
p
N ! c, where c is a fixed positive constant.
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Theorem 1.1. Suppose N ! 1 and �
p
N ! c, for fixed c > 0, we have

NPN(G1(�)) ! g(c) (1.4)

where

g(c) = E
"

1
R 1

0 exp(
p
2cBs)ds

#
(1.5)

for a standard Brownian Motion {Bs}. The function g is continuous and strictly

increasing on (0,1) satisfying the following criteria:

g(c)� 1 ⇠ c2

24
as c # 0, (1.6)

g(c) ⇠ cp
⇡

as c ! 1. (1.7)

The second theorem considers the asymptotics where � � 1p
N

and � ⌧ (logN)�✏

for some ✏ > 0.

Theorem 1.2. Assuming �
p
N ! 1, and suppose that there is an ✏ > 0 such that

� (logN)✏ ! 0, we have

PN(G1(�)) ⇠
�p
⇡N

. (1.8)

Theorem 1.1 and Theorem 1.2 supports the statement that mutants have an advantage

in the process of evolution in a stochastic environment. The last main theorem we

shall prove further supports the statement and it reveals that the overall advantage

comes from the mutants taking advantage of the cases where sites favoring mutants
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and sites favoring regulars cells are balanced, namely
P

k Bj =
P

l B
0
l.

Theorem 1.3. For even integer N = 2k, let P̃N(G1(�)) denote the conditional prob-

ability PN(G1(�) |
P

j Bj =
P

l B
0
l). Then for all N and all �, we have

N P̃N(G1(�)) = 1. (1.9)

2 Techniques and Proofs

In this section, we will explore the techniques and proofs for the main theorems stated

in section 1.3.

2.1 Proof of Theorem 1.1 and Theorem 1.3

We start working towards of the proofs of Theorem 1.1 and Theorem 1.3 from the

following result on birth and death processes.

Proposition 2.1. For a birth and death process with transition probability

pk = p(k, k + 1) and p(k, k � 1) = qk := 1� pk.

Let Qx be the law of the process starting at x and let ⌧a be the hitting time at state a,

then

Q1(⌧N < ⌧0) =
1

N�1P
k=0

kQ
j=1

qj
pj

. (2.1)
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Proof. To prove the statement above, we use the correspondence between reversible

Markov chains and electrical networks. Recall that an electrical network is a finite

graph with values assigned to the edges called resistances. And the conductance on

each edge is given by the reciprocal of the resistance.

Our finite graph is a line with N vertices. On edge (k, k+1), assign the resistance

R(k, k + 1) =
kY

j=1

qj
pj
,

then the conductance on edge (k, k + 1) is

C(k, k + 1) =
1

R(k, k + 1)
=

kY

j=1

pj
qj
.

The correspondence between the birth-death process and the electrical network is

given by

p(k, k + 1) =
C(k, k + 1))

C(k, k + 1) + C(k, k � 1)
= pk.

Observe that

1� p1 = q1 =
C(1, 0)

C(1, 0) + C(1, 2)
,
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which implies C(1, 0) = 1. Then

Q1(⌧N < ⌧0) =
C(1, N)

C(1, N) + C(1, 0)
=

1
N�1P
k=1

R(k,k+1)

1
N�1P
k=1

R(k,k+1)
+ 1

=
1

1 +
N�1P
k=1

R(k, k + 1)

=
1

N�1P
k=0

kQ
j=1

qj
pj

.

Our next goal is to show that the denominator of equation (2.1) can be well

approximated by a functional of a random walk, so that we can then approximate

that random walk functional with a functional of a Brownian motion.

Consider the following notation:

Xk := log
qk
pk

= log
1� �k

�k+1
, Sk :=

kX

j=1

Xk for 1  k  N � 1;

with this notation, the expression in equation (2.1) can be re-written as

PN(G1(�)) = E

2

6664
1

N�1P
k=0

exp(Sk)

3

7775
. (2.2)

Define

X̃k := log
1� �k+1

�k+1
= log

⌫k+1

µk+1
, S̃k :=

kX

j=1

Xj for 1  k  N � 1.
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Then S̃k is a random walk on log 1+�
1��Z, with the probability to move forward is 1

4 ,

the probability to move backward is 1
4 and the probability to stay is 1

2 . Let �
0 = 1+�

1�� ,

also note that �0 = 2� +O(�2).

For �  1� ✏,

|S̃k � Sk| =

�����

kX

j=1

X̃j �Xj

����� =

�����

kX

j=1

log(1� �j+1)� log(1� �k)

�����

= | log(1� �k+1)� log(1� �1)|

 log(
1 + �

1� �
)2 = 2�0 = C✏�. (2.3)

Donsker’s Theorem states that for a random walk Sn =
nP

i=1
Xn with E[Xi] = 0 and

V ar(Xi) = 1,
(SbNtc)t2(0,1)p

N
converges in distribution to a standard Brownian motion in

the Skorokhod topology when n ! 1. Scaling our defined X̃k by
p
2� then apply

Donsker’s Theorem, we get that

(SbNtc)t2(0,1)p
2�
p
N

N!1���! Bs

(Sbntc)t2(0,1)
N!1���!

p
2 · c · Bs (2.4)

for a standard Brownian motion Bs where �
p
N ! c. Now we prove the following

lemma:

Lemma 2.2. Allow both � and N to vary but �
p
N is bounded away from 0 and

infinity, then the random variables {NPN(G1(�))} are uniformly integrable.
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Proof. For a simple random walk Sn, by the reflection principle we have that

P(min
jn

Sj  �r) = P(Sn = �r) + 2P(Sn < �r). (2.5)

Since a simple random walk is a martingale, we can then apply Azuma’s inequality:

P(min
jn

Sj  �r) = P(Sn = �r) + 2P(Sn < �r)

 2P(Sn = �r) + 2P(Sn < �r)

= 2P(Sn  �r)

 2 exp

✓
�2r2

n

◆
. (2.6)

Recall that we constructed S̃k to be a simple random walk with step size scaled by �0

and the holding probability is 1
2 . Adapt the analysis above to S̃k, we have

P
✓
min
jk

S̃k < �t

◆
 2 exp

✓
�2t2

(�0)2k

◆
(2.7)

for any k 2 Z+ and t > 0. And from the construction of Sk and S̃k, we also have that

���������

NP
j=1

exp(S̃j)

NP
j=1

exp(Sj)

� 1

���������

= o(1) (2.8)

With the expression in equation (2.2), in order to show that {NPN(G1(�))} are uni-
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formly integrable, we only need to show that

8
<

:
N

NP
j=1

exp(S̃j)

9
=

; are uniformly integrable.

By equation (2.7), we have

P(min
k✏N

S̃k  �1)  2 exp

✓
�2

(�0)2✏N

◆
. (2.9)

Let B = 2
(�0)2N , notice that this quantity depends on �

p
N continuously. Since we

assumed that 0 < ✏ < 1, then ✏ < ✏N < N , thus we have the following inequality:

N
NP
j=1

exp(S̃j)

 N
✏NP
j=1

exp(S̃j)

 N

✏N exp(min
j✏N

S̃j)
 1

✏ exp(min
j✏N

S̃j)
. (2.10)

Then by (2.10) and (2.9), taking ✏ = e
x , for any positive K,

E

2

6664
N

NP
j=1

S̃j

0

BBB@
N

NP
j=1

S̃j

> K

1

CCCA

3

7775
=

Z

x�K

P

0

BBB@
N

NP
j=1

S̃j

� x

1

CCCA
dx


Z

x�K

P

0

BB@
1

✏ exp

✓
min
j✏N

S̃j

◆ � x

1

CCA dx


Z

x�K

P
✓
exp

✓
min
j✏N

S̃j

◆
 (✏x)�1

◆
dx

=

Z

x�K

P
✓

min
j(eN/x)

S̃j  �1

◆
dx


Z

x�K

2 exp

✓
�Bx

e

◆
dx.
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Notice that
Z

x�K

2 exp

✓
�Bx

e

◆
dx

K!1���! 0,

and the inequality holds for all positive integer N . Now we have that {N/
NP
j=1

exp(S̃j)}

are uniformly integrable, hence the random variables {NPN(G1(�))} are uniformly

integrable.

With Lemma 2.2, we can prove the following theorem.

Theorem 2.3. Suppose �
p
N

N!1���! c where c > 0 is fixed, then for some standard

Brownian motion {Bs}, we have that

NPN(G1(�)) ! E
"

1
R 1

0 exp(
p
2cBs) ds

#
. (2.11)

Proof. By Lemma 2.2, and the result of convergence in distribution (2.4) from Donsker’s

theorem:

NPN(G1(�)) = E

2

6664
N

N�1P
k=0

exp(Sk)

3

7775
N!1���! E

"
1

R 1

0 exp(
p
2cBs ds)

#
.

Statement (2.11) is exactly the first half of Theorem 1.1, and to prove the remaining

part of Theorem 1.1, we need to evaluate the Brownian Integral
R 1

0 exp(
p
2Bs ds).
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In order to do that, we first introduce the following notations:

A↵(t) :=

Z t

0

e↵Bs ds, (2.12)

m↵(t) := E
⇥
A↵(t)

�1
⇤
. (2.13)

To finish the proof of Theorem 1.1, we need to evaluate g(c) = mc
p
2(1). We will use

the following result from [9].

Proposition 2.4. [9] Let {Bt}t�0 be a standard brownian motion and let A(t) :=

R t

0 e
2Bs ds. Then

E[A2(t)
�1|Bt = x] =

xe�x

t sinh(x)
if x 6= 0, (2.14)

E[A2(t)
�1|Bt = 0] = t�1, (2.15)

m2(t) ⇠
r

2

⇡t
as t ! 1. (2.16)

Proof. Equation (2.14) and (2.15) are proved by Matsumoto and Yor in Theorem 5.6

of [9], the exact equations are stated as Proposition 5.9 in [9]. Here, we’ll only provide

a sketch of the proof.

To prove the two equations, it takes an explicit expression of the probability den-

sity of At computed by Yor in [11], which is also proved as Theorem 4.1 in [9].
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For a fixed t > 0, and for u > 0 and x 2 R, the probability density is as follows:

P(At 2 du,Bt 2 dx) = exp

✓
�1 + e2x

2u

◆
✓

✓
ex

u
, t

◆
du dx

u
(2.17)

where equation (2.9) in [9] defines ✓(r, t) as

✓(r, t) =
r

(2⇡3t)1/2
e⇡

2/2t

Z 1

0

e⇠
2/2te�r cosh(⇠) sinh(⇠) sin

✓
⇡⇠

t

◆
d⇠.

The proof of this probability density uses the Schrödinger operator H� (� > 0) on

R with the Liouville potential given by H� = �1
2

d2

dx2 + 1
2�

2e2x for x 2 R. Then,

combining the results on Green function with respect to Lebesgue measure and the

heat kernel of the semigroup exp(�tH�), t > 0, also with the integral representation

of the product of two modified Bessel functions, we obtained the desired probability

density.

Integrating both sides of (2.17) with respect to u yields (this is stated as Proposi-

tion 4.2 in [9])

Z 1

0

exr✓(r, t)
dr

r
=

1p
2⇡t

exp

✓
(Argcosh2(x))

2t

◆
. (2.18)

Take a non-negative Borel function f on R, then (2.17) gives

Z

R
f(x)E [exp(��/At)|Bt = x]

1p
2⇡t

e�x2/2t dx = E [f(Bt) exp(��/At)] .
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Combine this with (2.18) we have the expression

E

exp(� �

At
)|Bt = x

�
= exp

✓
�Argcosh2(�ex + cosh(x))� x2

2t

◆
. (2.19)

This equation holds for any t > 0 and � > 0, and we obtain the explicit expression of

equation (2.14) and (2.15) by taking (�, x) = (1, x) and (�, x) = (1, 0) respectively.

To prove 2.16, from the definition of A↵(t) and m↵(t) above, let ↵ = 2, then

m2(t) = E
⇥
A2(t)

�1
⇤
= E

Z 1

0

e2Bs ds

�
.

Applying 2.14, we have

m2(t) =

Z
xe�x

t sinh(x)
dN(0, 1)(x).

Then, with a change of variables y = xp
t
, we have

m2(t) =
1p
t

Z
ye�

p
ty

sinh(
p
ty)

dN(0, 1)(y).

Since sinh(
p
ty) = e

p
ty�e�

p
ty

2 , then ye�
p
ty

sinh(
p
ty)

= 2y

e2
p
ty�1

. This only converges for y < 0

as t ! 1, and the limit is 2|y| y<0. Then taking the limit as t ! 1, we have the

following result for
p
tm2(t):

p
tm2(t) =

Z
ye�

p
ty

sinh(
p
ty
dN(0, 1)(y)

t!1���!
Z 0

�1
2|y|dN(0, 1)(y) = E[N(0, 1)] =

r
2

⇡
.
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Thus,

m2(t) ⇠
r

2

⇡t
,

proving equation (2.16).

Notice that in the previous proposition, we have ↵ = 2. To adapt the results above

to what’s needed for Theorem 1.1, we need to scale the above results:

Lemma 2.5. For ↵, ⌫, t > 0,

m↵(t) =
↵2

⌫2
m⌫

✓
↵2

⌫2
t

◆
. (2.20)

Then we have:

m↵(1) ⇠
↵p
2⇡

as ↵ ! 1. (2.21)

Proof. Let f↵(x, t) be the density function of A↵(t)�1 at x, and define

Wt :=
↵

⌫
B ⌫2

↵2 t
.

Since Bt is a standard Brownian motion, by the scaling property of Brownian motions,

18



Wt is also a standard Brownian motion and ⌫Wt and ↵Bt equal in distribution. Hence

f↵(x, t)dx = P
 ✓Z t

0

e↵Bs ds

◆�1

2 [x, x+ dx]

!

= P

0

@
 
⌫2

↵2

Z ↵2/⌫2

0

e⌫Wu du

!�1

2 [x, x+ dx]

1

A

= P

0

@
 Z ↵2/⌫2

0

e⌫Wu du

!�1

2

⌫2

↵2
x,

⌫2

↵2
(x+ dx)

�1

A

=
⌫2

↵2
P

0

@
 Z ↵2/⌫2

0

e⌫Wu du

!�1

2

⌫2

↵2
x,

⌫2

↵2
x+

↵2

⌫2
dx

�1

A

=
⌫2

↵2
f⌫

✓
⌫2

↵2
x,

↵2

⌫2
t

◆
dx.

Using the moment generating function, we have

m↵(t) =

Z +1

�1
x f↵(x, t)dx

=

Z +1

�1

⌫2

↵2
x f⌫

✓
⌫2

↵2
x,

↵2

⌫2
t

◆
dx

=
⌫2

↵2

Z +1

�1
x f⌫

✓
⌫2

↵2
x,

↵2

⌫2
t

◆
dx.
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We do a substitution by letting y = ⌫2

↵2x, then dy = ⌫2

↵2dx, and

m↵(t) =
⌫2

↵2

Z +1

�1
x f⌫

✓
⌫2

↵2
x,

↵2

⌫2
t

◆
dx

=
⌫2

↵2

Z +1

�1

↵2

⌫2
yf⌫(y,

↵2

⌫2
t)
↵2

⌫2
dy

=
↵2

⌫2

Z +1

�1
yf⌫(y,

↵2

⌫2
t)dy

=
↵2

⌫2
m⌫

✓
↵2

⌫2
t

◆
.

This proves equation (2.20). Then for t = 1, we have

m↵(1) =
↵2

⌫2
m⌫

✓
↵2

⌫2

◆
.

To finish the proof, we use the result from Prop (2.4) and let ⌫ = 2:

m↵(1) =
↵2

4
m2(

↵2

4
) ⇠ ↵2

4

s
2

⇡↵2

4

=
↵p
2⇡

.

Now we have evaluated the Brownian integral, we just need to prove the following

lemma to have all the pieces we need to prove Theorem 1.1 and Theorem 1.3.

Lemma 2.6. �(x) := xe�x

sinh(x) is a strictly convex function. And
R
�(x)dN(0, t)(x) is

strictly increasing in t.

20



Proof. For �(x) = xe�x

sinh(x) , we compute the following derivatives:

�0(x) =
e�x (sinh x� x sinh x� x cosh x)

sinh2 x
.

�00(x) =
e�x

sinh3 x

�
2x+ (2x� 2)(sinh2 x+ sinh x cosh x)

�

=
e�x

sinh3 x

✓
2x+ (2x� 2)

✓
e2x

2
� 1

2

◆◆

=
e�x

sinh3 x

�
(x� 1)e2x + x+ 1

�
.

To show the strict convexity of �(x), we show that �00(x) is strictly positive when

x 6= 0. Observe the expression of �00(x), notice that e�x is always positive, and

sinh(x) is positive on (0,1) and negative on (�1, 0). Consider the factor

f(x) = (x� 1)e2x + x+ 1,

f 0(x) = e2x(2x� 1) + 1,

f 0(x) = 0 has unique solution at x = 0, and f 0(x) > 0 on (�1, 0) and f 0(x) > 0 on

(0,1). Also, f(0) = 0. From this, we can deduce that f(x) < 0 on (�1, 0) and

f(x) > 0 on (0,1). Thus f(x) and sinh(x) has the same sign on (�1, 0) and (0,1),

hence �00(x) > 0 for all nonzero x. Thus, �(x) is strictly convex. Since �(x) is a

strictly convex function,
R
�(x)dN(0, t)(x) is strictly increasing in t.

Proof of Theorem 1.1:

Proof. The first half of theorem is proved in Theorem 2.3.
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By Lemma 2.6, we have that function g is continuous and strictly increasing on (0,1).

In the proof of Lemma 2.5, we have

g(c) = mc
p
2(1) ⇠

c
p
2p

2⇡
=

cp
⇡

as c ! 1.

Then, to show the symptotics as c # 0, analogous to the proof of Proposition 2.4, we

have the following integral for ↵ = 2:

tm2(t) =

Z
xe�x

sinh(x)
dN(0, 1)(x).

Since the integrand xe�x

sinh(x) has Taylor Series expansion T (x) = 1� x+ x2

3 +O(x4), we

substitute this into the integral above to get

tm2(t) =

Z ✓
1� x+

x2

3
+O(x4)

◆
dN(0, t)(x)

= 1 +
t

3
+O(t2),

for t # 0. Plug in ↵ = c
p
2 and ⌫ = 2 to the first statement in Lemma 2.5, we have

g(c) = mc
p
2(1) =

c2

2
m2(

c2

2
) = 1 +

c2 +O(1)

6
,

completing the proof of (1.6).

The last part of this section will be proving Theorem 1.3.
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Proof. We start by extending the definition of Xk. Recall that we only defined Xk

for 1  k  N � 1, now define XN := log 1��N

�1 . With this extension, the sequence

{Xk}k�1 satisfies that (X1, . . . , XN) and (X2, . . . , XN , X1) equals in distribution. This

means that the sequence is shift invariant. Notice that given
P

j Bj =
P

j B
0
j indicates

that the collection of values of �j’s are the same as the collection of values of (1��j)’s.

Recall that we use P̃N to denote the conditional probability of PN(G(�)) conditioned

on the equality
P

j Bj =
P

j B
0
j and

SN =
NX

j=1

(log(1� �j)� log(�j)) =
NX

j=1

log(1� �j)�
NX

j=1

log(�j),

then P̃N(SN = 0) = 1. The sequence {Xk}k�0 is now shift invariant means:

(X1, . . . , XN)
k shifts����! (Xk+1, . . . , Xk+N),

(S1, . . . , SN)
k shifts����! (Sk+1 � Sk, . . . Sk+N � Sk).

This indicates that we have the following ”shift” as well:

1
N�1P
j=0

exp(Sj)

k shifts����! exp(Sk)
N�1P
j=0

exp(Sj)

.

Another conclusion from shift invariance is that

E[f(X1, . . . , XN)] =
1

N
E
"

NX

k=1

f(Xk+1, . . . , Xk+N)

#
.
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Thus

E

2

6664
1

N�1P
j=0

exp(Sj)

3

7775
=

1

N

N�1X

k=0

exp(Sk)
N�1P
j=0

exp(Sj)

=
1

N
.

This completes the proof of Theorem 1.3.

2.2 Proof of Theorem 1.2

In the previous section, we proved Theorem 1.1 and Theorem 1.3. Those theorems

computes the asymptotics of the fixation probability when the value of � is small. In

this section, we will prove Theorem 1.2 for bigger � values in two cases:

(a) Medium-sized �: 1p
N

⌧ � ⌧ 1
log(N) .

(b) Large �: � = o( 1
(log(N))✏ ) for some 0 < ✏ < 1.

The key for proving Theorem 1.2 is a technique known as KMT coupling, a coupling

of a random walk and a Brownian motion. We will start with two results from KMT

coupling.

2.2.1 KMT Coupling

We first state the following result referenced from [7].

Lemma 2.7. Suppose Xk is a simple random walk with i.i.d. increments ⇠ with

E[⇠] = 0, E[⇠2] = 1 and E[et|⇠|] < 1 for su�ciently small t. Define Xt = Xbtc, we

are extending Xk to continuous time. For all T > e and ↵ < 1, there is a coupling

24



of random walk Xk and standard Brownian motion Bt and a constant C↵ so that

P
"
sup

t2[0,T ]
|Xt � Bt| � C↵ log(T )

#
 C↵T

�↵. (2.22)

This is stated as Theorem 7.1.1 in [7] and proved in section 7.5 of [7]. This result

was originally done by J. Komlós, P. Major and Tusnády in [6] in 1975. We will not

include the detailed proof here, the general idea is to prove

P(|Sj � Bj| � C↵ log T )  C↵T
�↵

by splitting the index j into two groups: first for |j � ik| < C↵ log T , find a sequence

{ik} that partitions the interval [0, T ], show that the inequality holds for each segment,

then apply triangle inequality; then the inequality for the remaining j values is proved

using results from dyadic coupling.

The next lemma is a result on asymptotics of random walk hitting probability

using the Brownian motion hitting probability result and the KMT coupling above.

Lemma 2.8. Suppose that we have a random walk {Sn} with i.i.d increments {Xn}

satisfying the assumptions in Lemma 2.7, then for u 2 [M ✏,M
1
2�✏] where ✏ 2 [0, 12 ],

we have

P
✓

max
1tM

St  u

◆
⇠

r
2

⇡

up
M

. (2.23)

Proof. Satisfying the assumptions in Lemma 2.7 indicates that we have a coupling
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standard Brownian motion Bt. Let the Brownian motion run to time M . For any u 2

(0,M1/2�✏, we consider P( sup
t2[0,M ]

Bt  u), that is, the probability that the Brownian

motion does not go beyond u. By the reflection principle, we have that

P( sup
1tM

Bt  u) = 1� 2P0(BM),

and

P( sup
1tM

Bt  u) ⇠
r

2

⇡

up
M

.

Substitute in this asymptotics to the result of Lemma 2.7, we have

r
2

⇡

up
M

+ C↵ logM �M�↵  P( max
1tM

St  u) 
r

2

⇡

up
M

+ C↵ logM +M�↵.

Therefore

P
✓

max
1tM

St  u

◆
⇠

r
2

⇡

up
M

.

2.2.2 Results on Two Brownian Functionals

In order to prove Theorem 1.2 in the two cases mentioned above, we want to show

that we can couple our random walk functionals with Brownian motion functionals

and they behave the same way asymptotically. In this section, we will state the results

for the two Brownian functionals that we need for the proof. Let Bs be a standard

26



Brownian motion, consider the following two Brownian functionals:

XM :=
1

RM

0 exp(Bs)ds
, (2.24)

YM :=
max{�BM , 0}
RM

0 exp(2Bs)ds
. (2.25)

In the remaining work of this survey, we will take the notation Z� = max{�Z, 0}

for simpler presentation. In this notation, we write the second functional above as

YM =
B�

MRM
0 exp(2Bs)ds

.

The first result is the uniform integrability of XM .

Lemma 2.9. The family of variables

n
XM
EXM

o

M�1
is uniformly integrable.

Proof. Observe the definition of XM , putting it in the notation we used in (2.12) and

(2.13), then XM is precisely (A1(m))�1 =
⇣RM

0 exp(Bs) ds
⌘�1

and E[XM ] = m1(M).

Thus by the rescaling in Lemma 2.5 and the third result in Proposition 2.4, we have

that E[XM ] = ⇥(M1/2). Then, we want to find a bound of P(XM � t) so that when

computing the expectation of XM
E[XM ] we get the desired result.

Notice that the event {XM � t} can be interpreted as {
RM

0 exp(Bs)ds  t�1}. The

probability that this event happens is maximized when Bt hits � log(t) within the

first unit of time during the process and comes back below � log(t) within one unit

of time. By the reflection principle, we have that

P( inf
t2[0,1]

Bt  � log(t)) = 2P(B1  � log(t)).
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Since B1 ⇠ N(0, 1), there is constant C > 0 such that the right hand side quantity

is bounded above by C exp
�
1
2(� log(t))2

�
. Conditioning on the event that Bt hits

� log(t) for t 2 [0, 1], the hitting time is a stopping time ⌧ , hence the strong Markov

property states that B⌧+t for t 2 [0, 1] is independent of the natural filtration given

B⌧ . Then by Lev́y’s arcsine law, we have that the probability that Bt stays above

� log(t) after hitting � log(t) for less than one unit of time is 2
⇡ arcsin(

p
1/M � ⌧).

Notice that arcsin(
p

1/M � ⌧)/(1/
p
M)

M!1����! 1 asymptotically. Combining the two

probabilities, we have

P(XM � t)  C exp

✓
1

2
(� log(t))2

◆
1p
M

.

Taking the limit as t ! 1, we can see that exp
�
1
2(� log(t))2

�
= O(t�2). Then, using

this probability we can compute the following to finish the proof

E

XM

EXM
XM
EXM

�K

�
 C

p
M

Z 1

K

t�2M�1/2 dt  C

K
K!1���! 0.

The next lemma is to compute the asymptotics of the first and second moment of

YM . In the computation of the second moment, we are going to use equation (2.19)

stated in the proof of Theorem 2.4 from [9]:
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Lemma 2.10. As M ! 1, we have the following two results:

EYM ! 1 (2.26)

EY 2
Mp
M

⇠ 4

r
2

⇡
(2.27)

Proof. We first compute EYM using the first result of Proposition 2.4, the same change

of variables y = xp
M

and the same limit of lim
M!1

y2ey
p
M

sinh(y
p
M)

= 2y2 y<0 we used to prove

(2.16):

EYM = E
"

B�
MRM

0 exp(2Bs) ds

#

=

Z 1

�1
�x2e�x

x0

M sinh(x)
dN(0,M)(x)

=

Z 1

�1
�y2ey

p
M

x0

sinh(y
p
M)

dN(0, 1)(y)

M!1����!
Z 1

�1
2y2 y<0 dN(0, 1)(y)

=

Z 0

�1
2y2dN(0, 1)(y)

= 1.

To compute the second moment, we take the statement (2.19) and treat it as a

function of �. Then its second derivative with respect to � is what we needed:

E
"✓Z M

0

exp(2B2) ds

◆�2 ����BM = x

#
=

e�2x(x2 sinh(x) +Mx cosh(x)�M sinh(x))

M2 sinh3(x)
.
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Then following a similar computation process as we did for the first moment, substi-

tuting in y = xp
M

and taking the limit in the integrand as M ! 1, we have

E[Y 2
M ]p
M

=

=

Z 1

�1

e�2x(x4 sinh(x) +Mx3 cosh(x)�Mx2 sinh(x)) x0

M5/2 sinh3(x)
dN(0,M)(x)

=

1Z

�1

e�2y
p
M(y4M2 sinh(y

p
M) +M5/2y3 cosh(y

p
M)�M2y2 sinh(y

p
M)) y<0

M5/2 sinh3(y
p
M)

dN(0, 1)(y)

M!1����!
Z 1

�1
�4y3 y<0 dN(0, 1)(y)

=

Z 0

�1
�4y3d(0, 1)(y)

= 4

r
2

⇡
.

As M ! 1, we have E[Y 2
M ] ⇠ 4

q
2
⇡

p
M .

For the last lemma of this section, we show the following result for EYM .

Lemma 2.11. For all events E satisfying P(E)  M�1/2�✏
for some ✏ > 0, E[YM E] =

o(1) as M ! 1.

Proof. With the first and second moments we computed in Lemma 2.10, for each M ,

we see that YM satisfies to have finite mean and finite non-zero variance, hence we

can apply the Chebyshev’s inequality to get that for some constant c,

P(YM � t)  c

p
M

t2
.
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Then for some ✏ > 0, consider the event that {YM � M1/2+✏}

P(YM � M1/2+✏)  c

p
M

M1+2✏
= cM�1/2�2✏,

then

E[YM YM>M1/2+✏ ] =

Z 1

M1/2+✏

P(YM � M1/2+✏)dt 
Z 1

M1/2+✏

cM�1/2�2✏dt = cM�✏ = o(1).

Let E0 denote the event {YM � M1/2+✏}.Then for any event E satisfying P(E) 

M�1/2�✏, as M ! 1, we have

E[YM E] = E[YM E E0 ] + E[YM E EC
0
]

 o(1) +M1/2+✏P(E)

= o(1),

completing the proof.

2.2.3 Proof of Theorem 1.2 in Two Cases

In this section, we will prove Theorem 1.2 in the medium � regime and the large �

regime.

2.2.3.1 Case I: Medium �: 1p
N

⌧ � ⌧ 1
log(N) .
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Lemma 2.12. Let E be an event such that P(E)  N�2
, then for � 2 [✏, 1� ✏], there

exists a constant C 0
such that

e�C0� log(N)E

2

4 EC

N
R 1

0 exp
⇣p

N�0Bt/
p
2
⌘
dt

3

5� 1

N2
 E[PN(G1(�))] (2.28)

 eC
0� log(N)E

2

4 EC

N
R 1

0 exp
⇣p

N�0Bt/
p
2
⌘
dt

3

5+
1

N2
.

Proof. Recall the definition of Sk and S̃k in Section 2.1. We expressed PN(G1(�)) in

terms of Sk in (2.2) and we have the relationship (2.3) between Sk and S̃k. From

(2.3), we have

�C✏� + Sk  S̃k  C✏� + Sk.

Taking the exponential then sum over k, we have

exp(�C✏�)

"
NX

k=1

exp(Sk)

#

"

NX

k=1

exp(S̃k)

#
 exp(C✏�)

"
NX

k=1

exp(Sk)

#
.

For t 2 [0, N ], we extend S̃k to continuous time by letting S̃t = S̃dte, then the finite

sum
NP
k=1

exp(S̃k) is extended to being
R N

0 exp(S̃t) dt. Hence, the inequality above can

be extended to continuous times as

exp(�C✏�)  PN(�) ·
Z N

0

exp(S̃t) dt

�
 exp(C✏�), (2.29)

where PN(�) = 1/

✓
NP
k=1

exp(Sk)

◆
. Note that in this notation, PN(G1(�)) = E[PN(�)].
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In Section 2.1, by construction, S̃k is a simple random walk with step size �0 and

holding probability 1
2 , then the variance of the i.i.d increments X̃k is

�02

2 and the mean

is 0. Then,
p
2

�0 S̃k is a random walk whose i.i.d increments have mean 0 and variance

1. Then by the KMT coupling in Lemma 2.7, there is a Brownian motion on the

same probability space as S̃k such that for ↵ = 2,

P
 

sup
t2[0,N ]

�����

p
2

�0
S̃t � Bt

����� � C2 log(N)

!
 1

N2
.

Conditioning on the event EN :=

(
sup

t2[0,N ]

���
p
2

�0 S̃t � Bt

��� � C2 log(N)

)
, inequality (2.29)

then becomes:

exp

✓
�C� �

�0p
2
C2 log(N)

◆
 PN(�)·

Z N

0

exp

✓
�0p
2
Bt

◆
dt

�
 exp

✓
C✏� +

�0p
2
C2 log(N)

◆
.

Since by definition �0 = 2� + O(�2), there exists a constant C 00 combining C✏ and C2

such that

exp (�C 00� log(N))  PN(�) ·
Z N

0

exp

✓
�0p
2
Bt

◆
dt

�
 exp (C 00� log(N)) .

Now, apply Brownian scaling, we have

exp (�C 00� log(N))  PN(�) ·
"
N

Z 1

0

exp

 p
N�0p
2

Bt

!
dt

#
 exp (C 00� log(N)) .
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That is

exp (�C 00� log(N))
1h

N
R 1

0 exp
⇣p

N�0p
2
Bt

⌘
dt
i  PN(�)

 exp (C 00� log(N))
1h

N
R 1

0 exp
⇣p

N�0p
2
Bt

⌘
dt
i .

Remember that the inequality above is conditioned on the event EN with P(EN)  1
N2 ,

removing the conditioning and taking the expectation gives the desired inequality:

exp (�C 00� log(N))E

2

4 EC
N

N
R 1

0 exp
⇣p

N�0p
2
Bt

⌘
dt

3

5� 1

N2
 PN(G1(�))

 exp (C 00� log(N))E

2

4 EN
C

N
R 1

0 exp
⇣p

N�0p
2
Bt

⌘
dt

3

5+
1

N2
.

Now we can prove Theorem 1.2 for medium �:

Proof. Given that 1p
N

⌧ � ⌧ 1
log(N) , this implies that � log(N) ! 0. Then, the result

from Lemma 2.12 becomes:

E

2

4 EC
N

N
R 1

0 exp
⇣p

N�0p
2
Bt

⌘
dt

3

5� 1

N2
 PN(G1(�))  E

2

4 EN
C

N
R 1

0 exp
⇣p

N�0p
2
Bt

⌘
dt

3

5+ 1

N2
.
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When EC
N
= 1, notice that

E

2

4 1

N
R 1

0 exp
⇣p

N�0p
2
Bt

⌘
dt

3

5 =
1

N
mp

N�0p
2

(1),

then by the Brownian scaling result in Lemma 2.5 with ↵ =
p
N�0p
2
, we have

1

N
mp

N�0p
2

(1) ⇠ �0

2
p
⇡N

⇠ �p
⇡N

.

The term 1
N2 will not a↵ect the asympototics, thus

PN(G1(�)) ⇠
�p
⇡N

.

When EC
N
= 0, we only have the 1/N2 term for which the asymptotics still holds.

2.2.3.2 Case II: Large �: � = o
⇣

1
(logN)✏

⌘
.

We need to introduce a few new variables and notations. Let r be a real parameter

and r > 6. Set T = d��re. Since � = o
⇣

1
(logN)✏

⌘
, then exp(��r) ⇡ exp(N ✏r) and we

can assume that ��r = o(N s) for any positive s.

Let Z := S̃T , where S̃ follows the same definition as in Section 2.1. Let A denote

the partial sum of S̃k from k = 1 up to K = T , and let FT = �(S̃1, . . . , S̃T ) denote the

natural filtration up to time T . We also follow the notation that X+ = max{X, 0}

denotes the positive part of X and X� = min{�X, 0} denotes the negative part of

X.
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The idea of proving Theorem 1.2 in this regime is that we first show that the target

probability has the following asymptotics depending on expectation of Z and A, then

we compute the expectations with KMT coupling explicitly. The following lemma

gives the asymptotic result:

Lemma 2.13.

PN(G1(�)) = (1 + o(1))
2

�0
p
⇡N

✓
EZ�

A
+O

✓
E

��s

A

�◆◆
+O(e���st

). (2.30)

Proof. We prove this equality by proving a two-sided inequality. First, we want

to show that PN(G1(�)) � (1 + o(1)) 2
�0
p
⇡N

⇣
E
h
Z�

A

i
+O

⇣
E
h
��s

A

i⌘⌘
. By (2.3), we

see that as � ! 0, we can use S̃k to approximate Sk as they get uniformly close.

Therefore, we can approximate the statement (2.2) with E[A�1] by replacing Sk with

S̃k. Fix s 2 (✏�1, r
2 � 1) and consider the event G0

1 = { max
TmN

S̃m  ���s}, then for

conditional probability we have

PN(G(�)|FT ) = PN(G1(�)|A,Z)

� P(G1(�) \G0
1|A,Z)

� PN(G0|A,Z)
A+Ne���s . (2.31)

We get the denominator by splitting up the summation
NP
k=1

S̃k to A and the tail part

indexed from T to N , then bounding by the bound in G0
1.

From Section 2.1, by construction S̃k is a simple random walk with mean 0 and
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variance �02

2 , we rescale it to get a random walk
p
2

�0 S̃k with mean 0 and variance 1, so

that we can apply the KMT coupling Lemma 2.7:

PN(G
0|A,Z) ⇠

s
2

⇡(N � T + 1)

p
2

�0
(�Z � ��s)+ ⇠ 2(Z + ��s)�

�0
p
⇡N

.

Plug this asyptotic into (2.31), we get

PN(G1(�)|FT ) � (1 + o(1))
2

�0
p
⇡N

(Z + ��s)

A+Ne���2 ⇠ (1 + o(1))
2

�0
p
⇡N

(Z + ��s)

A
.

Taking the expectation on the left hand side removes the conditional, and taking the

expectation on the right hand side gives what we desired.

The second inequality we want to prove is

PN(G1(�))  (1 + o(1))
2

�0
p
⇡N

✓
E

Z�

A

�
+O

✓
E

��2

A

�◆◆
+O(e���s

).

Analogous to the proof above, here we consider conditioning on G00
1 = { max

TmN
S̃m 

��s} and G1(�) on FT .

In order to get the exact asymptotics, we need to explicitly compute the two

expectations in Lemma 2.13.

37



Lemma 2.14.

E

Z�

A

�
⇠ �2. (2.32)

E

1

A

�
⇠ 2p

⇡T
. (2.33)

Proof. Using the KMT coupling Lemma 2.7, for random walk
p
2

�0 S̃t, there exists a

Brownian motion Bt such that

P
 

sup
t2[0,T ]

�����

p
2

�0
S̃t � Bt

����� � C2 log(T )

!
 T�2,

and denote this event involved by E.

Then EC is the event that

(
sup

t2[0,T ]

���
p
2

�0 S̃t � Bt

���  C2 log(T )

)
. In this event, we

have that for certain t 2 [0, T ],

C�0 log(T ) +
�0p
2
Bt  S̃t  C�0 log(T ) +

�0p
2
Bt.

We do the same extension of S̃k as in the proof of Lemma 2.12 by letting S̃t = S̃dte.

We can write A =
R T

0 exp(S̃t) dt and conditioning on EC , we have

A =

Z T

0

exp(S̃t)dt

=

Z T

0

exp

✓
�0p
2
Bt +O(�0 log(T ))

◆
dt.

Since we defined T = ��r, then �0 log(T ) = O(� log(�)) ! 0 for the regime we are in.
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Thus, when conditioning on EC ,

A ⇠
Z T

0

exp

✓
�0p
2
Bt

◆
dt.

By Brownian scaling, we have

Z T

0

exp

✓
�0p
2
Bt

◆
dt =

Z T

0

exp(2B(�0)2t/23dt =
(�0)2

23

Z (23

(�0)2 T

0

exp(2Bt) dt.

By Lemma 2.9, { XM
EXM

} are uniformly integrable, then removing the conditional on

EC will not change the asymptotics.

Now consider the following two pieces:

E[A�1
E] = O(T�2),

and by Proposition 2.4

E[A�1
EC ] ⇠ (1 + o(1))E

2

64
1

(�0)2

23

R 23

(�0)2 T

0 exp(2Bt) dt

3

75

⇠ (1 + o(1))

 
23

(�0)2

s
2

⇡ 23T
(�0)2

!

= (1 + o(1))

 
23

(�0)2
·

p
2p
⇡T

· �0

2
p
2

!

= (1 + o(1))
4

�0
p
⇡T

.
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Recall that �0 ⇠ 2�. Combine the two results above, we have

E

1

A

�
E[A�1

E] + E[A�1
EC ] ⇠ 2

�
p
⇡T

.

Analogous to the proof above, to compute E
h
Z�

A

i
, we consider the two pieces

E
h
Z�

A E

i
and E

h
Z�

A EC

i
. Via the same computation for S̃k and Brownian scaling,

we have

E

Z�

A

�
= E


Z�

A
E

�
+ E


Z�

A EC

�

= O(T�2) + E
"

�0p
2
B�

T EC

R T

0
�0p
2
Bs ds

#
+O(� log(T )E[m�0/

p
2(T )])

= O(
log(T )p

T
) +

�0p
2
E


�0p
23
Y23/(�0)2T EC

�

= O(
log(T )p

T
) +

(�0)2

2
E
⇥
Y23/(�0)2T EC

⇤
.

The event E satisfies the requirements in the statement of Lemma 2.11, hence

E[Y23/(�0)2T EC ] = E[YM ] + o(1).

Then, by the results on moments in Lemma 2.10, we have

E[Y23/(�0)2T EC ] = 1 + o(1).
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Substituting this in to the expression of E
h
Z�

A

i
while having �0 ⇠ 2�,we have

E

Z�

A

�
= O(

log(T )p
T

) + (1 + o(1))
(�0)2

2
⇠ �2.

The final piece of this section is to prove Theorem 1.2 in the large � regime:

Proof. Plugging in the result of Lemma 2.14 to the result of Lemma 2.13 yields:

PN(G1(�)) = (1 + o(1))
2

�0
p
⇡N

✓
�2 +O

✓
2��s

�
p
⇡T

◆◆
+O(e���s

)

= (1 + o(1))
2

2�
p
⇡N

✓
�2 +O

✓
2��s

�
p
⇡T

◆◆
+O(e���s

).

Recall that we picked s 2 (1/✏, r/2 � 1), hence s > 1. And we assumed r > 6, so

T = d��re = ⌦(��6), then the equation above simplifies to

PN(G1(�)) = (1 + o(1))
1

�
p
⇡N

✓
�2 +O

✓
1

�
p
T

◆◆
+O(e���s

)

⇠ �p
⇡N

,

completing the proof of Theorem 1.2.

41



3 Future Work

There are many things to be done along the line of finding explicit asymptotics of

fixation probability for mutants in stochastically selectively neutral environments. As

for directions of possible future work, one may start with one of the following three

cases: (1) generalize the existing line model, (2) working with a loop with N vertices;

(3) working with a complete graph with N vertices.

3.1 Going Further from the Line Model

Thinking about the evolution on a loop with N vertices after replacing one of the

sites with a mutant, intuitively, we see that instead of having only one interface as

the line model we mainly studied in this paper, the evolution starts with two inter-

faces. This nature gives the evolution process 2 degrees of freedom, as mutants can

attack or being attacked from two directions. One possible way to start working on

this loop model is to start with a slight modification on our line model: instead of

having the initial configuration as mutant on site 1 and regular cells on the rest, we

can start with the initial configuration where the first mutant is place at site 2 while

site {1, 3, 4, 5, · · · , N} are regular cells. Ideally, if we can find the asymptotics of the

fixation probability on this new line model, and with some more work identifying site

1 and N, we shall be able to find the asymptotics of the fixation probability on the

loop model.

Here we start with construction the new line model. Fix � 2 (0, 1) and take the
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underlying probability space to be (⌦N ,FN ,PN). We define the collection of indepen-

dent Rademacher random variables B1, ·, BN , B0
1, · · · , B0

N , the rate 1 Poisson process

⇠(i,j)t , and the random quantities µk, ⌫k and �k in the exact same way as we did in

the line model in Section 1.2.

Notice that if an mutant-regular interface is at site k, the only edges that matter

are k ! k + 1 and k ! k � 1. A mutant at site k takes over the regular cell at site

k+1 with probability �k+1 and the number of mutants increases by 1. A regular cell

at site k+1 takes over the mutant cell at site k with probability 1��k and the num-

ber of mutants decreases by 1. We also have similar statements for a regular-mutant

interface.

If we start with a single mutant at site 2, after some time for evolution, we have

three possible configurations: (1) all mutants die out; (2) mutants take over the world;

(3) or a mixed configuration taking the pattern ”R...RM...MR...R”, two sequences of

regular cells(R) with a string of mutant(M) in the middle, total length of sequence is

N . Here, configurations (1) and (2) are the two absorbing states.

Consider the state space S = {1, . . . , N} ⇥ {1, . . . , N}. The first coordinate rep-

resents the beginning position of the sequence of mutants and the second coordinate

represents the ending position of the sequence of mutants. Our initial configuration

here in this case is (2, 2) and our absorbing state for mutants to take over the world

is (1, N). For any state (k, l) with l < k, we claim those are also states when the

mutants die out.
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For (k, l) 2 S where 2  k  l  N � 1, the only relevant positions are: (k, l + 1),

(k, l � 1), (k + 1, l) and (k � 1, l). With the setup and notations above, we have the

transition probabilities:

p((k, l), (k, l + 1)) =
�l+1

�l+1 + (1� �l) + (1� �k) + �k�1
, (3.1)

p((k, l), (k, l � 1)) =
1� �l

�l+1 + (1� �l) + (1� �k) + �k�1
, (3.2)

p((k, l), (k + 1, l)) =
1� �k

�l+1 + (1� �l) + (1� �k) + �k�1
, (3.3)

p((k, l), (k � 1, l)) =
�k�1

�l+1 + (1� �l) + (1� �k) + �k�1
. (3.4)

Further, we also need to define the distribution when one end of the sequence of

mutants is absorbed. It is worth noting that if site 1 becomes a mutant, it will not be

reversed to a regular cell unless site 2 becomes a regular cell and reproduce to take it

over. If that happens, the mutants die out. The same scenario holds for site N: if site

N ever becomes a mutant, the only way for it to become a regular cell again is when

N � 1 is regular and reproduce to take it over, and this only happens when mutants

dies out. This is due to the nature that the sequence of mutants is always going to

be connected given our setup.

Suppose that some point in the evolution, the mutant cell at site 2 takes over the
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regular cell at site 1, we have k = 1 and 3  l  N � 1, with

p((1, l), (1, l + 1)) =
�l+1

�l+1 + (1� �l
), (3.5)

p((1, l), (1, l � 1)) =
1� �l

�l+1 + (1� �l)
. (3.6)

Suppose that at some point in the evolution, the mutant cell at site N � 1 takes

over the regular cell at site N , we have 2  k  N � 2 and l = N , with

p((k,N), (k + 1, N)) =
1� �k

(1� �k) + �k�1
, (3.7)

p((k,N), (k � 1, N)) =
�k�1

(1� �k) + �k�1
. (3.8)

Notice that as soon as one the left end point of the sequence of mutants reach site

1 or the right end point of the mutants reach site N , we automatically get into an

intermediate configuration in the line model in section 1.2 and we should be able to

use those results from there.

Let G2 = G2(�) denotes the event that the mutant takes over the world given that

initial mutant is placed at site 2. Let M2 denote the event that the mutant on site

2 takes over the regular cell at site 1 before the regular cell at site 1 takes over the

mutant at site 2. Claim that PN(G2)  PN(G2|M2), the conditional probability gives

an upper bound of the actual fixation probability.

Since PN(G2|M2) = PN (G2\M2)
PN (M2)

, in order to express the conditional probability

explicitly, we compute PN(M2) and PN(G \M2) separately.
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Recall that G1(�, N) denotes the event that mutants take over the world in the

original line model in section 1.2. Let Gl
1(�) denote the event that mutants take over

the world in our original line model with mutants on sites {1, 2, · · · , l} as the starting

configuration. Here, {1, 2, 3, · · · , l} is an intermediate configuration in the original

line model and it is also an intermediate configuration in our new line model. Let Rl

denote the event that the right end point of the sequence of mutants is at position l

for 1  l  N . In our new setup conditioning on M2, when Rl happens, we always

have the left end point of the sequence of mutants at position 2.

Considering the event G \M2, we can write this event as a discrete union of sub-

events based on the position of the right end point of the sequence of mutants when

site 2 takes over site 1.

PN(G2 \M2) =
NX

l=2

p((2, l), (1, l))PN(right end point of mutants at position l)PN(G
l
1(�))

=
NX

l=2

p((2, l), (1, l))P(Rl)PN(G
l
1(�, N)). (3.9)

Consider the probability PN(M2), the probability that site 2 takes over site 1 before

site 1 takes over site 2. By the probability distribution we define above, we see that

the probability at a step in the evolution that site 2 successfully takes over site 1

depends on l, the location of the right-hand ending point of the sequence of mutants.

So we can write this event as a disjoint union based on the location of the right-hand
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ending point of the sequence of mutants:

PN(M2) =
NX

l=2

PN(right end point of mutants at l when site 2 takes over site 1)

=
NX

l=2

PN(right end point of mutants at position l)p((2, l), (1, l))

=
NX

l=2

PN(Rl)p((2, l), (1, l)). (3.10)

Then we have

PN(G2|M2) =
PN(G2 \M2)

PN(M2)
=

NP
l=2

PN(Rl)p((2, l), (1, l))PN(Gl
1(�))

NP
l=2

P(Rl)p((2, l), (1, l))

. (3.11)

Corollary 3.1. PN(G2|M2) is an upper bound of PN(G2).

To show that PN(G2|M2) is an upper bound, it su�ces to show that

PN(G2|M2)� P(G2) � 0.

Since

PN(G2|M2) =
PN(G2 \M2)

PN(M2)
,

then

PN(G2|M2)� PN(G2) =
PN(G2 \M2)

PN(M2)
� PN(G2) =

PN(G2 \M2)� PN(G2)PN(M2)

PN(M2)
.
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Substituting in the expressions in equation (3.9) and (3.10), we have

PN(G2|M2)� PN(G2) =
NX

l=2

[p((2, l), (1, l))P(Rl)]
⇥
PN(G

l
1(�)� PN(G2))

⇤
.

To prove Corollary 3.1, it su�ces to show that PN(Gl
1(�)) � PN(G2).

Lemma 3.2. On a line with N sites, mutants are placed in a sequence starting at

site 1, then the more mutant we place, the easier for the mutants to take over the

world.

Proof. For any given position 1  l < N , starting with the first l sites being mutants,

the number of mutants will increase to l + 1 at some point in order for the mutants

to take over the world. This is saying that

PN(G
l
1(�)) = PN(first get l + 1 mutants then take over the world)

= PN(mutant at site l takes over site l + 1 at some point)PN(G
l+1(�))

 PN(G
l+1
1 (�)).

Notice that the position of the right end point of mutants forms a Markov chain

as it only depends on the previous position, and the event {l takes over l + 1} and

the conditional event {mutant takes over the world given l + 1 mutants} are inde-

pendent by the Markov property. We yield the last inequality from the fact that

PN(l take over l + 1)  1.
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This shows that as l increases, PN(Gl
1(�)) increases. Then, to show that PN(Gl

1(�)) �

PN(G2), it su�ces to show that PN(G2
1(�)) � PN(G2).

Lemma 3.3. Let G2
1(�, k) denote the event that the mutant takes over the first k sites

when we begin with mutants at sites {1, 2}, then

PN(G
2
1(�, k)) � PN(G

2
1(�, k + 1))

for 2  k  N � 1.

Proof. Analogous to the proof of Lemma 3.2, when starting the process with site 1

and 2 being mutants, in order to take over k + 1 mutants in the world, the number

of mutants will take over k mutants at some point before taking over k + 1 mutants.

Hence

PN(G
2
1(�, k + 1)) = PN(take over the first k sites then take over site k + 1)

= PN(site k take over site k + 1 at some point)PN(G
2
1(�, k))

 PN(G
2
1(�, k)).

Let Pk(G2) denote the probability that the mutant takes over the first k sites, then

in order to take over k + 1 sites, we need to first take over k sites. This shows that

Pk(G) � Pk+1(G2).
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Lemma 3.4. For all 2  n  N , P(G2
1(�, n)) � Pn(G1), that is, when we place

two mutants at site 1 and 2, it is easier for for the mutants to take over the world,

comparing with only placing one mutant at site 2.

Proof. The two processes in question are Markov chains, and we can prove the lemma

with Markov Chain coupling.

For any state in the two processes, we can describe the state with the set of site

numbers occupied by the mutants. Let {Xn} denote the process where we start with

two mutants at site 1 and 2, then X0 = {1, 2}. Let {Yn} denote the process where

we start with only one mutant at site 2, then Y0 = {2}.

We define the following Markov chain coupling Xn ⇥ Yn: among the sites shared

by Xk and Yk, we uniformly pick a site and then we uniformly pick a direction to

attack. For example, going from X0 ⇥ Y0 to X1 ⇥ Y1, only site 2 can be picked

and if the attacking direction is to the right, we have X1 ⇥ Y1 = {1, 2, 3} ⇥ {2, 3};

or if the attacking direction is to the left, we have X1 ⇥ Y1 = {1, 2} ⇥ {1, 2}. By

induction, we can see that following this rule of coupling Yk ✓ Xk for all k, if we

discretize by only sampling at the times where the configuration changes. Then, by

the time Yl = {1, 2, · · · , N}, since Yl ✓ Xl, Xl must be at state {1, 2, 3, · · · , N}

already, completing the proof.

The proof of Corollary 3.1 follows from combining the results of Lemma 3.2, 3.3

and 3.4.
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The modified line model with N vertices and initial mutant at site 2 may be worth

further discussion and it may eventually contribute to computing the asymptotics of

the fixation probability for mutants on other geometries like the loop with N vertices.

The lemmas in this section would possibly serve as the starting point for those works

in the future.

3.2 Thoughts on Complete Graph

In this section, we will state some thoughts and observations on the assymptotics of

the fixation probability of mutants on a complete graph with N vertices. We start

with the geometry of a complete graph with N vertices. And the model is setup as

follows. Fix � 2 (0, 1) and let B1 . . . Bn and B0
1 . . . B

0
N be independent Rademacher

random variables. At site k, the regular fitness is given by 1 + �Bk and the mutant

fitness at site k 1 + �B0
k. We then define three types of sites:

(a) Sites in favor of mutants: sites with mutant fitness 1 + � and regular fitness

1� �.

(b) Sites in favor of regular cells: sites with mutant fitness 1� � and regular fitness

1 + �.

(c) Sites indi↵erent of either type: site with mutant fitness 1� � and regular fitness

1� �, or sites with mutant fitness 1 + � and regular fitness 1 + �.

From this setup, we also know the following:

• P(Mutant favoring site taken by a mutant) = 1+�
2 .
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P(A mutant dies at mutant favoring site) = 1��
2 .

• P(Indi↵erent site taken by a mutant) = 1
2 .

P(A mutant dies at an indi↵erent site) = 1
2 .

• P(regular cell favoring site taken by a mutant) = 1��
2 .

P(A mutant dies at regular cell favoring site) = 1+�
2 .

Once we start an evolution process, we have a fixed environment, say we have A

mutant favoring sites, B indi↵erent sites and C regular cell favoring sites such that

A + B + C = N . The initial state of the evolution process is that a single mutant

is placed at one of sites selected uniformly random. During the evolution, a site is

chosen uniformly random and tries to take over a neighboring site connect by an edge

at rate 1. This is a continuous time Markov Process and we discretize it by sampling

only at the times when the configuration changes. Suppose after l steps, there are

still mutants in the system and we reach the state (x, y, z) in the Markov process,

where 1  x < A is the number of mutants on the mutant favoring sites, 1  y < B

is the number of mutants occupying indi↵erent sites and 1  z < C is the number of

mutants occupying regular cell favoring sites. We assume that this is an intermediate

state, not an absorbing state, thus 1  x + y + z < N . There are only 6 possible

states that could be reached from (x, y, z):

• (x, y, z) ! (x+ 1, y, z):

This is when one of the (x + y + z) mutants take over a mutant favoring site.
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The transition probability

p((x, y, z), (x+ 1, y, z)) =
x+ y + z

N
· A� x

N
· 1 + �

2
.

• (x, y, z) ! (x� 1, y, z):

This is when one of the x mutants on mutant favoring sites dies. The transition

probability:

p((x, y, z), (x� 1, y, z)) =
N � (x+ y + z)

N
· x

N
· 1� �

2
.

• (x, y, z) ! (x, y + 1, z):

This is when one of the (x + y + z) mutants take over an indi↵erent site. The

transition probability:

p((x, y, z), (x, y + 1, z)) =
x+ y + z

N
· B � y

N
· 1
2
.

• (x, y, z) ! (x, y � 1, z):

This is when one of the y mutants on indi↵erent sites dies. The transition

probability:

p((x, y, z), (x, y � 1, z)) =
N � (x+ y + z)

N
· y

N
· 1
2
.

• (x, y, z) ! (x, y, z + 1):
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This is when one of the (x + y + z) mutants take over a regular cell favoring

site. The transition probability:

p((x, y, z), (x, y, z + 1)) =
x+ y + z

N
· C � z

N
· 1� �

2
.

• (x, y, z) ! (x, y, z � 1):

This is when one of the z mutants on regular cell favoring sites dies. The

transition probability:

p((x, y, z), (x, y, z � 1)) =
N � (x+ y + z)

N
· z

N
· 1 + �

2
.

We can recognize this process as a random walk in the rectangular parallelepiped

of size A⇥B ⇥C with A+B +C = N . We can identify the initial configuration by

(1, 0, 0) or (0, 1, 0) or (0, 0, 1) each with probability 1
3 . The two absorbing states are

(0, 0, 0) representing the mutants die out, or (A,B,C) representing the mutants take

over all N sites. Notice that there are many cases that are worth considering here:

for small N; for very large N and N ! 1 eventually; A = C, the system is overall

neutral; A > C, the system favors mutants overall; A < C, the system favors regular

cells overall.

At time k, we denote the current configuration by Lk = (xk, yk, zk) with the

transition probability of going to the next configuration as given above. Denote the

upcoming change by �Lk and it should be worth it to study the expected value of
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the upcoming change E[�Lk|Lk]. It is reasonable to consider the rate of change at

time k site Lk as

dLk =
1

N
�(Lk)dt+

1

N
dBt,

where �(Lk) is function of xk, yk and zk, hence
1
N�(Xk)dt is the determinist piece

and 1
N dBt is the stochastic piece. From the transition probabilities, we see that the

determinist change in each direction can be computed as a weighted sum:

dx

dt
= A(xk + yk + zk) +Nxk(1� �) + �(xk + yk + zk)(A� 2xk),

dy

dt
= B(xk + yk + zk)�Nyk,

dz

dt
= C(xk + yk + zk)�Nzk(1 + �) + �(xk + yk + zk)(�C + 2zk).

We plot a few examples of this vector field with � = 1
2 :
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(a) For small N = 5:

Figure 1: Vector field for small N when A = C. A = 2, B = 1, C = 2.

Figure 2: Vector field for small N when A < C. A = 1, B = 2, C = 2.
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Figure 3: Vector field for small N when A > C. A = 2, B = 2, C = 1.

(b) For big N = 200 (figures below zoomed in to absorbing state (A,B,C))
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Figure 4: Vector field for large N when A = C. A = 80, B = 40, C = 80.

Figure 5: Vector field for large N when A < C. A = 50, B = 50, C = 100.
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Figure 6: Vector field for large N when A > C. A = 100, B = 50, C = 50.

(c) This is a case that might arise from random fluctuation: A = B�d, C = B�d

where d ⇠
p
B. When N is large, A, B and B will be very close, but random

fluctuation indicates that since N is large, there are many steps to take in the

process, and it is possible that the more steps to take, the further the process

deviates from the expected result.
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Figure 7: Vector field for N = 6. A = 2 + d, B = 2, C = 2� d and d ⇠
p
B.

Figure 8: Vector field for N = 210. A = 70 + d, B = 70, C = 70� d and d ⇠
p
B.
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Notice that when A and C are independent of B, for larger N , the vector field

follows a much clearer pattern. We see that for larger N the vector field tends to

the absorbing state (A,B,C) while for small N it is somewhat unclear. In the case

where A and C depends on B, this is a case that corresponds to what might arise

from random fluctuation. One thing might be worth considering in the future is to

include the e↵ect of the stochastic piece on the vector field: does it help with the

convergences to the absorbing state or not. Another thing to consider is the e↵ect of

the prefixed value � and whether its relationship with the size of the population N

poses and e↵ect on the vector field. A wild guess based on the result of Theorem 1.3

is that: in the case where the environment is overall neutral, that is when A = C, the

fixation probability for the mutant to take over a complete graph of N vertices is 1
N .

3.3 Questions for the Future

It is believed by the authors in [3] that the condition for � = o ((logN)�✏) for some

positive ✏ can be removed, leading to the following conjecture:

Conjecture 3.5. If �
p
N ! 1 and � ! 0, then

PN(G1(�))

�N�1/2
! 1p

⇡
. (3.12)
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In any case, we shall have

0 <
C1�p
N

 PN(G1(�)) 
C2�p
N

(3.13)

as N ! 1.

Figure 9 below shows simulation of
p
⇡NPN with � = 0.2 supporting this conjec-

ture:

Figure 9: [3] Simulation of
p
⇡NPN plotted with (g(�

p
N))

p
⇡/N as functions of N,

� = 0.2.

There are also many other questions that may be worth further discussions:

(a) As mentioned in section 3.1, extend the fixation probability asymptotics analysis

and computation to a more general line model, where the initial mutant is not

placed at an end point.
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(b) Following the trail of though in section 3.1, extend the analysis to the model on

a loop with N sites. Figure 10 is the simulation showing that the asymptotics

of the loop model behaves a lot like the asymptotics of the line model that was

constructed in Section 1.2.

Figure 10: [3] Simulation of line model and loop model plotting NPN as functions of
N, � = 2

p
N , averaging over 106 random simulations for each N .

(c) Extend the analysis further: work with more complicated graphs like binary

trees or general trees. For these cases, what makes the analysis di�cult is

that after some time into the evolution process, the segments or sequences of

mutants could be no longer connected. For example, there can be two segments

of mutants in two di↵erent subtrees.

63



References

[1] Fisher, R. A. On the Dominance Ratio. Proceedings of the Royal Society of

Edinburgh 42, 321-341 (1922).

[2] Farhang-Sardroodi, S., Darooneh, A. H., Nikbakht, M., Komarova, N. L. and

Kohandel, M. The e↵ect of spatial randomness on the average fixation time of

mutants. PLoS Comput Biol 13(11):e1005864, (2017).

[3] Farhang-Sardroodi, S., Komarova, N. L., Michelen, M. and Pemantle, R. Suc-

cess probability for selectively neutal invading species in the line model. arXiv,

math.PR, 2005.13491. (2020).

[4] Haldane, J. B. S. A mathematical theory of natural and artificial selection, Part

V: Selection and mutation. Mathematical Proceedings of the Cambridge Philo-

sophical Society, Cambridge University Press 23 (1927).

[5] Kimura, M. Process leading to quasi-fixation of genes in natural populations due

to random fluctuations of selection intensities. Genetics 39(3), 280 (1954).
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