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1 Introduction

1.1 What is a signaling problem?

Formal games and game theory are used to model and analyze many interactions.

Examples range from familiar play games such as tic-tac-toe, chess, and poker to

classic study games like prisoner’s dilemma and the Nash bargaining game, to models

of complex real life interactions such as the job hunt, price negotiation, and setting a

teenager’s curfew. In any game, each player has a partial order on the set of possible

outcomes, and a real-valued function known as his utility function that quantifies the

player’s partial order on the outcomes. Each player’s goal is to make game decisions

that maximize his utility.

A signaling game is a game in which one player controls information that affects

both players and the second player controls an outcome that affects both players.

The first player and second player attempt to communicate in a mutually beneficial

way, i.e. one that comes as close as possible to allowing the players simultaneously

maximize their respective utilities. The players’ respective utilities depend solely on

the information and the action, not on the method of communication. The study of

such games, and the conditions under which reasonable equilibrium strategies arise

is a field of significant intrinsic and practical interest.

Signaling games may be completely cooperative or only partially cooperative.

Internet protocol is optimized when the information exchange occurs completely co-
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operatively. Since the computers cannot communicate in advance to arrange the

information exchange, the goal of the game is to arrange for cooperation in the ab-

sence of prior communication. In trade negotiations, both the importer and exporter

control private information (the importer knows the maximum he will pay; the ex-

porter knows the minimum he will accept) and attempt to convey information that

is accurate enough to make a mutually beneficial deal, but noisy enough to optimize

their expected outcomes. We may consider one-way signaling the situation in which

a professor has confidential information about the skill of the student and recom-

mends the student with the goal of the student obtaining the best job possible; the

employer’s goal is of course that the student’s skill and the job’s requirements are

close. This latter problem will the be the focus of this paper.

1.2 Summary Of The Thesis

In the next section, we will lay the formal game-theoretic groundwork required to

pursue rigorous analysis of the “letter of recommendation” problem. In Section 3

we will review the work of Crawford and Sobel. In their 1982 paper, Strategic In-

formation Transmission, they examine a specific signaling game and classify all of

its equilibria. Next we will review the approach of Green and Stokey to the same

problem and Chatterjee and Samuelson’s analysis of a related but notably different

problem. Lastly, in Section 5 we will demonstrate that by expanding Crawford and

Sobel’s model to allow the sender to recommend two candidates relative to each other
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but not quantitatively, we achieve new equilibria that did not exist in Crawford and

Sobel’s original model.

2 Preliminaries and Formal Setup

2.1 Game Theory

We now develop formally the ideas of game theory that we require. Our goal is to

create a rigorous framework in which we can view and analyze the decisions made by

each player in the context of the game. To analyze a game, we need mathematical

ways of representing game states, rules, strategies and players’ preferences among the

possible outcomes of the game.

We will introduce the extensive and normal forms of a game, and discuss how

they represent games states, rules, and strategies. We will develop utility theory to

express player preferences. Lastly, we will show that under certain conditions, games

have stable points known as Nash Equilibria.

Definition 1. The extensive form of a game G (also known as the game tree) is a

tree with the following properties:

1. The nodes correspond to game states. The root of the tree represents the starting

state of the game. Each terminal node is an end of the game.

2. Each edge corresponds to an action available to the player whose turn it is at

the node from which the edge emanates.
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We say a game is finite if the game tree is finite. We label each non-terminal node

with its corresponding game state, and with the name of the player whose turn it is

to move at that node. We label each terminal node with its corresponding outcome.

Lastly, each edge is labeled with its corresponding game action. Each subtree of the

game tree represents a subgame of G. Consider the following basic example:

R

D

LD W L

L

a

II

cb

II

I

M

l r l r

At node a, player I has three choices, L, M, and R. At nodes b and c, player II

has two choices, l and r. At the terminal nodes, player I’s utility is the number in

the upper right corner and player II’s utility is number in the lower left corner. At

a node, the player whose turn it is chooses an action by specifying for each choice α

the probability pα with which he uses α. may use a pure action, in which he selects

one of his choices with probability 1 and the other choices with probability 0, or he

may select a random action, in which he selects choice α with probability pα. In a

game of perfect information, both players see the entire game tree when making their

decisions. In a game of imperfect information, nodes are grouped into information

sets. The set of moves based at two nodes in the same information set look the same.
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A strategy for a player is a list of which actions he will take at each of his decision

points. A pure strategy is one in which every action is a pure action. A mixed strategy

is one in which the player may select either pure or random actions. Each mixed

strategy is a convex combination of pure strategies, and the space of mixed strategies

is usually represented as the convex hull of pure strategies. Every pure strategy is

also a mixed strategy. A strategy pair is an ordered pair of strategies (sI , sII) where

sI is player I’s strategy and sII is player II’s strategy. The strategies in a strategy

pair may be either mixed or pure. If (sI , sII) is a strategy pair, by G(sI , sII) we mean

the outcome of the game when I and II employ sI and sII ; by U I(sI , sII) we denote

I’s utility when I and II employ sI and sII ; by U II(sI , sII) we denote II’s utility

when I and II employ sI and sII . The normal (also known as strategic) form of a

game is a table of strategies for I and II and the outcomes of the strategy pairs. For

the moment, assume that I and II are only allowed to use pure strategies. I’s pure

strategies are L, M and R. II’s pure strategies are ll, lr, rl and rr, where we list first

II’s action at b and then at c. The normal form of G is

ll lr rl rr

L D D L L

M D D D D

R W L W L
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2.2 Utility Theory

Next, we develop utility theory, the mathematical language we use to express the

players’ preferences among the outcomes of the game. Let Ω be the set of outcomes

of a game G, and let ω0, ω1, ω2 etc. denote elements of Ω. A preference relation is a

weak linear partial order � on Ω. Each player has a preference relation.

A lottery is a discrete distribution on Ω. Let the set Ω∗ be the set of all lotteries.

Since the distribution in which outcome ω occurs with probability 1 and all other

outcomes occur with probability 0 is itself a lottery, Ω ⊆ Ω∗. If λ1 and λ2 are lotteries

and 0 ≤ p ≤ 1, then pλ1 + (1 − p)λ2 is the lottery in which P (ω|pλ1 + (1 − p)λ2) =

p · P (ω|λ1) + (1− p) · P (ω|λ2).

A utility function is function U : Ω → R that respects a player’s preference

relation, i.e. if ω0 � ω1 then U(ω0) ≥ U(ω1). We can extend a utility function to the

set Ω∗ by setting U(λ) = E(U(λ)), i.e. if λ is the lottery that assigns probability pk

to the outcome ωk, 1 ≤ k ≤ n, then

U(λ) =
n∑

k=1

pkU(ωk). (1)

It may appear that we have made a strong assumption that the player is risk-neutral.

In fact, choosing an appropriate utility function on Ω allows us to model the behavior

of players who are risk-loving, risk-neutral, and risk averse. This extension of U gives

a preference relation on Ω∗ wherein

λ1 � λ2 if and only if U(λ1) ≥ U(λ2). (2)
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Alternatively, given a preference relation on Ω∗, there exists a utility function U

on Ω that gives rise to such an extension if

1. If λ1, λ2, and µ are in Ω∗ and 0 ≤ p ≤ 1, then λ1 � λ2 if and only if pλ1 + (1−

p)µ � pλ2 + (1− p)µ.

2. For all λ1, λ2, and µ in Ω∗, λ1 ≺ λ2 implies there exists p > 0 such that

p1 ≺ pµ + (1− p)λ2.

3. For all λ1, λ2, and µ in Ω∗, λ1 ≺ λ2 implies there exists p > 0 such that

pµ + (1− p)λ1 ≺ λ2.

Given a preference relation on Ω∗, a von Neumann Morgenstern utility function

is a utility function that is an extension of a utility function on Ω.

We now return to our original example of a game. Assume that both players can

see the game tree. If the game progresses to node b, II (being rational) will play r,

since U II(L) > U II(D). Similarly, if the game progresses to node c, II will select r,

since U II(L) > U II(W). If I plays L or R the game will progress to b or c and the

outcome will be L. However, if I plays M, the game terminates immediately with the

outcome D. Since U I(D) > U I(L), I (being rational) will play M at a, guaranteeing

an outcome of D. In essence, I has a choice of outcomes, D or L.
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2.3 Zero Sum Games

There are several interesting things to observe about the game, the method of analysis

and the results thereof. First, note our assumption that both I and II see the game

tree. Not all games have this feature; those that do are games of perfect information.

Second, note that we could have chosen utility functions so that U I = −U II . Such

games are called zero-sum. These are the simplest of games and we will discuss them

in some detail as a basis for discussing signaling games. Last, observe our method

of analysis, known as Zermelo’s Algorithm or backwards induction. We began by

determining rational behavior in the smallest subgames of G, and then determined

rationality at a based on the known outcomes of the following subgames at b and c.

Since I can move in a way that renders II’s strategy choice irrelevant, we say that I

forces D. It is not a coincidence that player I could force a result.

Lemma 1. Let G be a finite two player zero-sum game of perfect information with

a set of outcomes Ω. Suppose T is a non-empty subset of Ω. Either I can force an

outcome in T or II can force an outcome in Ω\T.

Proof. We proceed using induction on the total number of turns. In a game of one

turn (without loss of generality we assume it is player I’s turn) I’s action simply

selects the outcome of the game. If I can select an outcome in T, then I has just

forced an outcome in T ; else by default II forces an outcome in Ω\T. Now assume

that the lemma holds for games of n or fewer turns. In a game of n + 1 turns player

I selects on the first turn from games of n or fewer turns. If I can select a game in
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which he can subsequently force an outcome in T then on his first turn he has forced

an outcome in T ; else II can force an outcome in Ω\T.

Corollary 1. Let G be a finite two player zero-sum game of perfect information, with

a set of outcomes Ω. There exists an outcome v ∈ Ω and a strategy pair (sI , sII) such

that

1. If s̃II is any other strategy for player II, then U II(sI , s̃II) ≤ U II(sI , s2).

2. If s̃I is any other strategy for player I, then U I(s̃I , sII) ≤ U I(sI , s2).

Proof. Suppose that Ω = {ω0, ω1, · · ·ωn}. Suppose further that

ω0 ≺I ω1 ≺I · · · ≺I ωn

and

ωn ≺II ωn−1 ≺II · · · ≺II ω0.

Let Wωk
= {ω |ω �I ωk} and let Lωk

= {ω |ω �II ωk}. There certainly exists a

smallest set Wωk
in which I can force an outcome. Suppose v = ωk. Then I cannot

force an outcome in Wωk+1
, ergo II can force an outcome in Lωk

. Therefore, I and II

have pure strategies that can force v and no better, ergo G has a value v.

The last important thing to note about our analysis of G is the strategy pair

(M, rr) that Zermelo’s Algorithm selected. Neither player, knowing his opponent’s

strategy in advance, can improve on the result D = G(M, rr) by changing his strategy.

Such a strategy pair is a Nash Equilibrium, and classifying Nash Equilibria in signaling

games is the focus of this paper.
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Definition 2. A Nash Equilibrium is a strategy pair (sI , sII) such that

1. If s̃II is any other strategy for player II, then U II(sI , s̃II) ≤ U II(sI , s2).

2. If s̃I is any other strategy for player I, then U I(s̃I , sII) ≤ U I(sI , s2).

It is now fairly easy to view the Nash Equilibria from the strategic form, repeated

here for convenience:

ll lr rl rr

L D D L L

M D D D D

R W L W L

The Nash Equlibria are the strategy pairs with an outcome that is the best for I

in the column of II’s strategy choice and the best outcome for II in the row of I’s

strategy choice. As we have seen, the pair (M, rr) is a Nash Equilibrium, since D

is the best outcome for I in column rr and the best outcome for II in row M. The

pair (M, rr) is also the strategy pair chosen by Zermelo’s algorithm. There is another

Nash Equilibrium, (M, lr). However, Zermelo’s algorithm does not select (M, lr) since

it involves II making the irrational choice of l at b, i.e. the subgame whose initial

state is b is not at equilibrium. An equilibrium in which all the subgames are also at

equilibrium is called a subgame-perfect equilibrium. In general, Zermelo’s algorithm

selects subgame-perfect equlibria. The extensive form of the game is generally more

useful to understanding how the game progresses; the normal form is generally better
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for finding the value of the game and Nash Equilibria.

Theorem 1. Let G be finite zero-sum, two-player game of perfect information. G

has a pure strategy pair (sI , sII) that is a Nash Equilibrium.

Proof. This result follows immediately from Corollary 1.

2.4 Non Zero Sum Games

Now we will lift the assumption that the game is zero-sum, and simply assume that

U I and U II are smooth von Neumann Morgenstern utility functions. We also lift the

assumption about perfect information; we assume that only I knows ν0 and that each

player knows only his own utility function. We the concepts of value of a game and

the players’ associated utilities with considering players’ respective expected utilities.

Since neither player has perfect information, neither can adopt a strategy that he

knows will force a specific outcome. Instead, rational play now dictates that players

select strategies that will maximize their respective expected utilities. We now have

two results that parallel Lemma (1) and Theorem (1).

Theorem 2. In a finite game G in which U I and U II are smooth von Neumann

Morgenstern utility functions, neither I nor II know the other’s utility function, and

only I knows the initial state ν0, both players have expected utilities.

Proof. We will prove this lemma using induction on the number of turns. Without

loss of generality, assume that player I goes first. In a game G of one turn, I’s
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expected utility is

EI(G) =
∑
α∈A

pαU I(α(ν0)). (3)

II’s expected utility is

EII(G) =
∑
α∈A

pαU II(α(ν0)). (4)

Since von Neumann Morgenstern utility functions preserve preferences over com-

pound lotteries, we may assume that in all games of n or fewer turns both players have

expected utilities consistent with compounding expected utility over all the turns. In

a game G of n+1 turns, at the first turn player I’s is a choice of games G1, G2, · · ·Gm

of n or fewer turns, so the respective expected utilities are

EI(G) =
m∑

i=1

piEI(Gi) (5)

and

EII(G) =
m∑

i=1

piEII(Gi) (6)

Theorem 3. A finite game G in which U I and U II are smooth von Neumann Mor-

genstern utility functions, neither I nor II know the other’s utility function, and only

I knows the initial state ν0, has a Nash Equilibrium.

Proof. See [Fer] A-9.



13

2.5 Signaling Games

Definition 3. A signaling game is a game with are three players, ν, S (sender) and

R (receiver) with the following rules and payoffs:

The action spaces for each player are:

1. The set Θ of ν’s moves, the space in which a random variable m, density f(m),

takes a value.

2. The set A of S’s moves, measurable functions α : Θ → Φ.

3. The set B of R’s moves, measurable functions β : Φ → Θ.

ν moves first, then S, then R. Players S and R have utility functions US(β, m)

and UR(β, m) respectively, which are independent of α, S’s move.

We will assume that Θ is a topological space in order to analyze equilibria arising

in specific signaling games.

S’s and R’s goals are to maximize their respective expected utilities. Nash Equilib-

rium occurs when, given his opponent’s strategy, neither player can select a strategy

that increases his expected utility. Formally, a Nash Equilibrium is a pair of strategies

q(α|m) for S and β(α(m)) for R so that

1. For each m ∈ Θ,

∫
A

q(α|m)dα = 1 (7)

and if α∗ ∈ Supp q(·|m), then α∗ solves maxα∈A US(β(α(m)), m).
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2. For each α(m), β(α(m)) solves

max
β

∫
Θ

UR(β(α(m)), m)p(m|α)dm (8)

where p(·|α) = q(α|m)f(m)/
∫

Θ
q(α|t)f(t)dt.

We have allowed S to adopt mixed strategies but have restricted R to pure strategies.

In equilibrium, R’s strategy is necessarily to maximize his expected utility, which he

achieves by adopting the pure strategy we have described. It is therefore unnecessary

to consider the possibility that R will select a mixed strategy.

We will call a Nash Equilibrium a partition equilibrium if it satisfies the following

conditions:

1. S’s strategy is

(a) Partition Θ into path-connected sets L1, L2, · · ·LN satisfying

i.
⋃N

i=1 Li = Θ

ii. int Li∩ int Lj = ∅ if i 6= j.

(b) Uses the signaling rule

α(m) = li if m ∈ Li (9)

2. R’s strategy is

β(li) = max
y

∫
Li

UR(y, m)f(m)dLi (10)
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3. If m ∈ Li, then for all i 6= j,

US(β(li), m) ≥ US(β(lj), m). (11)

In particular, if m ∈ Li ∩ Lj then

US(β(li), m) = US(β(lj), m). (12)

Intuitively, a partition equilibrium is one in which S sends the same signal for similar

values of m, the partition determining “how similar” two values of m must be in

order to be represented by the same signal. R’s strategy is very naturally the one

in which R maximizes his expected utility on Li. Condition (3) requires that, given

Conditions (1) and (2), S can never improve his expected utility by violating the

strategy set forth in Condition (1). Alternatively, we can interpret Condition (3)

to be the requirement that boundary between regions Li and Lj be the indifference

curve between the two regions.

We are primarily interested in the partition equilibria due to their relative sim-

plicity. We will explore Crawford and Sobel’s work, in which they prove that all the

equilibria in a specific signaling game are partition equilibria. We will then explore

an expanded version of Crawford and Sobel’s game in which we demonstrate that

again all the equilibria are partition equilibria.
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3 Crawford and Sobel

3.1 The Model

Crawford and Sobel classify equilibria in the signaling game where Θ = [0, 1], and A

and B are measurable functions [0, 1] → [0, 1]. S observes the value ν chooses in [0, 1]

and takes action q(α|m) in A where q is a probability density function. S signals

n = α(m). R observes n and selects action y = β(n), where y takes a value in [0, 1].

Further, the von Neumann Morgenstern utility functions US(y, m, b) and UR(y, m)

satisfy:

1. For all m ∈ Θ, there exists y ∈ Θ such that ∂U i/∂y = 0 for i = S, R.

2. ∂2U i/∂y2 < 0.

3. ∂2U i/∂y∂m > 0.

Conditions (1) and (2) guarantee that for each m, S’s and R’s payoffs have maxima

in y. Condition (3) says the S’s and R’s respective preferred outcomes are increasing

functions of m. Additionally, Crawford and Sobel stipulate that US also depends on

a parameter b that measures how closely the interests of S and R coincide.

3.2 The Equilibria

Before we can proceed, we need to introduce some notation. Since Θ = [0, 1], there

exist 0 = a0 < a1 < · · · < aN = 1 so that Li = [ai−1, ai]. We will say that m induces
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y if there exist strategies β and α such that β(α(m)) = y and the probability of S

using α is positive. Also, for m ∈ [0, 1] we define

1. yS(m, b) = arg maxy US(y, m, b)

2. yR(m) = arg maxy UR(y, m).

Crawford and Sobel show that all equilibria are partition equilibria and then de-

termine what those equilibria are. First, let us see why all equilibria are partition

equilibria.

Lemma 2. Suppose that for all m, yS(m, b) 6= yR(m). Suppose also that there exist

m1 and m2 that induce u and v respectively in equlibrium. Then u and v cannot be

arbitrarily close. Also, there are a finite number of assignments induced in equilib-

rium.

Proof. Suppose that u < v are induced in equilibrium. Then if m induces u in

equilibrium, US(u, m, b) ≥ US(v, m, b). Since US is continuous, there exists m such

that US(u, m, b) ≥ US(v, m, b). US(y, m, b) has a local maximum in y, therefore

u < yS(m, b) < v. (13)

Further, since ∂2US/∂y∂m > 0,

1. There is no m > m that induces u in equilibrium

2. There is no m < m that induces v in equilibrium
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Conditions (1) and (2) coupled with the fact that ∂2UR/∂y∂m > 0 tells us that

u ≤ yR(m) ≤ v. (14)

By hypothesis, yS(m, b) 6= yR(m) for all m, ergo there exists ε > 0 such that

|yS(m, b) − yR(m)| ≥ ε for all m ∈ [0, 1]. Equations (13) and (14) guarantee that

|u− v| ≥ |yS(m, b)− yR(m)| ≥ ε ergo u and v are not arbitrarily close.

Since any two assignments induced in equilibrium are at a distance of at least ε

from each other, there can be at most 1 + d1/εe possible assignments.

Theorem 4. Suppose that for all m ∈ [0, 1], yS(m, b) 6= yR(m). Then there exists an

integer N(b) such that for each integer 1 ≤ N ≤ N(b)

1. There exists a partition of [0, 1] into sets Li = [ai, ai+1] for 0 ≤ i ≤ N − 1 and

an S action α(m) = li if m ∈ Li.

2. β(li) = max
y∈[0,1]

∫ ai+1

ai

UR(y, m)f(m)dm

3. For all 1 ≤ i ≤ N − 1,

US(β(li), ai, b) = US(β(li−1), ai, b) (15)

Further, these are all of the equilibria.

Proof. It is immediately clear that such a strategy pair satisfies the definition of a

partition equilibrium. We need only verify three things:

1. The existence of N(b).
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2. The existence of such an equilibrium for all 1 ≤ N ≤ N(b).

3. That any equilibrium is one of these equilibria.

It follows from Lemma (2) that N(b) exists. Suppose there is no upper bound on

N. Then for all ε > 0, we can choose N large enough so that in any partition of [0, 1]

into N intervals we can find i so that |β(li)− β(lj)| ≤ ε, contradicting Lemma (2).

It also follows from Lemma (2) that any equilibrium is a partition equilibrium.

It only remains to show that for all integers 1 ≤ N ≤ N(b) there exists an

equilibrium of size N. We will follow Crawford and Sobel’s proof exactly. They

proceed first by constructing determining the value of N(b) and then demonstrate

that we can construct partitions of all sizes 1 ≤ N ≤ N(b).

First, we need a definition:

y(a, a) =


∫ a

a
UR(y, m)f(m)dm if a ≤ a

yR(a) if a = a

Our assumption that UR is increasing in y and m implies that y is also increasing

in both of its arguments. We now show that based on a partial partition of [0, 1] that

satisfies Condition (3) we can construct exactly one more element of the partition.

Let ai denote a partial partition 0 = a0 < a1 < · · · < a1 that satisfies Condition(3).

Since US is convex in y, there exists uniquely ỹ so that

US(ỹ, ai, b) = US(β(li), ai, b) (16)

hence there also exists uniquely ai+1 so that ỹ = y(ai, ai+1). Therefore, any partial

partition determines only the next term ai+1 > ai.
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Now Crawford and Sobel define

K(a) = max{i | ∃ 0 < a < a2 < · · · < ai ≤ 1 satisfying Condition (3)}

By hypothesis, yS(m, b) 6= yR(m), so by Lemma (2), y(ai, ai+1) − y(ai−1, ai) ≥ ε

for some ε ≥ 0. If ai+2 − ai can be arbitrarily small, then y(ai+1, ai+2) − y(ai, ai+1)

can be arbitrarily small, contradicting Lemma (2), therefore ai+2−ai is has a positive

greatest lower bound, hence the construction of the partition terminates in a finite

number of steps. Therefore, K(a) is finite, well-defined and uniformly bounded, so

there exists a ∈ [0, 1] so that sup0<a≤1 K(a) achieved for some a. Define N(b) = K(a).

Now that we have constructed N(b), we are prepared to show the existence of an

equilibrium of size N for all integers 1 ≤ N ≤ N(b).

Let aK(a) denote a partial partition of [0, 1] in which a1 = a. Since the values of

a2, a3, · · · , aK(a) vary continuously with a., if aK(a) < 1, K is locally continuous at a.

Since K(1) = 1 and K changes by at most 1 at a discontinuity, K achieves all integer

values 1 ≤ N ≤ N(b). If K(a1) = N and K is discontinuous at a, then a0 = 1, aN = 1

and the partition satisfies Condition (3).

3.3 An Example

Their article computes all the equilibria in the case where m is uniformly distributed

on [0, 1], US(y, m, b) = −(y− (m+b))2 and UR(y, m) = −(y−m)2 where b > 0. Since

b > 0, S’s and R’s interests never coincide. It is easily verified that the partials of US

and UR satisfy the requirements set out in Crawford and Sobel’s model.
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The first step is to determine R’s best strategy on Li and N(b). R maximizes his

utility on Li by playing

β(li) = max
y

∫ ai

ai−1

−(y −m)2dm. (17)

The right hand side of Equation (17) is maximal when y = (ai−1 + ai)/2, i.e. R plays

the center of mass of Li.

Second, we want to determine the partitions which give rise to equilbrium. Since

US(β(li), ai, b) = US(β(li+1), ai, b) (18)

then

−
(

ai−1 + ai

2
− ai − b

)2

= −
(

ai + ai+1

2
− ai − b

)2

. (19)

Since ai+1 > ai−1, it follows that ai+1 = 4b + 2ai − ai−1. Given that a0 = 0, we can

express all the ai in terms of a1. Inductively, we see that

ai = ia1 + 2i(i− 1)b. (20)

N(b) is the largest integer i such that 2i(i− 1)b < 1. Completing the square,

N(b) =

⌊
1

2
+

1

2

√
1 +

2

b

⌋
. (21)

As we expect, as b → ∞, N(b) → 1. In other words, as the players’ interests di-

verge, the only equilibrium is the trivial non-informative one. All equilibria are now

determined by b and Equation (20). We work out a few specific cases:
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Example 1. If b > 1/4, then the only equilibrium is the uninformative one. If

b > 1/4, then 1 < 1
2

+ 1
2

√
1 + 2

b
< 2, so N(b) = 1.

Example 2. If b = 1/10, then N(b) = 2. Equation (20) tells us that if N = 2,

a1 = 3/20, and a2 = 1.

4 Other approaches

Many other authors have taken up this problem, modeling related situations and

achieving similar results. We will examine the work of Jerry Green and Nancy Stokey,

and Kalyan Chatterjee and William Samuelson.

4.1 Green and Stokey

Green and Stokey examine the problem of group decision making – one may imagine

a hiring committee consisting of an interview team and a hiring manager. Green

and Stokey use a principal/agent model, with the goal of understanding how more

informative equilibria improve expected utility.

4.1.1 The Model

The initial states of the game (the states of nature) are the elements of Θ = {θ1, · · · θM}

and the possible outcomes are Φ = {φ1, · · ·φK}. The set of signals is Y = {y1, · · · yN}.

The agent receives on observation yn ∈ Y of θm ∈ Θ and then sends a possibly noisy

signal (again an element of Y ) to the principal, who then selects an action φk ∈ Φ.
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The principal’s and agent’s respective utilities depend only on θm and φk. Green and

Stokey record the players respective von Neumann Morgenstern utilities in K × M

matrices; UP and UA will be the principal and agent’s respective utility matrices, in

which the km-th entry ui
km of U i is player i’s utility (i = P, A) if the state of nature

is θm and the principal chooses φk.

We represent the strategies available to the principal and agent as Markov ma-

trices. A Markov matrix is a matrix in which every number belongs to the interval

[0, 1]. A strategy for the agent is an N × N Markov matrix R, in which the nn′-th

entry rnn′ is the probability that the agent will signal yn′ given that his observation

is yn. A strategy for the principal in an N ×K Markov matrix Z, in which the nk-th

entry znk is the probability that the principal will choose outcome φk on receiving the

signal yn.

Green and Stokey now define the information structure of the game. The infor-

mation structure is an M ×N Markov matrix Λ in which the mn-th entry λmn is the

probability that the agent observes yn given that the state of nature is θm. How the

players interpret the signals depends on Λ and their respective prior beliefs about the

entries of Λ. For i = P, A let πi
m be i’s prior probability that the state of nature is θm

and also let πP = (πP
1 , · · · , πP

M) and πA = (πA
1 , · · · , πA

M) be vectors of the principal’s

and agent’s respective prior beliefs. Now let Πi be the M × M matrix with πi on

the diagonal and zeros everywhere else. Then Bayes’s rule tells us that the mn-th

entry pi(θm|yn) = λmnπ
i
m of the M ×N matrix ΠiΛ is player i’s posterior. Now given
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strategy choices Z and R, the principal’s and agent’s respective expected utilities are

E(UP ) = tr UP ΠP ΛRZ (22)

E(UA) = tr UAΠAΛRZ (23)

The pair (Z,R) is a Nash Equilibrium if

1. For all N ×K Markov matrices Z ′,

tr UP ΠP ΛRZ ≥ tr UP ΠP ΛRZ ′. (24)

2. For all N ×N Markov matrices R′,

tr UAΠAΛRZ ≥ tr UAΠAΛR′Z. (25)

4.1.2 The Equilibria

Green and Stokey classify three types of equilibria: partition equilibria, determinate

action equilibria, and random action equilibria.

An M ×N ′ information structure Λ′ is a partition of Λ if there exist permutation

matrices P and P ′ and a block diagonal N × N ′ Markov matrix D in which each

block has rank one such that Λ′ = ΛPDP ′. The matrices P, D, and P ′ determine a

partition the signal space Y. We look at a quick example to understand how P, D,

and P ′ determine the partition.

Example 3. Suppose Θ = {θ1, θ2}, Y = {y1, y2, y3}, and

Λ =

 1 0 0

0 1/2 1/2

 .
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Then the 2× 2 identity matrix Λ′ is a partition of Λ since

 1 0

0 1

 =

 1 0 0

0 1/2 1/2




1 0 0

0 1 0

0 0 1




1 0

0 1

0 1


 1 0

0 1

 .

In the initial information structure, the signals y2 and y3 are essentially equivalent,

since p(θ2|y2 or y3) = 1. Since the 2, 2-th entry of the new information structure Λ′ is

1, then p(θ2|y2) = 1. P, D, and P ′ partitioned Y into two subsets that are equivalent

for signaling purposes: {y1} and {y2, y3}, and identifies y2 with {y2, y3}. A partition

equilibrium is then one in which ΛR is a partition of Λ.

Now the authors define three types of equilibria. A partition equilibrium is a pair

(Z,R) such that ΛR is a partition of Λ; a determinate action equilibrium is a pair

(Z,R) such that ΛR is not a partition of Λ and each column of Z receiving positive

weight under R has only a single positive element; a random action equilibrium is

a pair (Z,R) such that ΛR is not a partition of Λ and some column of Z receiving

positive weight under R has two or more non-zero entries. The authors subsequently

focus solely on partition equilibria, since the other two types are unsuitably unstable

for their purposes.

We now examine the example that Green and Stokey employ to illustrate the

three types of equilibria.

Example 4. Suppose that there are two states, two signals and two outcomes, i.e.
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K = N = M. Let

Λ =

 1 0

0 1

 , UP =

 1 0

0 1/2

 , UA =

 1 0

1 2

 , πP = πA = (1/2, 1/2).

A knows the state, since for i = 1, 2 he observes p(yi|θi) = 1. If the state is θ1, P

prefers outcome φ1 while A is indifferent between φ1 and φ2. If the state is θ2, both

players prefer outcome φ2. Now consider the following four equilibria:

Z = I and R = I, i.e. A’s signal is not noisy and P ’s action is assumes the

signal is not noisy. This equilibrium is a partition equilibrium since ΛR is obviously

a partition of Λ.

The babbling equilibrium, which we saw in Section 2.5, looks like

Z =

 1 0

1 0

 and R =

 α 1− α

α 1− α

 , α ∈ [0, 1].

A’s transmission strategy is indifferent to the state A observes, and P ’s assignment

strategy is indifferent to the state A transmits. The babbling equilibrium is another

example of a partition equilibrium in which Y is partitioned into one set.

The pair

Z =

 1 0

0 1

 , R =

 1− ε ε

0 1

 , 0 < ε ≤ 1/2

is an example of a determinate action equilibrium. A is indifferent between φ1 and

φ2 if the state is θ1, hence randomizing between y1 and y2 when A observes y1 does

not change A’s expected utility.
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The pair

Z =

 1 0

δ 1− δ

 , R =

 1/2 1/2

0 1

 , δ ∈ (0, 1)

is an example of a random action equilibrium.

Next, Green and Stokey demonstrate that determinate and random action equilib-

ria are not suitably stable for their purposes, since small changes in UP and UA may

result in drastic changes in the equilibrium strategies. They also prove an analogous

result to Theorem 4:

Theorem 5. Given Λ, UP and UA, if Z and R form a partition equilibrium

1. If the nth row of R has a positive entry, then the nth row of Z is uniquely

determined in the optimal response to R.

2. R is the unique best response to Z and R is a partition of Λ.

4.1.3 Comparison of Results

The primary differences between the two models are (1) Green and Stokey’s players

have discrete utility functions, whereas Crawford and Sobel’s have smooth utilities

and (2) Green and Stokey’s model has an extra layer of noise. The extra layer of

noise does not have a significant effect on the model, it merely introduces another

layer of calculations. The discrete utility is the cause of the extra equilibria in Green

and Stokey’s model. Two results follow.
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First, if Λ, UP , UA, Z and R are a partition equilibrium, then we can fit smooth

functions UP ′(θ, φ) and UA′(θ, φ) to the entries of UP and UA that preserve the

equilibrium. These continuous functions correspond to appropriate utility functions

for which there exists a partition equilibrium in Crawford and Sobel’s model.

Second, if Λ, UP , UA, Z and R are a determinate or random action equilibrium,

it is impossible to fit smooth functions to the utilities in UP and UA that preserve

the equilibrium. The fact that such smooth functions do not exist illuminates why

determinate and random action equilibria are not stable in the sense of partition

equilibria. Determinate and random action equilibria do not vary continuously with

continuous changes in utility.

4.2 Chatterjee and Samuelson

Chatterjee and Samuelson explore a much broader game than that of Crawford and

Sobel or of Green and Stokey. They model a bargaining problem in which the buyer

and seller both have confidential information and each simultaneously transmits an

offer to the other. Chatterjee and Samuelson explore equilibria in this bidirectional

game of information transmission.

4.2.1 The Model

There are two players, the buyer B and the seller S attempting to agree on a price

for a good. The players have reserve prices, vb and vs respectively, where vb is the
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highest price that B will pay for the good and vs is the lowest price S will accept.

Each player knows his own reserve price but not his opponent’s reserve price. B

assigns a distribution Fb : [vs, vs] → R summarizing his prior beliefs about vs with

Fb(vs) = 0 and Fb(vs) = 1. S assigns a distribution Fs[vb, vb] → R summarizing his

prior beliefs about vb with Fs(vb) = 0 and Fs(vb) = 1. B proposes a price b and S

proposes a price s. If b < s, there is no bargain. If b ≥ s, then a deal is struck at a

price P = bk + (1− k)s where 0 ≤ k ≤ 1. The players’ utilities are US = P − vs and

UB = vb − P. Therefore, the buyer’s expected utility is

πb(b, vb) =


∫ b

s
(vb − P )gb(s)ds if b ≥ s

0 if b < s

(26)

where gb(s) is the density function of the induced distribution Gb = Fb◦S−1. Similarly,

the seller’s expected utility is

πs(s, vs) =


∫ b

s
(P − vs)gs(b)db if s ≤ b

0 if s > b

(27)

where gs(b) is the density function of the induced distribution Gs = Fs ◦ B−1. As

before, the strategy pair (s∗, b∗) is a Nash Equilibrium if for all s, π(s∗, vs) ≥ π(s, vs)

and π(b∗, vb) ≥ π(b, vb).

5 A Possible Generalization

We will now pursue a broader example which includes Crawford and Sobel’s equilibria,

but also introduces an opportunity to find additional equilibria when the US and UR
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do not satisfy Crawford and Sobel’s hypotheses on the partial derivatives. As a

consequence of lifting the hypotheses on the partials of US and UR, we will no longer

be able to rely on Lemma 2. To compensate, S observes his type in [0, 1]×[0, 1] rather

than [0, 1]. We intuitively consider a type in [0, 1]× [0, 1] to represent the case where

S has two candidates and recommends them simultaneously, thereby simply ranking

the candidates relative to each other rather than quantitatively. If US and UR satisfy

Crawford and Sobel’s hypotheses, it is still possible for S to signal the coordinates of

his type independently and for R to assign outcomes independntly, thereby playing

two parallel versions of Crawford and Sobel’s game.

5.1 The Model

Our revised model is largely similar to Crawford and Sobel’s model. We let Θ =

[0, 1]× [0, 1]. Then S partitions [0, 1]× [0, 1] into regions L1, L2, · · · , LN as described

above, and associates the signal li to the region Li for all 1 ≤ i ≤ N. ν chooses an or-

dered pair (m, m̂) ∈ [0, 1]×[0, 1]. S observes the region Lk in which (m, m̂), henceforth

(mk, m̂k), lies and signals lk. R assigns an outcome (yk, ŷk) and we evaluate the play-

ers’ respective payoffs. We will classify Nash Equilibria when US((m, m̂), (y, ŷ)) =

my + m̂ŷ and UR((m, m̂), (y, ŷ)) = −(y −m)2 − (ŷ − m̂)2.

5.2 The Equilibria

A partition together with signaling and assignment rules is a Nash Equilibrium if
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1. For all 1 ≤ i ≤ N, R’s assignment rule is

β(li) = arg max
(yi, byi)

∫
Li

UR((m, m̂), (yi, ŷi))dmdm̂ (28)

2. For all 1 ≤ i ≤ n− 1, Li

⋂
Li+1 is the set of points (t, fi(t)) such that

US((t, fi(t)), (yi, ŷi)) = US((t, fi(t)), (yi+1, ŷi+1)). (29)

Given that UR is coordinate-wise quadratic loss, Condition (1) requires for all i, on

the region Li that R select the point minimizing the expected square distance from

any point (m, m̂) in Li to (yi, ŷi) in Li. This point is the centroid of the region Li.

Condition (2) requires that the boundary between adjacent regions be S’s indifference

curve between R’s assignments on those adjacent regions.

Lemma 3. If US((m, m̂), (y, ŷ)) = my + m̂ŷ, then in equilibrium, for 1 ≤ i ≤ n− 1

the boundary between Li and Li+1 is a line through the origin.

Proof. By Condition 2, the boundary between Li and Li+1 satisfies

tyi + fi(t)ŷi = tyi+1 + fi(t)ŷi+1 (30)

fi(t) = t
yi+1 − yi

ŷi − ŷi+1

(31)

Now we are prepared to classify partitions that give rise to equilibria.
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Theorem 6. If n = 2, there are three distinct partitions that give rise to equilibrium.

If n = 3, there is one partition that gives rise to equilibrium. If n ≥ 4, there are no

equilibria.

Case 1: n = 2 : Since f1(t) is a line through the origin, we let f1(t) = a1t, L1 =

{(t, u) ∈ [0, 1] × [0, 1]|u ≤ a1t}, and L2 = {(t, u) ∈ [0, 1] × [0, 1]|u ≥ a1t}, and

determine values of a1 such that we are in equilibrium.

First, suppose 0 ≤ a ≤ 1. Then the centroid of L1 is (2/3, a1/3) and the centroid

of L2 is ((3− 2a1)/(6− 3a1), (3− a2
1)/(6− 3a1)). By Lemma 3, we are at equilibrium

when

a1 =
3−2a1

6−3a1
− 2

3

a1

3
− 3−a2

1

6−3a1

Solving for a1, we are at equilibrium when a1 = 1/2 or a1 = 1. By symmetry, we

are also at equilibrium when a1 = 2.

Case 2: n = 3 : Let L1 = {(t, u) ∈ [0, 1] × [0, 1]|u ≤ at}, L2 = {(t, u) ∈ [0, 1] ×

[0, 1]|at ≤ u ≤ bt}, and L3 = {(t, u) ∈ [0, 1]× [0, 1]bt ≤ u}. Without loss of generality,

assume that a < b. We now consider two subcases:

Case 2a: 0 < a < b ≤ 1 or 1 ≤ a < b : The centroid of L1 is (2/3, a/3) and the

centroid of L2 is (2/3, (b + a)/(3b− 3a)). By Lemma 3, we are at equilibrium when

a =
b+a

3b−3a
− a

3
2
3
− 2

3

which is clearly impossible. By symmetry, there are no equilibria when 1 ≤ a < b.
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Case 2b: 0 < a ≤ 1 ≤ b : The centroid of L1 is (2/3, a/3). The centroid of L2

is ( 3b2−2ab2−1
6b2−3ab2−3b

, 3b−a2b−2
6b−3ab−3

). The centroid of L3 is (1/3b, 2/3). By Lemma 1, we are in

equilibrium if

2
3
− 3b2−2ab2−1

6b2−3ab2−3b

3b−a2b−2
6b−3ab−3

− a
3

= a

and

3b2−2ab2−1
6b2−3ab2−3b

− 1
3b

2
3
− 3b−a2b−2

6b−3ab−3

= b.

We solve this system using Maple’s Gröbner package:

We are at equilibrium when a = 2 −
√

3 or 1 and b = 2 +
√

3 or 1 respectively.

If a = b = 1, then L2 has measure zero. If a = 2 −
√

3, then b = 1/a = 2 +
√

3 and

none of the regions Li has measure zero, so the equilibrium is non-trivial.

Case 3: n ≥ 4 : Let fi(t) = ait be the boundary between Li and Li+1. Since n ≥ 4,

there exist at least two integers i < j between 1 and N such that either 0 < ai <

aj ≤ 1 or 1 ≤ ai < aj. In either case, by the analysis in Case 2a, it is impossible have

equilibrium if one of these statements is true, hence there are no equilibria in this

case.

6 Conclusion

This thesis presents an approach to understanding signaling games, reviews Crawford

and Sobel’s method of approach and work, and examines a new example that expands
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on Crawford and Sobel’s solution. While our example achieves equilibrium in a case

that Crawford and Sobel could not, the new equilibria are not as informative as the

equilibria in Crawford and Sobel’s work. Our results suggest that allowing S to rec-

ommend candidates relative to each other allows more opportunities for cooperation,

but decreases how much information S can actually communicate.

If we generalize further to the case in which Θ = [0, 1]3, we expect that this trend

will continue. The game will have equilibria for an increasingly large collection of

payoff functions, but the equilibria will become less informative than in our example.

In general, we expect that if S’s signal consists of ranking n candidates relative to

each other, the number of payoff functions increases as the equilibria become less

informative.

As long as we have smooth payoff functions in the 2-candidate game, we expect

that the resulting equilibria will still be partition equilibria, since the indifference

curves should still be smooth functions. If the functions cease to be smooth or even

cease to be continuous, the equilibria will presumably become significantly more com-

plicated.

It would be interesting to pursue further generalization on either of these paths,

in particular to determine the equilibria that arise under more general payoff in the

2-candidate game.
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