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1 Introduction

1.1 The Ising model

Suppose the Ising spins are localized the vertices of some region L = {1, · · · , L}d of a d-dimensional cubic

lattice of side L. On each site i ∈ L, there is an Ising spin σi ∈ {+1,−1}, which can be thought of as a

spin that points either up (+1) or down (−1).

A configuration of the system σ = (σ1, · · · , σN ) is an assignment of values of all the spins in the system.

So, the space of configurations XN = X × · · · × X︸ ︷︷ ︸
N times

= {+1,−1}L, with X = {+1,−1} and N = Ld.

Definition 1.1. We equip a configuration σ with an energy function, or Hamiltonian, as such:

(1.2) E(σ) = −J
∑
i,j

σiσj − h
∑
i∈L

σi,

where the sum over i, j is over all unordered pairs of sites i, j ∈ L that are nearest neighbors and h measures

the applied external magnetic field. The variables J ’s are interactions of a bond (ij) and are assigned a value

J > 0 when the neighboring spins are aligned σi = σj (↑↑ or ↓↓) or a value J < 0 when the neighboring spins

are anti-aligned σi 6= σj (↑↓). The positive interaction J > 0 can lead to ferromagnetism (macroscopic

magnetism) as all the pairs of spins in the system have the tendency to align in the same direction and thus

is called a ferromagnetic interaction [N08]. The negative interaction J < 0 has the opposite effect in which

spins tend to align in opposite directions and thus is called a anti-ferromagnetic interaction.

Ising solved the one-dimensional Ising model in his 1924 thesis, a problem given to him by Lenz, and

showed the absence of any phase transitions [Is25]. Physical phase transitions can be understood as when

a small temperature in some parameter such as temperature or pressure causes a drastic qualitative change

in the state of the system. In the one-dimensional Ising model, Ising showed that for any positive, finite

temperature, the system is always disordered.

Although Ising erroneously concluded the absence of any phase transitions in higher dimensions, Peierls, in

1936, showed that phase transitions in fact do occur in higher dimensions using an argument based on the

free energy of domain walls, a boundary separating magnetic domains [PB36]. In 1944, Lars Onsager solved

the two-dimensional Ising model by using the transfer-matrix method and showed that the model undergoes

a phase transition between an ordered phase and a disordered phase [On44]. The attempt to extend the
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transfer-matrix method to the three-dimensional case was unsuccessful and the problem remains unsolved

in the higher dimensional cases.

Definition 1.3. In general, the probability for the system to be found in a specific configuration x from a

configuration space X , µβ(x), is given by the Boltzmann distribution:

µβ(x) =
e−βE(x)

Z(β)
,(1.4)

Z(β) =
∑
x∈X

e−βE(x).(1.5)

Here, the parameter β = 1/T is the inverse of temperature, with Boltzmann’s constant kB = 1. Z(β) is a

normalization constant and is called the partition function.

Note that at infinite temperature, β = 0, all configurations have equal weights according to the Boltzmann

distribution and the energy function is irrelevant. In the case of the Ising model, all configurations have

weight 2−N and the Ising spins are completely independent. At zero temperature, β = +∞, the Boltzmann

distribution has only weights at the ground state(s), where, in general, the configuration x0 ∈ X is a ground

state if E(x) ≥ E(x0) for any x ∈ X . The minimum value of the energy E0 = E(x0) is the ground state

energy. If there is no magnetic field, h = 0, then there are two degenerate ground states: the configuration

σ(+) with all spins σi = +1 and the configuration σ(−) with all spins σi = −1.

1.2 Thermodynamic potentials

Some of the properties of the Boltzmann distribution can be summarized through the thermodynamic po-

tentials, which are functions of the temperature 1/β and the parameters that define the energy function

E(x).

Definition 1.6. Free energy is defined as

(1.7) f(β) = − 1

β
lnZ(β).

Definition 1.8. It may be more convenient to work with free entropy

(1.9) Φ(β) = −βf(β) = lnZ(β).
3



Definition 1.10. From free entropy, we can derive the internal energy U(β)

(1.11) U(β) =
∂

∂β
(βf(β)).

The thermodynamic potentials defined above are consolidated here for easier navigation and will appear

later when we discuss the replica trick in detail.

1.3 Mean-field theory of spin glasses

The interaction of localized magnetic moments can be ferromagnetic in which all neighboring spins align in

the same direction or anti-ferromagnetic in which all neighboring spins point in opposite directions. Spin

glasses are disordered magnets which have a random magnetic spin structure, with some ferromagnetic

and anti-ferromagnetic interactions, while ferromagnetic solids have an ordered spin structure in which all

magnetic spins align in the same direction. The simplest model for ferromagnetism is the Ising model, which

was discussed above.

1.3.1 Sherrington-Kirkpatrick model

In 1975, David Sherrington and Scott Kirkpatrick introduced an exactly solvable model of the spin glass

called the Sherrington Kirkpatrick model (or SK model) [SK75]. Here, we will introduce the SK model

and the idea of the replica calculation.

Consider the space of 2N configurations of N Ising spins with values in {±1}.

Definition 1.12. The energy function (or Hamiltonian) of the SK model is given by

(1.13) E(σ) = −
∑
i<j

Jijσiσj − h
∑
i

σi,

where the first sum is over all N(N − 1)/2 distinct pairs, the coupling random variables Jij , 1 ≤ i < j ≤ N

are independent and identically distributed (i.i.d) Gaussian N (J0/N, J
2/N), and h is an external magnetic

field that interacts with the spins.

1.3.2 The replica trick

A sample or instance of the SK model is given by one of the values of its 2N energy levels. In order to

describe typical samples, we have to compute the average log-partition function E lnZ. However, this is a
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rather difficult task and it is much easier to compute the integer moments of the partition function EZn,

with n ∈ N, since Z is the sum of a large number of simple terms [MM09].

Lemma 1.14. The replica method utilizes the following identity

(1.15) E lnZ = lim
n→0

ln (EZn)

n
= lim
n→0

limEZn − 1

n

by preparing EZn as if n were an integer and taking the limit as n→ 0 to apply the identity (1.15).

If we were to calculate EZn with n as a non-integer real number, the computation would be not much easier

than that of E lnZ. The heart of the replica trick is to extrapolate E lnZ by first assuming n to be an integer

and later taking the limit as n → 0. This bold justification has not yet been resolved; however, the replica

method has been become standard practice as, when compared with other exact solutions, the method leads

to the same results.

We will explore the derivation of the replica calculation for the Sherrington-Kirkpatrick model, including the

replica symmetric solution and the 1-step replica symmetry breaking solution in Section 2. We only state

the result of the full replica symmetry breaking solution and suggest Appendix B for the Parisi equation

[N08]. We will also discuss the complications regarding the assumptions of the replica method.

1.4 Computational complexity

The theory of computational complexity deals with classifying computational problems by their difficulty,

where an algorithm inputs some number N of variables and answers either yes or no. There are two classes

of algorithms: polynomial and super-polynomial. Let T (N) be the number of operations required to solve,

in the worst-case, an instance of size N .

Definition 1.16. The algorithm is polynomial if there exists a constant k such that T (N) = O(Nk).

Definition 1.17. In the big O notation, we say f(x) = O(g(x)) if and only if there exists some positive

number M and real number x0 such that |f(x)| ≤M |g(x)| for x ≥ x0.

If the algorithm is not polynomial, it is super-polynomial.

Definition 1.18. To compare two decision problems A and B, we say that B is polynomially reducible

to A if the following conditions are satisfied [MM09]:
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• There exists a mapping R which takes any instance I of the decision problem B to the instance R(I)

of A such that the solution of the instance R(I) of A is the same solution as that of I of B.

• The mapping R can be computed in polynomial time.

Such a mapping R is a polynomial reduction.

Some of the complexity classes of decision problems are as follows [MM09]:

• P: Polynomial problems can be solved by an algorithm running in polynomial time.

• NP: Non-deterministic polynomial problems can be solved by a non-deterministic algorithm running

in polynomial time.

• NP-complete: A problem is NP-complete if it is in NP and if any other problem in NP can be

polynomially reduced to it.

• NP-hard: Non-deterministic polynomial hard problems are not in NP but are as hard as NP-

complete problems.

The following theorem by Stephen Cook and Leonid Levin is stated without proof:

Theorem 1.19. The satisfiability problem is NP-complete.

The implications of the theorems are quite remarkable in that any problem in NP is polynomially reducible

to an instance of the satisfiability problem. Thus, any problem in NP can be solved in polynomial time.

Definition 1.20. We introduce the complexity class #P, which is the set of counting problems associated

with decision problems in the complexity class NP.

Definition 1.21. Parallel to the decision problems, a counting problem is #P-complete if and only if it

is in #P.

So, while an NP decision problem may ask whether there exists an assignment of variables that satisfies a

given general Boolean formula, a #P counting problem would ask how many different variable assignments

will satisfy that given general Boolean formula. Such a counting problem of counting the number of satisfying

assignments of a given general Boolean formula is #SAT.

1.4.1 The satisfiability problem

Definition 1.22. A clause is a logical OR of some variables or their negations.
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A variable xi takes values 1 (TRUE) or 0 (FALSE) and its negation xi := 1− xi.

Definition 1.23. A variable or its negation is a literal, denoted by zi.

A clause a involving Ka variables is a constraint that forbids exactly one of the 2Ka possible assignments of

these Ka variables. When a clause is not satisfied, it is said to be violated.

Definition 1.24. An instance of the satisfiability problem can be expressed by the conjunctive normal

form (CNF):

(1.25) F = C1 ∧ · · · ∧ CM ,

where Ca = zia1 ∨ · · · ∨ ziaKa
, and {ia1 , · · · iaKa

} ⊆ {1, · · · , N}.

Given F , is there an assignment of the xi’s in {0, 1}N such that F is true? If so, then F is SAT and otherwise,

F is UNSAT. This question of satisfiability is known as the Boolean satisfiability problem. We have

the K-satisfiability (K-SAT) problem if we require all the clauses to have the same length Ka = K. The

MAX-SAT problem is one in which we find the configuration that violates the fewest clauses. Note that if

Ka ≤ 2, then the problem is polynomial; however, if Ka ≤ K with K ≥ 3, then the problem is NP-complete.

1.4.2 Random K-SAT threshold

An instance of a random K-SAT has only clauses of length K. SATN (K,M) denotes the random K-SAT

ensemble with N as the number of variables and M as the number of clauses. A formula in SATN (K,M)

with M clauses of size K is selected randomly from the

(
N

K

)
2K .

Definition 1.26. A parameter for the random K-SAT ensemble is the clause density α := M/N .

An instance of the ensemble SATN (K,α) is generated by selecting each of the

(
N

K

)
2K possible clauses

independently with probability αN2−K/

(
N

K

)
. PN (K,α) is the probability that a randomly generated

formula is satisfiable. As α → 0, the probability goes to 1 and as α → ∞, the probability goes to 0.

Simulations indicate an existence of a phase transition at some finite value αsat(K). So, for α < αsat(K), a

random K-SAT formula is SAT with PN (K,α)→ 1 as N →∞, and for α > αsat(K), the formula is UNSAT

with PN (K,α) → 1 as N → ∞. The existence of such a phase transition has been shown for the random

2-SAT at the critical clause density αsat(2) = 1 and the proof by bicycles, found in [MM09], is a result of

[Go96] and is presented below.
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Theorem 1.27. Let PN (K = 2, α) be the probability for a SATN (K = 2,M) random formula to be SAT.

Then,

(1.28) lim
N→∞

PN (K = 2, α) =


1 if α < 1,

0 if α > 1.

Proof. We first show that a random formula is SAT with high probability for α < 1. We define a directed

graph D(F ) of some formula F by associating each of the 2N literals with some vertex. Whenever there

is a clause such as x1 ∨ x2, if x1 = 1, then x2 = 1, and if x2 = 0, then x1 = 0. We represent these cases

graphically by drawing a directed edge from x1 to x2 and an undirected edge from x2 to x1. Then, F is

UNSAT iff there exists some index i ∈ {1, · · · , N} such that D(F ) contains a directed path from xi to xi

and from xi to xi.

Define a bicycle of length s as a path (u,w1, w2, · · · , ws, v), where the wi’s are literals on s distinct variables,

and u, v ∈ {w1, · · · , ws, w1, · · · , ws}. From above, if a formula is UNSAT, then there exists a cycle containing

two literals xi and xi for some i ∈ {1, · · · , N}. Since the probability that there exists a bicycle in D(F ),

denoted P(A), is bounded above by the expected number of bicycles, we have

(1.29) P(F is UNSAT) ≤ P(A) ≤
N∑
s=2

Ns2s(2s)2Ms+1

(
1

4
(
N
2

))s+1

,

where s is the size of the bicycle. The sum (1.29) is O(1/N) when α < 1.

The proof for that the random formula is UNSAT with high probability for α > 1 follows from Theorem

(1.34). �

Upper bounds on the satisfiability threshold can be obtained by using the first moment method: let U(F )

be a random variable such that

(1.30) U(F ) =


0 if F is UNSAT,

≥ 1 otherwise.

Thus, for any formula F , we have

(1.31) P(F is SAT) ≤ EU(F ).

The choice of U(F ) = Z(F ), where Z(F ) is the number of SAT assignments is ideal since EU(F ) vanishes as

N →∞ for α large enough. Since the probability that an assignment is SAT is uniform on all the possible
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assignments,

(1.32) EZ(F ) = 2N (1− 2−K)M = exp
[
N
(
ln 2 + α ln(1− 2−K)

)]
.

So, if α > α∗(K), where

(1.33) α∗(K) := − ln 2

ln(1− 2−K)
,

EZ(F ) is exponentially small at large N and so P(F is SAT) vanishes as N → ∞. We restate the result

from [FP83], but found in [MM09], below as the following theorem.

Theorem 1.34 (FP83). If α > α∗(K), then lim
N→∞

P(F is SAT ) = 0, and so, α
(N)
sat (K) ≤ α∗(K).

As simulations suggest that there exists a phase transition in the random K-SAT between the SAT and

UNSAT phases for any K ≥ 2, we have the following conjecture.

Conjecture 1.35 (Satisfiability threshold conjecture). For any K ≥ 2, there exists a threshold αsat(K) with

(1.36) lim
N→∞

PN (K,α) =


1 if α < αsat(K),

0 if α > αsat(K).

As mentioned previously, the conjecture has been proven for K = 2. The theorem below from Friedgut

[Fr99] strongly supports the case for the conjecture and all that remains to prove the satisfiability threshold

conjecture is that α
(N)
sat (K)→ αsat(K) as N →∞.

Theorem 1.37 (Friedgut’s Theorem). There exists a sequence of α
(N)
sat (K) such that, for any ε > 0,

(1.38) lim
N→∞

PN (K,αN ) =


1 if αN < α

(N)
sat (K)− ε,

0 if αN > α
(N)
sat (K) + ε.

In section 3, we clarify the satisfiability threshold conjecture explore some of the recent developments on the

bounds for the conjecture.

9



2 Mean-field Theory of Spin Glasses

2.1 Sherrington-Kirkpatrick model

Suppose we have the space of 2N configurations of N Ising spins that take values {±1}.

Definition 2.1. The energy function, or the Hamiltonian, of the SK model is given by

(2.2) E(σ) = −
∑
i<j

Jijσiσj − h
N∑
i=1

σi,

where the first sum is over all

(
N

2

)
= N(N − 1)/2 distinct pairs with 1 ≤ i < j ≤ N , and h is an external

magnetic field that interacts with the spins.

Definition 2.3. The interactions Jij ’s are i.i.d. coupling random variable ∼ N (J0/N, J
2/N) with density

function

(2.4) P (Jij) =

√
N

2πJ2
exp

{
− N

2J2

(
Jij −

J0
N

)2
}
.

Some others let Jij ∼ N (0, 1/N) but this is merely a technicality and the result is not affected. The SK

model is an infinite-range interaction (mean-field) model as there is no notion of Euclidean distance

between the positions of the spins and it is a fully connected model since each spin interacts directly with

all the other spins [MM09]. The SK model is the closest to the original spin glass problem.

2.2 The replica derivation

Note that a sample or instance of the SK model is given by one of the values of its 2N energy levels,

E1, · · · , E2N , and from (1.5), the partition function is

(2.5) Z =

2N∑
i=1

exp (−βEi) .
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Assuming that n is an integer, the first step of the replica trick involves finding an expression for Zn

Zn =

n∏
a=1

 2N∑
ia=1

exp (−βEia)

 =

2N∑
i1=1

· · ·
2N∑
in=1

exp (−β(Ei1 + · · ·+ Ein))(2.6)

=
∑
{σa

i }

exp

(
−β

(
n∑
a=1

Eia

))
,(2.7)

which is the partition function of a new system with configuration given by the n-tuple (i1, · · · , in) with

ia ∈ {1, · · · , 2N} and the sum
∑
{σa

i }

is over the 2Nn different configurations. This sum is will be shortened

henceforth by the trace representation Tr. Using our expression for the energy function (2.2) gives us

Zn = Tr exp

−β
− n∑

a=1

∑
i<j

Jijσ
a
i σ

a
j + h

N∑
i=1

σai

(2.8)

= Tr

∏
i<j

exp

{
βJij

n∑
a=1

σai σ
a
j

}[ N∏
i=1

exp

{
βh

n∑
a=1

σai

}] .(2.9)

2.2.1 Replica average of the partition function

To proceed with our replica calculation, we take the expectation of the new partition function (2.9):

EZn (i)
= Tr

∏
i<j

E

[
exp

{
βJij

n∑
a=1

σai σ
a
j

}]
N∏
i=1

exp

{
βh

n∑
a=1

σai

}(2.10)

(ii)
= Tr


∏
i<j

exp


βJ0
N

n∑
a=1

σai σ
a
j +

[
βJ

n∑
a=1

σai σ
a
j

]2
2N


N∏
i=1

exp

{
βh

n∑
a=1

σai

}(2.11)

(iii)
= Tr exp

βJ0N ∑
i<j

n∑
a=1

σai σ
a
j +

β2J2

2N

∑
i<j

(
n∑
a=1

σai σ
a
j

)2

+ βh

N∑
i=1

n∑
a=1

σai

 ,(2.12)

where (i) is from the linearity of expectation and the independence of the Jij ’s, (ii) is from the moment

generating function of the normal distribution, and (iii) is from the property of exponentiation.

With a little algebra, we have the following expression for the sum

(2.13)

(
n∑
a=1

σai σ
a
j

)2

=

n∑
a=1

n∑
b=1

σai σ
a
j σ

b
iσ
b
j = n+ 2

∑
a<b

σai σ
a
j σ

b
iσ
b
j ,

with the n from that (σai )2(σbj)
2 = 1 and the sum over ordered pairs from the symmetry of the expression.
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Using (2.13) and some manipulation gives us the following expression:

β2J2

2N

∑
i<j

(
n∑
a=1

σai σ
a
j

)2

=
β2J2

2N
· N(N − 1)n

2
+
β2J2

2N
2
∑
a<b

∑
i<j

σai σ
a
j σ

b
iσ
b
j(2.14)

=
β2J2(N − 1)n

4
+
β2J2

2N

∑
a<b

N∑
i,j=1

σai σ
a
j σ

b
iσ
b
j −

∑
a<b

N∑
i=1

σai σ
a
i σ

b
iσ
b
i

(2.15)

=
β2J2Nn

4
− β2J2n

4
+
β2J2

2N

∑
a<b

(
N∑
i=1

σai σ
b
i

)2

− β2J2n(n− 1)

4
.(2.16)

Similarly, we have

βJ0
N

∑
i<j

n∑
a=1

σai σ
a
j =

βJ0
2N

 n∑
a=1

N∑
i,j=1

σai σ
a
j −

n∑
a=1

N∑
i=1

σai σ
a
i

(2.17)

=
βJ0
2N

n∑
a=1

(
N∑
i=1

σai

)2

− βJ0n

2
.(2.18)

Since the constant terms (those without N) in (2.16) and (2.18) are irrelevant to the leading exponential

order in the large N -limit, we discard them henceforth in our calculations, replacing =, the equal sign, with

=̇, the notation for the leading exponential order. Thus, we have

EZn=̇Tr exp

βJ02N

n∑
a=1

(
N∑
i=1

σai

)2

+
β2J2Nn

4
+
β2J2

2N

∑
a<b

(
N∑
i=1

σai σ
b
i

)2

+ βh

N∑
i=1

n∑
a=1

σai

(2.19)

=̇ exp

(
β2J2Nn

4

)
Tr exp

βJ02N

n∑
a=1

(
N∑
i=1

σai

)2

+
β2J2

2N

∑
a<b

(
N∑
i=1

σai σ
b
i

)2

+ βh

N∑
i=1

n∑
a=1

σai

 .(2.20)

Using the property of exponentiation, we have

(2.21)

EZn=̇ exp

(
β2J2Nn

4

)
Tr exp

{
βh

N∑
i=1

n∑
a=1

σai

}
n∏
a=1

exp

βJ02N

(
N∑
i=1

σai

)2
∏
a<b

exp

β2J2

2N

(
N∑
i=1

σai σ
b
i

)2


2.2.2 Reduction by Gaussian integral

Lemma 2.22. From the distribution of the Gaussian N (µ, σ2) random variable,

(2.23)

∫ ∞
−∞

1

2π
√
σ2
e−(x−µ)/(2σ

2)dx,
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we can derive the following identity:

(2.24)

√
b

2π

∫ ∞
−∞

e−bx
2/2+abxdx = exp

(
ba2

2

)
.

From lemma 2.22, letting a =

N∑
i=1

σai /N , b = βJ0N , and the integration variables be ma, a ∈ {1, · · · , n},

n∏
a=1

exp

βJ0N2

(
N∑
i=1

σai /N

)2
 =

n∏
a=1

[√
βJ0N

2π

∫ ∞
−∞

exp

{
−βJ0Nm

2
ab

2
+ βJ0ma

N∑
i=1

σai

}
dma

]

=

∫ ( n∏
a=1

dma

√
βJ0N

2π

)
exp

{
−βJ0N

2

n∑
a=1

m2
a

}
exp

{
βJ0

n∑
a=1

(
N∑
i=1

σai

)
ma

}
,(2.25)

where we instead use the integral notation

∫
dxf(x) instead of

∫
f(x)dx for convenience. In this unusual

integral notation, we take

∫ (∏
i

dxic

)∏
i

f(xi) to be

∫ ∏
i

dxicf(xi), where c is some constant.

Similarly, letting a =

N∑
i=1

σai σ
b
i /N , b = β2J2N , and the integration variables be Qab, 1 ≤ a < b <≤ n,

∏
a<b

exp

β2J2N

2

(
N∑
i=1

σai σ
b
i /N

)2
 =

∏
a<b

[√
β2J2N

2π

∫ ∞
−∞

exp

{
−β

2J2NQ2
ab

2
+ β2J2

N∑
i=1

σai σ
b
iQab

}
dQab

]

=

∫ (∏
a<b

dQab

√
β2J2N

2π

)
exp

{
−β

2J2N

2

∑
a<b

Q2
ab

}
exp

{
β2J2

∑
a<b

N∑
i=1

σai σ
b
iQab

}
.(2.26)

Substituting (2.25) and (2.26) into (2.21) gives us

EZn=̇ exp

(
β2J2Nn

4

)∫ ( n∏
a=1

dma

√
βJ0N

2π

)∫ (∏
a<b

dQab

√
β2J2N

2π

)
(2.27)

· exp

{
−

(
βJ0N

2

n∑
a=1

m2
a +

β2J2N

2

∑
a<b

Q2
ab

)}

· Tr exp

{
β

n∑
a=1

N∑
i=1

(h+ J0ma)σai + β2J2
∑
a<b

N∑
i=1

σai σ
b
iQab

}
.

Lemma 2.28. If g is some arbitrary function, we have that

(2.29) Tr exp

{
N∑
i=1

g(σai )

}
= exp

{
N ln tr exp g(σa)

}
,

where the trace tr =
∑
{σa}

is over all states of a single replicated spin σa [FH93].
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Using the relation (2.29), we have that

EZn=̇

∫ ( n∏
a=1

dma

√
βJ0N

2π

)∫ (∏
a<b

dQab

√
β2J2N

2π

)
exp

{
NG(Q,m)

}
,(2.30)

where G(Q,m) is a function of n(n− 1)/2 + n variables Qab, 1 ≤ a < b ≤ n, and ma, 1 ≤ a ≤ n, with

(2.31)

G(Q,m) :=
β2J2n

4
− βJ0

2

n∑
a=1

m2
a−

β2J2

2

∑
a<b

Q2
ab + ln

(
tr exp

{
β

n∑
a=1

(h+ J0ma)σa + β2J2
∑
a<b

σaσbQab

})
.

2.2.3 Method of steepest descent

The method of steepest descent (or the saddle-point method) approximates an integral in roughly the direc-

tion of the steepest descent. The integral to be approximated in (2.30) is in the form of

(2.32)

∫ b

a

eλg(z)dz,

where a and b are some limits of integration and λ is large.

Because the integral will be dominated by the highest saddle point, a < z0 < b, when the function g(z) is

near z0, we have, from the Taylor series expansion,

(2.33) g(z) ≈ g(z0) +
1

2
g′′(z0)(z − z0)2,

where the first derivative term is zero since we choose z0 such that g′(z0) = 0.

Lemma 2.34. The integral in (2.32) can be approximated as such

(2.35)

∫ b

a

h(z)eλg(z)dz ≈

√
2π

λ |g′′(z0)|
h(z0)eλg(z0),

as λ→∞ if g′′(z0) < 0 and h is positive.

At the extremum of G(Q,m), namely (Q∗,m∗) which we will determine later, we can approximate the

integral (2.30) for large N using the saddle-point method (2.35)

EZn|(Q∗,m∗) ≈ exp {NG(Q∗,m∗)}(2.36)

≈ 1 + n

{
β2J2N

4
− βJ0N

2n

n∑
a=1

m2
a −

β2J2N

2n

∑
a<b

Q2
ab +

1

n
ln
(

tr eL(Q,m)
)} ∣∣∣∣∣

(Q∗,m∗)

.(2.37)

14



where the function L(Q,m) of Q and m is defined as

(2.38) L(Q,m) := β

n∑
a=1

(h+ J0ma)σa + β2J2
∑
a<b

σaσbQab,

and in taking the limit n → 0 and letting N < ∞ be large, we obtain the last approximation (2.37) from

the tangent line approximation of eλx near x = 0:

(2.39) eλx ≈ 1 + λx.

With the definition of free entropy (1.8) and the replica identity (1.15), we have the following expression for

free energy

−β[f ] = lim
n→0

EZn − 1

nN
(2.40)

= lim
n→0

{
β2J2

4
− βJ0

2n

n∑
a=1

m2
a −

β2J2

2n

∑
a<b

Q2
ab +

1

n
ln
(

tr eL(Q,m)
)} ∣∣∣∣∣

(Q∗,m∗)

,(2.41)

where [f ] =
f

N
is the configurational average of the free energy.

To estimate the integral (2.30) at large N via the saddle-point method, we differentiate the function G(Q,m)

(2.31) with respect to its arguments and set it equal to zero. For all a < b, we have that

∂G

∂Qab
= −β2J2Qab +

tr β2J2
(
σaσb

)
exp

{
β

n∑
a=1

(h+ J0ma)σa + β2J2
∑
a<b

σaσbQab

}

tr exp

{
β

n∑
a=1

(h+ J0ma)σa + β2J2
∑
a<b

σaσbQab

} = 0,(2.42)

which implies

(2.43) Qab = 〈σaσb〉n.

Definition 2.44. We introduce here the notation

(2.45) 〈f(σ)〉n :=
1

Z(Qab,ma)
tr f(σ) exp

{
β

n∑
a=1

(h+ J0ma)σa + β2J2
∑
a<b

σaσbQab

}
,

(2.46) Z(Qab,ma) := tr exp

{
β

n∑
a=1

(h+ J0ma)σa + β2J2
∑
a<b

σaσbQab

}
,

where f(σ) = f(σ1, · · · , σn) is any function.

15



Similarly, we have

∂G

∂ma
= −βJ0ma +

tr (βJ0σ
a) exp

{
β

n∑
a=1

(h+ J0ma)σa + β2J2
∑
a<b

σaσbQab

}

tr exp

{
β

n∑
a=1

(h+ J0ma)σa + β2J2
∑
a<b

σaσbQab

} ,(2.47)

which implies that

(2.48) ma = 〈σa〉n.

We have the following second partial derivatives

∂G

∂Q2
ab

∣∣∣∣
Qab=〈σaσb〉n

= −β2J2 +

〈(
β2J2σaσb

)2〉
n
Z(Qab,ma)−

〈
β2J2σaσb

〉2
n

(Z(Qab,ma))
2

(Z(Qab,ma))
2

∣∣∣∣
Qab=〈σaσb〉n

= −β2J2,(2.49)

∂G

∂m2
a

∣∣∣∣
ma=〈σa〉n

= −βJ0 +

〈
(βJ0σ

a)
2
〉
n
Z(Qab,ma)− 〈βJ0σa〉2n (Z(Qab,ma))

2

(Z(Qab,ma))
2

∣∣∣∣
ma=〈σa〉n

= −βJ0.(2.50)

We can also confirm from taking the partial derivatives of (2.41) our results in (2.43) and (2.48).

2.3 Replica symmetric solution

It is natural (but näıve) to assume replica symmetry (RS), Qab = q for a 6= b, Qab = q for a = b, and

ma = m, and derive a replica-symmetric solution. Changing the sums over a < b to sums over a 6= b by

symmetry and substituting our values for Qab and ma into the free energy expression (2.41) give us, before

the limit n→ 0,

−β[f ]RS =
β2J2

4
− βJ0

2n
nm2 − β2J2

4n
(n(n− 1)q2) +

1

n
ln tr eL(QRS,mRS),(2.51)

where L(QRS,mRS) is simply

(2.52) L(QRS,mRS) := β

n∑
a=1

(h+ J0m)σa +
β2J2q

2

∑
a6=b

σaσb.

16



With a little algebra, we have that

(2.53)
∑
a6=b

σaσb =

(
n∑
a=1

σa

)2

−
n∑
a=1

σaσa,

and so L(QRS,mRS) can be rewritten as

(2.54) L(QRS,mRS) = β

n∑
a=1

(h+ J0m)σa +
β2J2q

2

(
n∑
a=1

σa

)2

− β2J2qn

2

The last term can be simplified using the Gaussian reduction identity (2.24) with the integration variable as

z, a =

n∑
a=1

σa, and b = β2J2q

ln tr eL(QRS,mRS) = ln tr

√
β2J2q

2π

∫ ∞
−∞

dz exp

{
−β

2J2q

2
z2 +

(
n∑
a=1

σa

)
β2J2qz + β

n∑
a=1

(h+ J0m)σa − n

2
β2J2q

}

= ln

∫ ∞
−∞

dz

(
e−z

2/2

√
2π

)
exp

{
−n

2
β2J2q

}
tr

n∏
a=1

exp
{

(βJ
√
qz + βh+ J0m)σa

}
(2.55)

= ln

∫ ∞
−∞

dz

(
e−z

2/2

√
2π

)
exp

{
−n

2
β2J2q

} n∏
a=1

tr exp
{

(βJ
√
qz + βh+ J0m)σa

}
,(2.56)

where in (2.55) we replaced β2J2qz with z, which does not change the expression as β2J2q > 0 and the

limits of integration are from −∞ to ∞ and in (2.56) we used the property of exponentiation to interchange

the order of tr

n∏
a=1

. Since the single replica spin can take one of two values σa ∈ {±1}, we have

= ln

∫ ∞
−∞

dz

(
e−z

2/2

√
2π

)
exp

{
−n

2
β2J2q

} n∏
a=1

2 cosh
{

(βJ
√
qz + βh+ J0m)σa

}
= ln

∫ ∞
−∞

Dz exp
{
n ln

[
2 cosh

(
βJ
√
qz + βh+ βJ0m

)]
− n

2
β2J2q

}
= ln

(
1 + n

∫ ∞
−∞

Dz ln
(

2 cosh
(
βH̃(z)

))
− n

2
β2J2q +O(n2)

)
,(2.57)

where the hyperbolic function cosh(z) = (ez + e−z) /2, Dz = dz e−z
2/2/
√

2π is the Gaussian measure,

H̃(z) = J
√
qz + h+ J0m, and O(· · · ) is the big O notation. In the last equality (2.57), we used the Taylor

expansion ez = 1 + z +O(z2). Using our expression (2.57) in (2.51) and taking the limit n→ 0 give us

(2.58) − β[f ]RS =
β2J2

4
(1− q)2 − βJ0m

2

2
+

∫
Dz ln

(
2 cosh

(
βH̃(z)

))
,
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where in applying L’Hôpital’s rule, we have the limit

(2.59) lim
x→0

ln(1 + ax+ bx2)

x
= lim
x→0

(
a+ 2bx

1 + ax+ bx2

)
1

= a.

Solving the extremization condition for free energy (2.58) with respect to q gives us

0 =
β2J2

2
(q − 1) +

∫
Dz

(
2 sinh(βH̃(z))

2 cosh(βH̃(z))

)
βJz

2
√
q

(2.60)

=
β2J2

2
(q − 1)− tanh(βH̃(z))e−z

2/2βJ/
√

8πq

∣∣∣∣+∞
−∞

+

∫
dze−z

2/2βJ sech2(βH̃(z))βJ
√
q/
√

8πq(2.61)

=
β2J2

2
q − β2J2

2
+

∫
Dzβ2J2 sech2(βH̃(z))/2,(2.62)

by integration by parts using u = tanh(βH̃(z)) and dv = dze−z
2/2βJz/

√
8πq and from that e−z

2/2 is an

even function of z that decays to zero. This implies

(2.63) q = 1−
∫

Dz sech2
(
βH̃(z)

)
=

∫
Dz tanh2

(
βH̃(z)

)
Solving the extremization condition for free energy (2.58) with respect to m gives us

(2.64) 0 = −βJ0m+

∫
Dz

(
2 sinh(βH̃(z))

2 cosh(βH̃(z))

)
βJ0,

which implies

(2.65) m =

∫
Dz tanh

(
βH̃(z)

)
.

2.3.1 Phase diagram

The behavior of the solutions (2.63) and (2.65) depends on the parameters β and J0. For simplicity, suppose

that the external magnetic field h = 0 for the rest of the section. If the distribution of the coupling random

variable Jij is symmetric, then J0 = 0 and H̃(z) = J
√
qz. So, tanh(βH̃(Z)) is an odd function of z. Thus,

the magnetization m in (2.63) is 0 and there is no ferromagnetic phase. The free energy is now

−β[f ]RS =
1

4
β2J2(1− q)2 +

∫
Dz ln

(
2 cosh (βJ

√
qz)
)

(2.66)

=
1

4
β2J2 − 1

2
β2J2q +

1

4
β2J2q2 + ln 2 +

1

2
β2J2q − 1

4
β4J4q2 +O(q3)(2.67)

=
1

4
β2J2 + ln 2 +

1

4
β2J2q2

(
1− q2

)
+O(q3).(2.68)
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Lemma 2.69. We used the following asymptotic expansion below in (2.67) to obtain an expression

∫ ∞
−∞

1√
2π
e−z

2/2 ln cosh(βJ
√
qz)dz = −

N∑
n=1

B2n

n!n
2n−1

(
1− 22n

)
(βJ
√
q)

2n
+O

(
q2N+2

)
,(2.70)

where B2n =
(−1)n+12(2n)!

(2π)2n
ζ(2n) for n ≥ 1 is the Bernoulli numbers and ζ(2n) =

∞∑
k=1

1

k2n
is the Riemann

zeta function.

The Landau theory implies that the critical point is determined by the condition of a vanishing coefficient

of the second order term q2 and so the spin glass transition exists at T = J =: Tf [N08].

Figure 1. Phase diagram of the SK model. The dashed line is the boundary between the ferro-
magnetic (F) and spin glass (SG) phases and exists only under the ansatz of replica symmetry.
The replica-symmetric solution is unstable below the AT line, and a mixed phase (M) emerges
between the spin glass and ferromagnetic phases. The system is in the paramagnetic phase (P) in
the high-temperature region [N08].

The boundary between the spin glass and ferromagnetic phases is given numerically by solving (2.63) and

(2.65) and we can depict the phase diagram as shown above in figure 1 [N08].

2.3.2 Negative entropy

We see that the assumption for replica symmetry fails at low temperatures as the ground-state entropy for

J0 = 0 is the negative value −1/2π. Since lim
x→∞

tanh2(x) = 1, we have q → 1 as 1/β = T → 0, and assume
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that q = 1− aT , with a > 0 for small T > 0. To check this assumption, we have, for β →∞,∫
Dz sech2(βJz) =

1

βJ

∫
Dz

d

dz
tanh(βJz)(2.71)

→ 1

βJ

∫
Dz {2δ(z)}(2.72)

=

√
2

π

T

J
.(2.73)

Thus, the assumption that q = 1 − aT is justified with a =

√
2

π

1

J
. Substituting q = 1 − aT into the

expression for free energy (2.66) gives us, for large β,

−β[f ]RS =
1

4
β2J2a2T 2 + 2

∫ ∞
0

Dz ln
(
eβJ
√
qz
(

1 + e−2βJ
√
qz
))

(2.74)

≈ J2

4

2

J2π
+ 2

∫ ∞
0

Dz
(
βJ
√
qz + ln

(
1 + e−2βJ

√
qz
))

(2.75)

≈ 1

2π
+

2βJ(1− aT/2)√
2π

+ 2

∫ ∞
0

Dz e−2βJ
√
qz,(2.76)

where we changed

∫ ∞
−∞

Dz to 2

∫ ∞
0

Dz since cosh(z) is an event function of z and used the approximation

ln(1 + z) ≈ z for small z.

−β[f ]RS ≈
1

2π
+

2βJ

(
1−

√
2

π

T

2J

)
√

2π
+ exp

{
2β2J2

(
1−

√
2

π

T

J

)}
(2.77)

= − 1

2π
+

√
2

π
βJ.(2.78)

So, we have the following expression for the free energy in low temperature

(2.79) [f ]RS ≈
T

2π
−
√

2

π
J,

with the ground-state entropy as − 1

2π
and the ground-state energy −

√
2

π
J .

Although the interchange of the limits n→ 0 and N →∞ to derive the free energy (2.41) using the method

of steepest descent may have been the source of the negative entropy, we see in section 2.6 that the problem

lies in the replica method itself.
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2.4 Replica symmetry breaking

The free energy expression derived through the replica symmetry ansatz (RS ansatz) led to an erroneous

negative entropy at low temperatures. So, it seems logical to “break” the replica symmetry and proceed

with an approach in which the order parameter Qab possibly depends on the replica indices a and b and ma

on the replica index a.

2.4.1 The Parisi Ansatz

The n× n matrix {Qab} for the replica-symmetric solution had Qab = q for a 6= b and 0 along the diagonals

as such

(2.80) {Qab} =



0 q · · · q

q 0 q

...
. . .

...

q q · · · 0


.

To start the first step of the replica symmetry breaking (1RSB), let m1 ≤ n be a positive integer that divides

the replicas into n/m1 block(s). A “diagonal” block, which contains the main diagonal entries, has 0’s along

its diagonals and q1 as its off-diagonal entries while an “off-diagonal” block, which does not contain the main

diagonal entries, has q0 as its entries as such

(2.81)



 q1 q1 q1
q1  q1 q1
q1 q1  q1
q1 q1 q1 

q0 q0 q0 q0
q0 q0 q0 q0
q0 q0 q0 q0
q0 q0 q0 q0

q0 q0 q0 q0
q0 q0 q0 q0
q0 q0 q0 q0
q0 q0 q0 q0

 q1 q1 q1
q1  q1 q1
q1 q1  q1
q1 q1 q1 


Figure 2. 8× 8 Parisi matrix with one step RSB (n = 8,m1 = 4).

Then, in the second step of the replica symmetry breaking, the off-diagonal blocks remain the same, but

the diagonal blocks are further divided into m1/m2 blocks. Within the subdivided blocks, the off-diagonal

blocks remain the same while the diagonal blocks have q2 instead of q1 in their off-diagonal entries as such

The numbers n ≥ m1 ≥ m2 ≥ · · · ≥ 1 are integers and we define the function q(x) as

(2.83) q(x) = qi for mi+1 ≤ x ≤ mi.
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(2.82)



 q2
q2 

q1 q1
q1 q1

q1 q1
q1 q1

 q2
q2 

q0 q0
q0 q0

q0 q0
q0 q0

q0 q0
q0 q0

q0 q0
q0 q0

q0 q0
q0 q0

q0 q0
q0 q0

q0 q0
q0 q0

q0 q0
q0 q0

 q2
q2 

q1 q1
q1 q1

q1 q1
q1 q1

 q2
q2 


Figure 3. 8× 8 Parisi matrix with two step RSB (n = 8,m1 = 4,m2 = 2).

Following the replica method, we take the limit n→ 0 and now have

(2.84) 0 ≤ m1 ≤ m2 ≤ · · · ≤ 1 for 0 ≤ x ≤ 1,

treating 0 ≤ q(x) ≤ 1 as a continuous function.

2.4.2 One-step replica symmetry breaking

With our construction of the first step replica symmetry breaking, we now have the following expression

∑
a<b

Qabσ
aσb =

1

2

q0
(

n∑
a=1

σa

)2

+ (q1 − q0)

n/m1∑
block

(
m1∑

a∈block

σa

)2

− nq1

 ,(2.85)

where the first sum fills all the entries of {Qab} as q0, the second sum replaces all the entries q0 in the

diagonal block with q1, and the last term removes the entries q2 from the main diagonal and makes the

diagonal entries zero [N08]. With the same approach of adding and subtracting terms, the sum with the

quadratic term of Qab from (2.41) is

(2.86) lim
n→0

1

n

∑
a6=b

Q2
ab = lim

n→

1

n

(
n2q20 − (n/m1)m2

1(q21 − q20)− nq21
)

= m1(q21 − q20)− q21 .

Substituting our expression (2.85) in the function L(Q,m) (2.38), we have

(2.87) L(QRSB,mRSB) = β

n∑
a=1

(h+ J0m)σa +
β2J2

2

q0
(

n∑
a=1

σa

)2

+ (q1 − q0)

n/m1∑
block

(
m1∑

a∈block

σa

)2

− nq1


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We can simplify the last term using the Gaussian reduction identity (2.24) with the integration variable u,

a1 =

n∑
a=1

σa, and b1 = β2J2q0 and the integration variable v, a2 =

m1∑
a∈block

σa, and b2 = β2J2(q1 − q0).

ln tr eL(QRSB,mRSB) = ln tr

∫ ∞
−∞

√
β2J2q0

2π
du

∫ ∞
−∞

n/m1∏
block

√
β2J2(q1 − q0)

2π

 dv(2.88)

· exp

{
−β2J2q0u

2/2 +

(
n∑
a=1

σa

)
β2J2q0u+ β

n∑
a=1

(h+ J0m)σa − n

2
β2J2q1

}

· exp


n/m1∑
block

(
−β2J2(q1 − q0)v2/2 +

(
m1∑

a∈block

σa

)
β2J2(q1 − q0)v

)
= −n

2
β2J2q1 + ln 2 +

1

m1

∫ ∞
−∞

Du

{
ln

∫ ∞
−∞

Dv coshm1 η(u, v)

}
,(2.89)

where the derivation utilizes the same methods as was used in the RS ansatz.

Definition 2.90. We define the function

(2.91) η(u, v) = β
(
J
√
q0u+ J

√
q1 − q0v + J0m+ h

)
.

Using our two expressions above (2.86) and (2.89) for free energy (2.41), we have

(2.92)

− βf1RSB = −βJ0
2
m2 − β2J2

4

(
1−m1(q21 − q20) + q21 − 2q1

)
+ ln 2 +

1

m1

∫
Du ln

(∫
Dv coshm1 η(u, v)

)
,

where we let ma = m be replica symmetric.

The parameters m,m1, q0, and q1 are all between 0 and 1. Solving the extremization conditions of free

energy (2.92) with respect to m, q0, and q1 gives the following [N08]

m =

∫
Du

∫
Dv coshm1 η(u, v) tanh η(u, v)∫

Dv coshm1 η(u, v)
(2.93)

q0 =

∫
Du

(∫
Dv coshm1 η(u, v) tanh η(u, v)∫

Dv coshm1 η(u, v)

)2

(2.94)

q1 =

∫
Du

∫
Dv coshm1 η(u, v) tanh2 η(u, v)∫

Dv coshm1 η(u, v)
.(2.95)

When J0 = h = 0, ν(u, v) = β(J
√
q0u+J

√
q1 − q0v) is an odd function of u and v, which implies m = 0 from

(2.93). The order parameter q1 can be positive when T < Tf = J because the first term in the expansion

(2.95) is β2J2q [N08]. Thus, the RS and 1RSB ansatz result in the same transition point.
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2.5 Full replica symmetry breaking solution

We have that the entropy per spin with J0 = 0 and T = 0 changes from − 1

2π
≈ −0.16 in the RS solution to

approximately −0.01 in the 1RSB solution [N08]. This seems to indicate that the symmetry breaking ansatz

leads us towards a stable solution and that we should make further steps in our replica symmetry breaking.

Thus, we present the expression free energy (2.41) using a full replica symmetry breaking solution (FRSB)

found in [N08] and the interested reader should refer to Appendix B of [N08] for a complete derivation. For

simplicity, we will only consider the case J0 = 0. We have the following expression for the K-step RSB

(K-RSB).

∑
a 6=b

qlab = ql0n
2 + (ql1 − ql0)m2

1 ·
n

m1
+ (ql2 − ql1)m2

2 ·
m1

m2
· n
m1

+ · · · − qlK · n(2.96)

= n

K∑
j=0

(mj −mj+1)qlj ,(2.97)

where l is some integer, m0 = n, and mK+1 = 1. As n→ 0, we can replace mj −mj+1 → −dx, giving us

(2.98)
1

n

∑
a6=b

qlab →
∫ 1

0

ql(x)dx.

The internal energy for J0 = 0, h = 0 can be evaluated by the partial derivative with respect to β of (2.41)

(2.99) U =
∂

∂β
(βf) = −βJ

2

2

(
1− 2

n

∑
a<b

Q2
ab

)
= −βJ

2

2

(
1 +

∫ 1

0

q2(x)dx

)
.

The magnetic susceptibility can be evaluated by the second partial derivative with respect to h of (2.41) as

(2.100) χ = β

1 +
1

n

∑
a6=b

Qab

→ β

(
1−

∫ 1

0

q(x)dx

)
.

The expression for free energy [N08] is given by

(2.101) βf = −β
2J2

4

{
1 +

∫ 1

0

q(x)dx− 2q(1)

}
−
∫

Duf0(0,
√
q(0)u),

where f0, with the initial condition f0(1, h) = ln (2 cosh(βh)) satisfies the Parisi equation

(2.102)
∂f0(x, h)

∂x
= −J

2

2

dq

dx

{
∂2f0
∂h2

+ x

(
∂f0
∂h

)2
}
.
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2.6 Possible issues with the replica trick

As we have discussed previously, to evaluate E lnZ, we employ the replica method (1.15). We first take n to

be integers to calculate the nth moment EZn and proceed to take the limit as n→ 0. A natural complication

arises as the two steps are not compatible with each other.

For the replica trick to hold, a sufficient condition of uniqueness of the moment problem is given by Carleman

(stated without proof).

Theorem 2.103. Let Z be a real random variable with moments mn = EZn such that

(2.104)

∞∑
n=1

m
−1/(2n)
2n =∞.

Then, any random variable with the same moments as Z is identically distributed to Z.

So, if the sum in (2.104) converges, then the distribution of Z is not necessarily determined by its integer

moments.

However, the SK model does not satisfy Carleman’s condition and there is yet to be a formal mathematical

justification for the use of the replica trick in solving models in statistical mechanics like the SK model

[Ta07].

In deriving the expression for free energy (2.41), we interchanged the limits n→ 0 and N →∞ as such

lim
N→∞

E lnZ

N
= lim
N→∞

lim
n→0

lnEZn

Nn
(2.105)

= lim
n→0

1

n

(
lim
N→∞

lnEZn

N

)
(2.106)

to apply the method of steepest descent.

Hemmen and Palmer prove the validity of interchanging the limits for the SK model and find that the

complications with SK model lies only in taking the moments from integers to real n [HP78].

3 Satisfiability

From Section 1, we found that the threshold for the 2-SAT is α∗ = 1 using the first moment method [FP83].

It is known that the K-SAT problem is NP-complete for K ≥ 3 [GJ79], which may explain the different
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behavior of the K = 2 and the K ≥ 3 problems. Following the construction of Monasson and Zecchina

[MZ97], we minimize the energy of the random K-SAT with respect to the number of unsatisfied clauses.

Let the Ising spin σi take value +1 if the logical variable xi = TRUE and value −1 if the logical variable

xi = FALSE. Let the coupling random variable Cli be +1 if the clause Cl includes xi, −1 if it includes xi,

and 0 if the clause includes neither xi nor xi. Since we have a clause length of K, we choose K non-zero Cli

from {Cl1, · · · , ClN} and assign ±1 randomly for these K random variables. So, we have that

(3.1) Cliσi =


+1 if σi = Cli,

0 if Cli = 0,

−1 if σi 6= Cli.

Thus, the K-SAT problem is satisfiable if there exists an assignment of xi’s (and thus a configuration σ)

such that there is at least one σi for which Cliσi = 1 for every l ∈ {1, · · · ,M}. Since a clause contains only

K logical variables, the minimum value of

N∑
i=1

Cliσi = −K, which is coincidentally the only case that the

clause Cl is unsatisfied. So, if

N∑
i=1

Cliσi > −K, then there exists at least one σi such that Cliσi = 1 and the

clause Cl is satisfied.

Definition 3.2. The energy function (or Hamiltonian) of the K-SAT problem is given by

(3.3) E(σ) =

M∑
l=1

δ

(
N∑
i=1

Cliσi,−K

)
,

where δ(i, j) is the Kronecker delta function with δ(i, j) = 1 if i = j and δ(i, j) = 0 if i 6= j. From this

construction, we see that the ground-state energy level E(σ) = 0 implies that the problem is satisfiable.

3.1 The replica derivation

Note that an instance of the satisfiability problem is given by one of the values of its

((
N

K

)
2K
)M

energy

levels, Ei, 1 ≤ i ≤
(
N

K

)M
2KM , and from (1.5), the partition function is

(3.4) Z =
∑
i

exp (−βEi) .
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Assuming that n is an integer, the first step of the replica trick involves finding an expression for Zn

Zn =

n∏
a=1

(∑
ia

exp (−βEia)

)
=
∑
i1

· · ·
∑
in

exp (−β(Ei1 + · · ·+ Ein))(3.5)

=
∑
{σa

i }

exp

(
−β

(
n∑
a=1

Eia

))
,(3.6)

which is the partition function of a new system with configuration given by the n-tuple (i1, · · · , in) with

ia ∈

{
1, · · · ,

(
N

K

)M
2KM

}
and the sum

∑
{σa

i }

is over the

(
N

K

)Mn

2KMn different configurations. This sum

will henceforth shortened by the trace representation Tr. Using our expression for the energy function (3.3)

gives us

Zn = Tr exp

{
−β

(
−

n∑
a=1

[
M∑
l=1

δ

(
N∑
i=1

Cliσ
a
i ,−K

)])}
(3.7)

= Tr

M∏
l=1

exp

{
−β

[
−

n∑
a=1

δ

(
N∑
i=1

Cliσ
a
i ,−K

)]}
.(3.8)

3.1.1 Replica average of the partition function

To proceed with our replica calculation, we take the expectation of the new partition function (3.8):

EZn = Tr
(
ζK(σ)M

)
(3.9)

where used the linearity of expectation and the independence of the l clauses and define ζK(σ) below.

Definition 3.10. As we will be working with the expectation in (3.9), we define the expression as such

(3.11) ζK(σ) := E exp

{
−β

[
−

n∑
a=1

δ

(
N∑
i=1

Ciσ
a
i ,−K

)]}
.

From (3.1), we can express the Kronecker delta function in (3.13) by a product of Kronecker delta functions

(3.12) δ

(
N∑
i=1

Ciσ
a
i ,−K

)
=

N∏
i=1,Ci 6=0

δ (σai ,−Ci) ,

where the product is only over i such that Ci takes a non-zero value.

So, substituting (3.12) into (3.13) and taking the configurational average over the Ci’s give us

(3.13) ζK(σ) =
1

2K

∑
Ci1=±1

· · ·
∑

CiK
=±1

1

NK

N∑
i1=1

· · ·
N∑

iK=1

exp

{
−β

[
−

n∑
a=1

K∏
k=1

δ
(
σaik ,−Cik

)]}
,
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where we ignore the term O(N−1) as it goes to zero in the large N limit.

Definition 3.14. We can rewrite the expression for ζK(σ) (3.13) in terms of {c(s)}s, which is the set of the

number of sites with a specific pattern in the replica space s = {s1, · · · sn}:

(3.15) Nc(s) :=

N∑
i=1

n∏
a=1

δ (σai , s
a) .

ζK(σ) (3.13) only depends on σ only through {c(s)} since if we choose −Cikσaik = sak.

Note from (3.1) that sak = −Cikσik = 1 iff Cik 6= σik and so δ (sak, 1) = δ (σak ,−Ck) over nonzero Ck. So,

(3.13) can be rewritten as

(3.16) ζK(σ) = ζk({c}) =
1

2K

∑
C1=±1

· · ·
∑

CK=±1

∑
s1

· · ·
∑
sK

c (−C1s1) · · · c (−CKsK) exp

{
−β

n∑
a=1

K∏
k=1

δ (sak, 1)

}
.

Since σai s
a
i = 1 iff δ (σai , s

a
i ) = 1 and σai s

a
i = −1 iff δ (σai , s

a
i ) = 0, we have

c(s) =
1

N

N∑
i=1

n∏
a=1

(
1 + σai s

a
i

2

)
(3.17)

=
1

2n

(
1

N

N∑
i=1

1 +
1

N

n∑
a=1

Qasa +
1

N

∑
a<b

Qabsasb + · · ·+ 1

N

∑
a<b<···<n

Qab···nsa · · · sn
)
.(3.18)

Definition 3.19. We define the multioverlaps Qab··· as

(3.20) Qab··· =
1

N

N∑
i=1

σai σ
b
i · · · ,

where we assume that the multioverlaps with an odd number of indices Qa = Qabc = · · · = 0 [MZ97].

Remark 3.21. We have the symmetry c(s) = c(−s) because the multioverlaps with odd number of indices

are zero. Thus, since Ci takes only values ±1, we may remove Ci from c(−Cisi) in the expression (3.16).

Remark 3.22. The average partition function (3.9) can now be simplified as

EZn =

∫ 1

0

∏
s

dc(s)e−NE0({c})Tr
∏
s

δ

{
c(s)− 1

N

N∑
i=1

n∏
a=1

δ (σai , s
a)

}
,(3.23)

E0 ({c}) := −α ln

 ∑
s1,··· ,sK

c(s1) · · · c(sK) ·
n∏
a=1

(
1 +

(
e−β − 1

) K∏
k=1

δ (sak, 1)

) ,(3.24)

where α = M/N is the clause density.
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The first term in (3.23) is a straightforward result of algebraic manipulation

exp (−NE0({c})) = exp

Nα ln

 ∑
s1,··· ,sK

c(s1) · · · c(sK) ·
n∏
a=1

(
1 +

(
e−β − 1

) K∏
k=1

δ (sak, 1)

)
(3.25)

=

 ∑
s1,··· ,sK

c(s1) · · · c(sK) ·
n∏
a=1

(
1 +

(
e−β − 1

) K∏
k=1

δ (sak, 1)

)
M

(3.26)

(†)
=

 ∑
s1,··· ,sK

c(s1) · · · c(sK) · exp

(
−β

n∑
a=1

K∏
k=1

δ (sak, 1)

)
M

,(3.27)

where in (†), we use the multiplicative property of exponentiation and that

(3.28) exp

(
−β

K∏
k=1

δ (sak, 1)

)
=


e−β when

K∏
k=1

δ (sak, 1) = 1,

1 when

K∏
k=1

δ (sak, 1) = 0.

The second term in (3.23) applies the constraint

(3.29)
∑
s

c(s) = 1

in the form of the Dirac delta, using the definition of c(s) in 3.14.

Remark 3.30. We will now simplify the second term in (3.23). Applying the trace operation over the spin

variables s gives the entropy

(3.31) Tr
∏
s

δ

{
c(s)− 1

N

N∑
i=1

n∏
a=1

δ (σai , s
a)

}
=

N !∏
s

(Nc(s))!
.
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Using the following approximation by Stirling

(3.32) ln(n!) ∼ n lnn− n,

yields

ln

 N !∏
s

(Nc(s))!

 ∼ ln
(
NN

)
−N −

∑
s

ln
[
(Nc(s))Nc(s)

]
+
∑
s

Nc(s)(3.33)

(†)
= ln

(
NN

)
−

∑
s

Nc(s) lnN + ln
[
c(s)Nc(s)

](3.34)

(‡)
= −

∑
s

ln[c(s)Nc(s)],(3.35)

where in (†) and (‡) we used that
∑
s c(s) = 1 since c(s) is the fraction of sites i, among the N possible

indices, such that σai = sa for all a ∈ {1, · · · , n}.

With a little algebraic manipulation, we have that

−
∑
s

ln[c(s)Nc(s)] = ln

∏
s

c(s)−Nc(s)

(3.36)

= −N ln

∏
s

c(s)c(s)

(3.37)

= −N
∑
s

c(s) ln c(s).(3.38)

Thus, our average partition function is now

EZn =

∫ 1

0

∏
s

dc(s) exp

−N
E0({c}) +

∑
s

c(s) ln c(s)

(3.39)

Applying the method of steepest descent (2.35) to the integral above (3.39)

EZn ≈ exp

−N
E0({c}) +

∑
s

c(s) ln c(s)

(3.40)

(†)
≈ 1−NE0({c})−N

∑
s

c(s) ln c(s),(3.41)

where in (†) we use the approximation eλx ≈ 1 + λx for small x.
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With the definition of free entropy (1.8) and the replica identity (1.15), we have the following expression for

configurational average of free entropy in the limit N,M →∞

−β[f ] = −βf
N

=
EZn − 1

N
(3.42)

= −E0 ({c}) +
∑
s

c(s) ln c(s).(3.43)

3.2 Replica-symmetric solution

The free entropy in (3.43) is extremized with respect to c(s) and similarly to the RS solution in the SK

model, we assume c(s) is symmetric under permutation of s1, · · · , sn to obtain the RS solution. We can

express c(s) in terms of the distribution function of the local magnetization P (m) as such

(3.44) c(s) =

∫ 1

−1
dmP (m)

n∏
a=1

1 +msa

2
.

Such a c(s) is replica-symmetric.

We show the following two remarks in the Appendix 4.1.

Remark 3.45. The extremization condition of the free energy (3.43) gives the following equation for P (m)

P (m) =
1

2π(1−m2)

∫ ∞
−∞

du cos

(
u

2
ln

(
1 +m

1−m

))
(3.46)

· exp

{
−αK + αK

∫ 1

−1

K−1∏
k=1

dmkP (mk) cos
(u

2
lnAK−1

)}
,

AK−1 = 1 +
(
e−β − 1

)K−1∏
k=1

1 +mk

2
.(3.47)

Remark 3.48. The free energy is expressed in terms of P (m) as

− βf
Nn

= ln 2 + α(1−K)

∫ 1

−1

K∏
k=1

dmkP (mk) lnAk(3.49)

+
αK

2

∫ 1

−1

K−1∏
k=1

dmkP (mk) ln(AK−1)− 1

2

∫ 1

−1
dmP (m) ln

(
1−m2

)
.
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3.2.1 The K = 1 case

When K = 1, A0 = e−β and (3.46) gives

(3.50) P (m) =
1

2π(1−m2)

∫ ∞
−∞

du cos

(
u

2
ln

(
1 +m

1−m

))
e−α+α cos(uβ/2).

Lemma 3.51. We can express the exponential cosine in (3.50) using the modified Bessel functions

(3.52) ez cos θ =

∞∑
k=−∞

Ik(z) cos(kθ),

where the kth modified Bessel function

(3.53) Ik(z) =
(z

2

)k ∞∑
n=0

(
z2

4

)n
n!Γ(k + n+ 1)

.

which gives us

(3.54) P (m) =
e−α

2π(1−m2)

∫ ∞
−∞

du cos

(
u

2
ln

(
1 +m

1−m

)) ∞∑
k=−∞

Ik(α) cos (kuβ/2) .

Lemma 3.55. Using the exponential relation of cosine

(3.56) cos(θ) =
eiθ + e−iθ

2
,

and the the Fourier transform of eiω0u

(3.57)

∫ ∞
−∞

eiu(ω−ω0)du = 2πδ(ω − ω0),

along with the additivity of integrals, gives us
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P (m) =
e−α

2π(1−m2)

∞∑
k=−∞

Ik(α)/4

∫ ∞
−∞

du

(3.58)

eiu/2
[
ln

(
1 +m

1−m

)
+kβ

]
+ e
−iu/2

[
ln

(
1 +m

1−m

)
−kβ

]
+ e

iu/2

[
ln

(
1 +m

1−m

)
−kβ

]
+ e
−iu/2

[
ln

(
1 +m

1−m

)
+kβ

]

=
e−α

2π(1−m2)

∞∑
k=−∞

Ik(α)/2 · 2π

[
δ

([
ln

(
1 +m

1−m

)
+ kβ

]
/2

)
+ δ

(
−
[
ln

(
1 +m

1−m

)
− kβ

]
/2

)(3.59)

+ δ

([
ln

(
1 +m

1−m

)
− kβ

]
/2

)
+ δ

(
−
[
ln

(
1 +m

1−m

)
+ kβ

]
/2

)]

(†)
=

e−α

(1−m2)

∞∑
k=−∞

Ik(α)

[
δ

(
ln

(
1 +m

1−m

)
+ kβ

)
+ δ

(
ln

(
1 +m

1−m

)
− kβ

)]
,

(3.60)

where, in (†), we used the scaling property of the Dirac delta for non-zero scalar c

(3.61) δ(cx) =
δ(x)

|c|
.

Lemma 3.62. Composing the Dirac delta with a smooth function g, with g′ nowhere zero, gives the following

identity

(3.63) δ (g(x)) =
δ(x− x0)

|g′(x0)|
,

where x0 is the real root of the function g.

Corollary 3.64. A corollary of the above lemma is the following

(3.65) δ
(
x2 − a2

)
=

1

2|a|
(δ(x+ a) + δ(x− a))

Since tanh
(x

2

)
=
ex − 1

ex + 1
, using lemma 3.62 and 3.64 in equation (3.60) yields

(3.66) P (m) = e−α
∞∑

k=−∞

Ik(α)δ

(
m− tanh

βk

2

)
.
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Lemma 3.67. The summation of the kth modified Bessel function has the following identity

(3.68)

∞∑
k=1

Ik(z) =
1

2
(ez − I0(z))

Since tanh(x) → ±1 as x → ±∞, as temperature T goes to zero (β = 1/T → ∞), using lemma 3.67, the

local magnetization (3.66) becomes

(3.69) P (m) = e−αI0(α)δ(m) +
1

2

[
1− e−αI0(α)

]
[δ(m− 1) + δ(m+ 1)] .

Substituting our expression for (3.66) into (3.49) for K = 1 gives us

− βF
Nn

= ln 2 +
α

2

∫ 1

−1
dmP (m) ln e−β − 1

2

∫ 1

−1
dmP (m) ln

(
1−m2

)
(3.70)

= ln 2− αβ

2
− 1

2
e−α

∞∑
k=−∞

Ik(α)

∫ 1

−1
dmδ

(
m− tanh

βk

2

)
ln
(
1−m2

)
.(3.71)

Lemma 3.72. We use the identity

(3.73)

∫ 1

−1
δ(x− a) ln

(
1− x2

)
dx = H(1− a)H(a+ 1) ln

(
1− a2

)
,

where H(x) =

∫ x

−∞
δ(ξ)dξ is the Heaviside function, to derive,

− βF
Nn

= ln 2− αβ

2
− 1

2
e−α

∞∑
k=−∞

Ik(α) ln

(
1− tanh2 βk

2

)
(3.74)

= ln 2− αβ

2
− 1

2
e−α

∞∑
k=−∞

Ik(α) ln

(
1− tanh2 βk

2

)
(3.75)

= ln 2− αβ

2
+ e−α

∞∑
k=−∞

Ik(α) ln cosh
βk

2
,(3.76)

which, as β →∞, yields

E(α)

N
= lim
β→∞

− ln 2

β
+
α

2
− e−α

∞∑
k=−∞

Ik(α)
ln cosh

βk

2
β

(3.77)

=
α

2
− e−α

∞∑
k=−∞

Ik(α) lim
β→∞

ln cosh
βk

2
β

(3.78)

=
α

2
− e−α

( ∞∑
k=1

k

2
Ik(α)−

−∞∑
k=−1

k

2
Ik(α)

)
,(3.79)
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where the limit can be evaluated by L’Hôpital’s rule

lim
β→∞

ln cosh
βk

2
β

= lim
β→∞

k

2
sinh

βk

2

cosh
βk

2

= ±k
2
,(3.80)

where we have k/2 when k ≥ 0 and −k/2 when k < 0.

Lemma 3.81. Using the definition of the Bessel function (3.53), we have for integer n that

(3.82) I−n(z) = In(z).

Lemma 3.83. We also have the following relationship involving the neighboring terms for any real ν

(3.84) νIν(z) =
z

2
(Iν−1(z)− Iν+1(z)) ,

Using lemmas 3.81 and 3.83 in (3.79), we have

E(α)

N
=
α

2
− e−α

( ∞∑
k=1

k

2
Ik(α) +

∞∑
k=1

k

2
Ik(α)

)
(3.85)

=
α

2
− e−α

( ∞∑
k=1

α

2
(Ik−1(α)− Ik+1(α))

)
(3.86)

=
α

2
− α

2
e−α (I0(α) + I1(α)) ,(3.87)

where the telescoping sum

(3.88)

n∑
k=1

z

2
(Ik−1(z)− Ik+1(z)) =

z

2
(I0(z) + I1(z)− In(z)− In+1(z)) −→ z

2
(I0(z) + I1(z))

for z sufficiently small.

Since α > 0, the ground-state energy is always positive. So, for K = 1 the SAT problem is unsatisfiable with

probability 1.

3.2.2 The K ≥ 2 case

As we found previously in Theorem 1.27, the critical point for K = 2 is α
(N)
sat (2) = 1. Comparing the results

of numerical simulations to the RS solutions for K ≥ 2 indicate that the RS theory is correct for α < α
(N)
sat (2)

but not for α > α
(N)
sat (2). A further discussion of the K ≥ 2 case can be found in [MZ97].
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3.3 Satisfiability threshold for random K-SAT

From above in Theorem 1.27, we have shown a proof by bicycles for the 2-SAT [Go96]. The 2-SAT problem

is unsurprisingly much simpler to analyze than the K-SAT problem for K ≥ 3. Indeed, in terms of computa-

tional complexity, the 2-SAT problem is polynomial while the K-SAT problem is NP-complete for K ≥ 3. As

discussed previously, numerical simulations suggest that the random K-SAT has a phase transition between

the SAT and UNSAT phases for any K ≥ 2.

Friedgut’s theorem 3.91, restated below, states that there exists a sharp threshold sequence α
(N)
sat (K) for

K ≥ 2. An important note is that the theorem does not state whether α
(N)
sat (K) converges to a unique limit,

which is what Conjecture 3.89, restated below, requires.

Conjecture 3.89 (Satisfiability threshold conjecture). For any K ≥ 2, there exists a threshold αsat(K) with

(3.90) lim
N→∞

PN (K,α) =


1 if α < αsat(K),

0 if α > αsat(K).

As mentioned previously, the conjecture has been proven for K = 2. The theorem below from Friedgut

[Fr99] strongly supports the case for the conjecture and all that remains to prove the satisfiability threshold

conjecture is that α
(N)
sat (K)→ αsat(K) as N →∞.

Theorem 3.91 (Friedgut’s Theorem). There exists a sequence of α
(N)
sat (K) such that, for any ε > 0,

(3.92) lim
N→∞

PN (K,αN ) =


1 if αN < α

(N)
sat (K)− ε,

0 if αN > α
(N)
sat (K) + ε.

3.3.1 Upper bound

With the moment method (1.31), we have the upper bound (1.33) given by Theorem 1.34. The upper bound

from [FP83] is not sharp, but is actually quite close to the more precise upper bound found by [KKKS98]

presented below.

Theorem 3.93 (KKKS98). Let εK denote an error term that decays to zero as K →∞. Then,

(3.94) lim sup
N→∞

α
(N)
sat (K) ≤ 2K ln 2− 1

2
(1 + ln 2) + εK .
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The upper bound is achieved by truncating the first moment to locally maximal solution. The following is

an outline of the result from [KKKS98].

Let An be the class of all truth assignments and Pn be the random class of truth assignments that satisfy

a random formula φ. We define a class smaller than Pn as follows.

Definition 3.95. For a random formula φ, P]
n is defined the random class of truth assignments A such

that: (i) A � φ and (ii) any assignment obtained from A by changing exactly one FALSE value of A to TRUE

does not satisfy φ. Such a construction is known as “single flips.”

Remark 3.96. Here, � is the symbol for entailment and we say that a formula φ is a semantic consequence

within some system of a set of statements A (A � φ) if and only if every model which makes members of A

true makes φ true.

Consider the lexicographic ordering among truth assignments in which the value FALSE is considered smaller

than the value TRUE and the values of variables with higher index are of lower priority in establishing the

way two assignments compare. We see that P]
n is the set of elements of Pn that are local maxima in the

lexicographic ordering of assignments, where the neighborhood of determination of local maximality is the

set of assignments that differ from A in at most one position [KKKS98].

We thus have the following method of moments upper bound:

Lemma 3.97. Let F be a random formula.

(3.98) P(F is SAT) ≤ E
∣∣P]

n

∣∣ .
Proof. From definition 3.95, we see that if an instantiation φ of random formula is satisfiable, the P]

n(φ) 6= ∅.

We straightforwardly have

(3.99) P(F is SAT) =
∑
φ

P(φ) · 1φ,

where the indicator random variable

(3.100) 1φ =


1 if φ is satisfiable

0 otherwise.
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Also,

(3.101) E
∣∣P]

n

∣∣ =
∑
φ

P(φ) ·
∣∣P]

n(φ)
∣∣ .

Since P]
n(φ) 6= ∅,

∣∣P]
n(φ)

∣∣ ≥ 1 and the lemma follows. �

The single flip method sharpens the previous lowest upper bound of 4.758 for the 3-SAT due to Kamath et

al. [KMPS95] to 4.667 [KKKS98]. By defining an even smaller subset of Pn with a more general double flip

method further improves the bound to a value between 4.601 and 4.60108 [KKKS98].

3.3.2 Lower bound

More recent advances in finding a lower bound for α
(N)
sat (K) have used the second moment method below.

Lemma 3.102 (Second moment method). Let X ≥ 0 be a random variable with finite variance. Then,

(3.103) P(X > 0) ≥ (EX)
2

EX2
.

Remark 3.104. This sequence of development can be briefly summarized as such:

(3.105) lim inf
N→∞

α
(N)
sat (K) ≥


2K−1 ln 2− dk [AM02];

2K ln 2− (K + 1)
ln 2

2
− 1− εK [AP04];

2K ln 2− 3

2
ln 2 + εK [CP12],

where dk → (1 + ln 2)/2 and, as before, εK → 0 as K →∞.

The second moment method brings two issues in the random K-SAT model: the first concerning the geometry

of the solution space of possible assignments SOL⊆ {±1}N , and the second concerning the geometry of the

underlying bipartite graph [DSS16].

Remark 3.106. Coja-Oghlan and Panagiotou [CP16] addressed both issues simultaneously and showed that

(3.107) lim inf
N→∞

α
(N)
sat (K) ≥ 2K ln 2− 1

2
(1 + ln 2)− εK ,

which matches the upper bound in Theorem 3.93 up to the error term εK .

Remark 3.108. Ding, Sly, and Sun [DSS16] resolve the satisfiability threshold conjecture 3.89 for large K:

For K ≥ K0, with K0 an absolute constant, the random K-SAT has a sharp satisfiability threshold αSAT.
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4 Appendix

4.1 Local magnetization density and free energy of the K-SAT

In this appendix, taken largely from [N08], we derive the self-consistent equation (3.46) and the free energy

(3.49) from the variational free energy (3.43) under the RS Ansatz. The function c(s) (3.44) only depends

on s from the number of down spins j in the set s = (s1, · · · , sn) if we assume symmetry between replicas.

So, we will also use the notation c(j) interchangeably with c(s). The free energy from (3.43) is now

−βf
N

= −
n∑
j=0

(
n

j

)
c(j) ln c(j) + α ln

{
n∑

j1=0

· · ·
n∑

jK=0

c (j1) · · · c (jK)(4.1)

·
∑
s1(j1)

· · ·
∑

sK(jK)

n∏
a=1

(
1 +

(
e−β − 1

) K∏
k=1

δ (sak, 1)

)}
,

where the sum over si (ji) is for the si with ji down spins.

Taking the partial derivative of (4.1) with respect to c(j) gives us

(4.2)
∂

∂c(j)

(
−βf
N

)
= −

(
n

j

)
(ln c(j) + 1) +

αKg

f
.

Definition 4.3. We define f and g above as

f :=

n∑
j1=0

· · ·
n∑

jK=0

c (j1) · · · c (jK) ·
∑
s1(j1)

· · ·
∑

sK(jK)

n∏
a=1

(
1 +

(
e−β − 1

) K∏
k=1

δ (sak, 1)

)
,

(4.4)

g :=

n∑
j1=0

· · ·
n∑

jK−1=0

c (j1) · · · c (jK−1) ·
∑
s1(j1)

· · ·
∑

sK−1(jK−1)

∑
s(j)

n∏
a=1

(
1 +

(
e−β − 1

)
δ (sa, 1)

K−1∏
k=1

δ (sak, 1)

)
.

(4.5)

From our expression for c(s) (3.44) reproduced below

(4.6) c(s) =

∫ 1

−1
dmP (m)

n∏
a=1

1 +msa

2
,
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we can express f and g in terms of the local magnetization P (m) as such

f =

∫ 1

−1

K∏
k=1

dmkP (mk)(AK)n(4.7)

g =

(
n

j

)∫ 1

−1

K−1∏
k=1

dmkP (mk)(AK−1)n−j ,(4.8)

where, as before in (3.47), we have

(4.9) AK = 1 +
(
e−β − 1

) K∏
k=1

1 +mk

2
.

We derive (4.7) and (4.8) as follows.

Changing to c(ji)’s to c(si)’s, substituting (3.44) into (4.4), and summing over s1 to sK give us

f =
∑
s1(j1)

· · ·
∑

sK(jK)

c(s1) · · · c(sK)

n∏
a=1

(
1 +

(
e−β−1

) K∏
k=1

δ (sak, 1)

)
(4.10)

=

∫ 1

−1

K∏
k=1

dmkP (mk)(AK)n.(4.11)

Since the sum over s(j) in g in (4.5) is for s with j down spins, which implies δ (sa, 1) = 0, we have

g :=

n∑
j1=0

· · ·
n∑

jK−1=0

c (j1) · · · c (jK−1) ·
∑
s1(j1)

· · ·
∑

sK−1(jK−1)

∑
s(j)

n∏
sa=1,a=1

(
1 +

(
e−β − 1

)K−1∏
k=1

δ (sak, 1)

)
(4.12)

=
∑
s1(j1)

· · ·
∑

sK−1(jK−1)

∑
s(j)

c(s1) · · · c(sK−1)

n∏
sa=1,a=1

(
1 +

(
e−β − 1

)K−1∏
k=1

δ (sak, 1)

)
,(4.13)

where the product

n∏
sa=1,a=1

is over all replicas with sa = 1. Substituting (3.44) into (4.13) and summing

over s1 to sK−1 yield the desired result

g =
∑
s(j)

∫ 1

−1

K−1∏
k=1

dmkP (mk)

n∏
sa=1,a=1

AK−1(4.14)

=

(
n

j

)∫ 1

−1

K−1∏
k=1

dmkP (mk)(AK−1)n−j ,(4.15)

since there are precisely n− j up spins and

(
n

j

)
ways to arrange such assignments.

Using the symmetry c(s) = c(−s) from Remark 3.21, we can take into account the symmetry c(j) = c(n− j)

in the extremization condition (4.2).
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Subject to the normalization condition

(4.16)

n∑
j=0

(
n

j

)
c(j) = 1

and the Lagrange multiplier method, the extremization condition is now

(4.17) 0 = −2(ln c(j) + 1) + αK

∫ 1

−1

K−1∏
k=1

dmkP (mk)f−1
[
(AK−1)j + (AK−1)n−j

]
− 2λ.

It is straightforward to see with algebra that

(4.18) c(j) = exp

{
−λ− 1 +

αK

2f

∫ 1

−1
dmkP (mk)

[
(AK−1)j + (AK−1)n−j

]}
.

Now, taking the limit of the number of replicas n→ 0 produces the self-consistent equation for P (m). The

value of the Lagrange multiplier λ in the limit n→ 0 is obtained from that c(0) = 1 and λ = αK − 1. The

distribution P (m) is derived from the inverse relation of

(4.19) c(j) =

∫ 1

−1
dmP (m)

(
1 +m

2

)n−j (
1−m

2

)j
in the limit n→ 0:

(4.20) P (m) =
1

π(1−m2)

∫ ∞
−∞

dyc(iy) exp

(
−iy ln

(
1− y
1 + y

))
.

Substituting the expression for c(j) from (4.18) and λ = αK − 1 above results in (3.46).

For the free energy (3.49), we must consider the O(n) terms to derive the free energy in terms of P (m). We

can condense (4.1) using our notation as such

(4.21) − βf

N
= −

n∑
j=0

(
n

j

)
ln c(j) + α ln f.

Lemma 4.22. Recall the series expansion at 0 for the exponential function ax for a > 0

(4.23) ax =

∞∑
k=0

(x ln a)
k

k!
.

Note that the term (AK)n in f (4.7) does not depend on k and is thus a constant term. Letting a = Ak and

x = n and applying Lemma 4.22 give the following series expansion for f

(4.24) f = 1 + nµ+O(n2),
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where we define

(4.25) µ :=

∫ 1

−1

K∏
k=1

dmkP (mk) lnAk.

Substituting (4.18) and using the normalization condition to compute the first term on the right-hand side

of (4.21) give

(4.26) −
n∑
j=0

(
n

j

)
c(j) ln c(j) = λ+ 1− αK

2f

n∑
j=0

(
n

j

)
c(j)

∫ 1

−1

K−1∏
k=1

dmkP (mk)
[
(AK−1)n−j + (AK−1)j

]
.

To expand λ to O(n), we use equate (4.18) and (4.19) to solve for eλ+1

(4.27) eλ+1 =

exp

{
αK

2f

∫ 1

−1

K−1∏
k=1

dmkP (mk)
[
(AK−1)n−j + (AK−1)j

]}
∫ 1

−1
dmP (m)

(
1 +m

2

)n−j (
1−m

2

)j
Since the left hand side of (4.27) is independent of j, we let j = 0 in (4.27) and expand to O(n) as such

(4.28) λ+ 1 = αK + n

(
αK(−µ+ ν/2) + ln 2−

∫ 1

−1
dmP (m) ln

(
1−m2

))
+O(n2),

where we define ν similarly

(4.29) ν :=

∫ 1

−1

K−1∏
k=1

dmkP (mk) lnAK−1.

We use our expression for c(j) (4.19) to evaluate the sum in the right hand side of (4.26)

n∑
j=0

(
n

j

)∫ 1

−1
dmkP (mk)

(
1 +mk

2

)n−j (
1−mk

2

)j ∫ 1

−1

K−1∏
k=1

dmkP (mk)
[
(AK−1)n−j + (AK−1)j

]
(4.30)

(†)
= 2

∫ 1

−1

K∏
k=1

dmkP (mk)

(
1 +mK

2
AK−1 +

1−mK

2

)n
(4.31)

= 2f,(4.32)

where, in (†), a little algebraic manipulation reveals

1 +mK

2
AK−1 +

1−mK

2
=

1 +mk + 1−mK

2
+
(
e−β − 1

) K∏
k=1

1 +mk

2
(4.33)

= AK .(4.34)
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Using (4.21), (4.24), (4.26), (4.28), and (4.32), we have the desired result

(4.35) − βf

Nn
= ln 2 + α(1−K)µ+

αK

2
ν − 1

2

∫ 1

−1
dmP (m) ln

(
1−m2

)
+O(n).
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