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Abstract

As of late, the validity of much academic research has come into question. While many studies

have been retracted for outright falsification of data, perhaps more common is inappropriate

statistical methodology. In particular, this paper focuses on data dredging in the case of balanced

design with two groups and classical linear regression. While it is well-known data dredging

has pernicious e↵ects, few have attempted to quantify these e↵ects, and little is known about

both the number of covariates needed to induce statistical significance and data dredging’s

e↵ect on statistical power and e↵ect size. I have explored its e↵ect mathematically and through

computer simulation. First, I prove that in the extreme case that the researcher can obtain any

desired result by collecting nonsense data if there is no limit on how much data he or she collects.

In practice, there are limits, so secondly, by computer simulation, I demonstrate that with a

modest amount of e↵ort a researcher can find a small number of covariates to achieve statistical

significance both when the treatment and response are independent as well as when they are

weakly correlated. Moreover, I show that such practices lead not only to Type I errors but also

result in an exaggerated e↵ect size. These findings emphasize the importance of reproducibility

and following best practice statistics.

1 Introduction

In a widely cited article, Ioannidis (2005) suggests that most research findings are false due to the

prior probability of a true relationship being low, multiple testing by several independent teams,

and bias. Ioannidis’ claim has generated heated discussion with Jager and Leek (2014) finding that

the false discovery rate is merely 14% in top medical literature and refuting that most discoveries

are false. However, Gelman and O’Rourke (2014) and Ioannidis (2014) cite problems with bias and

methodology in Jager and Leek (2014). Responding to Ioannidis from another angle, Moonesinghe
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et al. (2007) suggests that replication can solve many of the problems that lead to the false discoveries.

Indeed, according to Open Science Collaboration (2015), there is a so-called “replication crisis” in

pyschology, for only 36% of replications yielded statistical significance, and the mean e↵ect size was

only half as large as the original study. If true, this would be convincing evidence that Ioannidis is

correct, but Gilbert et al. (2016) contends that the Open Science Collaboration made errors with

procedure, statistical power, and bias. Thus, the debate is still alive and well.

One of the sources of bias that Ioannidis (2005) mentions is selective and distortive reporting.

With data dredging, given enough data, one is bound to have statistically significant result. I

specifically address how much bias can be obtained from data dredging in the case of balanced design

with two groups and classical linear regression. In this paper, data dredging mainly refers to the

practice of collecting many variables and running a regression on di↵erent subsets of these variables

until one obtains the desired result.

While it is well-known data dredging has pernicious e↵ects, few have attempted to quantify

these e↵ects, and little is known about both the number of covariates needed to induce statistical

significance and data dredging’s e↵ect on statistical power and e↵ect size. Permutt (1990) has

performed some analysis and simulations on how additional covariates can increase statistical power

in the case of covariates that are correlated with response. However, he does not look at the case

when the covariates are independent. Senn (1994) looks at how tests of homogeneity can lead to

nonrandom assignment of the treatment. If the correlations between the covariates and response

are known beforehand, manipulating assignment of the treatment is equivalent in spirit to mining

covariates, and he gives an algorithm for the researcher to pick the treatment group to increase the

probability of statistical significance while maintaining “balanced” treatment and control groups. In

practice, these correlations are usually not known. He does actually mention the case of collecting
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additional uncorrelated covariates, but only at a philosophical level, and terms it “post-study anxiety.”

To avoid problems with multiple hypothesis testing and bias, he suggests true random assignment,

specifying the model before the experiment, and only looking at additional covariates post-study

to inform future models. Despite the recommendations, he does not provide anything quantitative

about how easily data dredging can be used to cheat and favor the treatment.

I look at the e↵ects of data dredging from a few di↵erent angles:

1. First, I look at the problem from a theoretical perspective, where we have an unbounded supply

of covariates. Here, I show that we can induce statistical significance and make the e↵ect size

as large as possible.

2. Next, I look at the case where the treatment and the response are independent by simulation.

I find on average how many independent covariates are needed for statistical signficance.

3. Thirdly, I look at the case when the e↵ect size is small, so the statistical power is low, and

therefore, the e↵ect is hard to detect. I analyze how data dredging can give a false sense of

reproducibility and exaggerate the magnitude of the e↵ect.

2 Unbounded Supply of Covariates

Consider an experiment with 2N subjects, where we assign N subjects to a treatment group, and N

subjects to the control group. We observe the response Y along with covariates {zj : j = 1, 2, . . .} .

Let X represent whether the subject was assigned to a treatment group or not. These vectors will be

of length 2N with each entry corresponding to a subject.

To see whether the treatment was e↵ective or not, we model the relationship between Y, X,

and some subset of S ⇢ {zj : j = 1, 2, . . .} to be linear, where we assume that there is normally
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distributed noise in the observation. Let S = {zj1 , . . . , zjm�1}, so

Y = �S
XX+

m�1
X

k=1

�S
k zjk + ✏, (2.1)

where ✏ ⇠ N (0,�2I).

Let �S = (�S
1 , . . . ,�

S
m�1,�

S
X). The maximum likelihood estimate for �S is

�̂S =

0

B

B

B

B

B

B

B

B

B

B

@

�̂S
1

...

�̂S
m

�̂S
X

1

C

C

C

C

C

C

C

C

C

C

A

= (Z|
SZS)

�1
Z

|
SY, (2.2)

where ZS is a 2N ⇥m matrix with the vectors of S as the first m � 1 columns and X as the last

column (Bickel and Doksum, 2015).

If we restrict X and the zjs to be vectors of 0s and 1s a large �̂S
X suggests that the e↵ect size is

large. On the other hand if X and Y are independent, we would expect that �̂S
X is close to 0.

I show that if one collects data forever and has an infinite set of independent {zj}, one can

make the estimate �̂S
X as large as possible even if the actual value is �S

X = 0, that is, X and Y are

independent.

Let there be 2N subjects. We randomly assign half the subjects to a treatment group. Let

X = (X1, . . . , X2N ) 2 R2N be defined

Xi =

8

>

>

>

<

>

>

>

:

1 subject i is assigned to the treatment group

0 subject i is in the control group.

(2.3)

For each subject, we observe an independent response Yi ⇠ N (0, 1) that is independent of Xi. Define

Y = (Y1, Y2, . . . , Y2N ) ⇠ N (0, I). Suppose we have a infinite sequence of independent random vectors

{zj}, where zj = (z1,j , . . . , z2N,j)| 2 R2N and zi,j ⇠ Bernoulli(1/2).
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Theorem 2.1. Let S = {zj1 , . . . , zjm�1} be a subset of {zj} such that S[{X} is linearly independent.

Define ZS to be a 2N ⇥m matrix, where the vectors of S make up the first m� 1 columns, and X is

the last column, where m can be any nonnegative integer. Define �̂S as in Equation 2.2.

Then, for any M > 0 and ✏ > 0, there exists some n such that N � n implies that there exists

S such that P
⇣

�̂S
X > M

⌘

> 1 � ✏. Moreover, if s2 =
|Y � ZS�̂S |2

2N �m
, for any � > 0 and level of

significance ↵ > 0,

P

0

B

B

@

�̂S
X

s

r

⇣

(Z|
SZS)

�1
⌘

mm

� T�1
2N�m(1� ↵/2)

1

C

C

A

> 1� �,

where T2N�m is the cumulative distribution function for the t distribution with 2N �m degrees of

freedom. That is, our estimate for �̂S
X will be statistically significant according to a two-sided t-test.

First, let us establish a few linear algebra facts.

Lemma 2.2. Let Z be an n ⇥ m matrix of full rank, where m < n. Z|
Z is an invertible m ⇥ m

matrix. Now, define Z(k) to be the nk⇥m matrix, where the rth row of Z(k) is the dr/keth row of Z.

Z

|
(k)Z(k) is also invertible and its inverse is k�1 (Z|

Z)�1
.

Proof. If Z has rank m, then Z has trivial null space by rank-nullity theorem. Let x 2 R

m. Z, so

Z

|
Zx = 0 , 0 = x

|
Z

|
Zx = (Zx)|(Zx) , Zx = 0

since the dot product is a norm. Thus, Z|
Z is an m ⇥ m matrix with trivial null space, so it is

invertible.
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Now, clearly Z(k) will have full rank, too, so Z

|
(k)Z(k) is an invertible m⇥m matrix, too.

⇣

Z

|
(k)Z(k)

⌘

ij
=

nk
X

l=1

⇣

Z

|
(k)

⌘

il

�

Z(k)

�

lj

=
n�1
X

p=0

k
X

l=1

⇣

Z

|
(k)

⌘

i,pk+l

�

Z(k)

�

pk+l,j

=
n�1
X

p=0

k
X

l=1

(Z|)i,p+1 (Z)p+1,j = k

n
X

p=1

(Z|)ip (Z)pj

= k(Z|
Z)ij ,

so Z

|
(k)Z(k) = kZ|

Z, which implies that
⇣

Z

|
(k)Z(k)

⌘�1
= k�1 (Z|

Z)�1
.

Lemma 2.3. Consider the matrices Fn defined as follows. Let F1 =

✓

1

◆

. For n > 1, define the

n⇥ n matrix Fn recursively by

(Fn+1)i,j =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(Fn)i�1,j�1 i > 1, j > 1

1 i = 1, j 2 {1, 2, N + 1}

1 j = 1, i ⌘ 1 (mod 2)

0 otherwise.

(2.4)

The last row of the inverse of this matrix is

✓

�F (1) �F (2) · · · �F (n� 2) F (n� 2) F (n� 1)

◆

,

where F (k) is the kth Fibonnaci number, where F (0) = 1, F (1) = 1, and F (k) = F (k� 1) +F (k� 2)

for k > 1.

Proof. F

�1
n Fn is the identity. Define

r =

✓

�F (1) �F (2) · · · �F (n� 2) F (n� 2) F (n� 1)

◆

.
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Let C1, . . . , Cn be the columns of Fn. We show that rCj = 0 for all 1  j < n, and rCn = 1.

First by induction, we have that for n � 2

F (k) = F (k � 1) + F (k � 2) =

0

@F (0) +
n�3
X

j=1

F (j)

1

A+ F (k � 2) = 1 +
n�2
X

j=1

F (j). (2.5)

Now, using this, for the last column:

rCn = �
n�3
X

j=1

F (j)� F (n� 2) + F (n� 2) + F (n� 1) = 1.

Looking closely at the recursive relationship in Equation 2.4, we have that for j < n,

(Fn)i,j =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

1 j = i+ 1

1 j < i and j ⌘ i (mod 2)

0 otherwise.

(2.6)

Therefore, for j < n, we have that

rCj =

8

>

>

>

>

>

<

>

>

>

>

>

:

�F (j � 1)�
(n�3�j)/2
X

k=0

F (j + 2k) + F (n� 2), j is odd

�F (j � 1)�
(n�2�j)/2
X

k=0

F (j + 2k) + F (n� 1), j is even.

=

8

>

>

>

>

>

<

>

>

>

>

>

:

�F (j � 1)�
(n�5�j)/2
X

k=0

F (j + 2k) + F (n� 4), j is odd

�F (j � 1)�
(n�4�j)/2
X

k=0

F (j + 2k) + F (n� 3), j is even.

since F (k)�F (k�1) = F (k�2). For the odd case, We can do this reduction a total of (n�3�j)/2+1

times, so we find that

F (n� 2)�
(n�3�j)/2
X

k=0

F (j + 2k) = F

✓

n� 2� 2

✓

n� 3� j

2
+ 1

◆◆

= F (j � 1).

For the even case,

F (n� 1)�
(n�2�j)/2
X

k=0

F (j + 2k) = F

✓

n� 1� 2

✓

n� 2� j

2
+ 1

◆◆

= F (j � 1).
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Thus, rCj = 0 for j < n.

With Lemmas 2.2 and 2.3, we can now prove Theorem 2.1.

Proof. Without loss of generality reindex our vectors, so that

X1 = · · · = XN = 1 and XN+1 = · · · = X2N = 0.

Also, index it so that

Y1  Y2  · · ·  YN .

Now, P(zj = (a1, . . . , a2N )) = 2�2N , so by independence and Borel-Cantelli lemma, every possible

vector of 0s and 1s occurs infinitely often (Durrett, 2010).

Now, suppose N = r2p, and let m = r2p�q, where r, p, q 2 N, and q  p. Define e

⇤
j to be vectors

such that

�

e

⇤
j

�

i
=

8

>

>

>

<

>

>

>

:

1, di/2qe = j

0, otherwise.

That is, we segment our data into groups of size 2q.

We can pick S to be a subset of {zj} such that ZS is an arbitrary matrix of 0s and 1s in the first

m columns such that the columns span span(e⇤1, . . . , e
⇤
m). Note that the last column of ZS is fixed to

have 1s in the first N rows and the rest 0. All the rows after the Nth row of ZS are 0.

Now, recall that �̂S minimizes

(Y � ZS�̂S)
|(Y � ZS�̂S),

and the mean is the best estimator in the case that the only covariate is a vector of all 1s, that is, we

are only estimating the intercept.
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Define Yi,j to be
Pj

k=i Yi/(j � 1 + 1). Having covariates {e⇤1, . . . , e⇤m} is equivalent to estimating

the intercept in groups of size 2q.

Let Z be the 2N ⇥m matrix with the jth column as e⇤j . If µ̂ is the element of
n

Z�̂ : �̂ 2 Rm
o

that minimizes (Y � µ̂)|(Y � µ̂), then,

µ̂ = Y1,2qe
⇤
1 +Y2q+1,2·2qe

⇤
2 + · · ·+Y(m�1)2q+1,m2qe

⇤
m.

Thus, if the columns of ZS spans span(e⇤1, . . . , e
⇤
m), then we must have that ZS�̂S = µ̂, too.

Let us choose ZS = (Fm)(2q) using the notation in Lemma 2.2 and Lemma 2.3. Fm is invertible, so

it spans span(e1, e2, . . . , em). Copying the rows 2q times, (Fm+1)(2q) spans span(e
⇤
1, . . . , e

⇤
m). Define

Y

⇤
=

0

B

B

B

B

B

B

B

B

B

B

@

Y1,2q

Y2q+1,2·2q

...

Y(m�1)2q+1,m2q

1

C

C

C

C

C

C

C

C

C

C

A

. (2.7)

Since ZS�̂S = µ̂, if we remove duplicate rows,

Fm�̂S = Y

⇤ ) �̂S = F

�1
m Y

⇤
, (2.8)

which by Lemma 2.3 gives us

�̂S
X = F (m� 1)Y

⇤
m + F (m� 2)Y

⇤
m�1 �

m�2
X

j=1

F (j)Y
⇤
j

= F (m� 1)
⇣

Y

⇤
m �Y

⇤
m�1

⌘

+
m�1
X

j=2

F (j + 1)
⇣

Y

⇤
j �Y

⇤
j�1

⌘

+ F (2)Y
⇤
1. (2.9)

Now, note that Y

⇤
k is the mean of numbers taken between the k � 1th m-quantile and kth
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m-quantile, so

EY

⇤
k = m

Z ��1(k/m)

��1((k�1)/m)

yp
2⇡

exp(�y2/2) dy

=
mp
2⇡

 

exp

 

�1

2



��1

✓

k � 1

m

◆�2
!

� exp

 

�1

2



��1

✓

k

m

◆�2
!!

. (2.10)

From Winitzki (2008), we have that

��1(p) =
p
2 erf�1(2p� 1) (2.11)

⇡
p
2 sgn(2p� 1)

v

u

u

t

s

✓

2

⇡a
+

log(4p� 4p2)

2

◆2

� log(4p� 4p2)

a
�
✓

2

⇡a
+

log(4p� 4p2)

2

◆

,

where a =
8(⇡ � 3)

3⇡(4� ⇡)
.

Now looking at Equation 2.9 along with Equations 2.10 and 2.11, we see that F (2)Y
⇤
1 is the only

negative term, and F (m�1)
⇣

Y

⇤
m �Y

⇤
m�1

⌘

p�! 1 as m ! 1 since F (m�1) increases exponentially.

Now, consider our test statistic

T =
�̂S
X

s

r

⇣

(Z|
SZS)

�1
⌘

mm

. (2.12)

In the denominator, we have that

s2 =
1

2N �m

⇣

Y � ZS�̂S

⌘| ⇣
Y � ZS�̂S

⌘

 1

2N �m

2N
X

i=1

Y 2
i ⇠ 1

2N �m
�2
2N . (2.13)

Moreover, by Lemmas 2.2 and Lemma 2.3,

⇣

(Z|
SZS)

�1
⌘

mm
= 2�q

0

@

m�1
X

j=1

F (j)2 + F (m� 2)2

1

A = 2�q
�

F (m� 1)F (m) + F (m� 2)2
�

= 2�q
�

F (m� 1)2 + F (m� 1)F (m� 2) + F (m� 2)2
�

= 2�q
�

F (m� 1)2 + F (m� 1)(F (m� 1)� F (m� 3)) + F (m� 2)2
�

= 2�q
�

2F (m� 1)2 + F (m� 2)2 � F (m� 1)F (m� 3)
�

= 2�q
�

2F (m� 1)2 + (�1)m�1
�

, (2.14)
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where the last line follows by the Catalan identities.

Fix m, the number of coe�cients and groups. Using Equation 2.10, we can bound Y

⇤
m �Y

⇤
m�1

below in probability as N ! 1 by y⇤. As N ! 1, q ! 1 if we fix m. Also, using Equation 2.13, we

can bound s above in probability by s⇤. Then, combining Equations 2.9, 2.12, and 2.14, we have that

P
⇣

T � 2�(q�1)/2 y⇤
s⇤

⌘

> 1� � (2.15)

for some � > 0.

So, for any M > 0 and ✏ > 0, we can have that

P(�̂S
X > M) > 1� ✏

by choosing large m by Equation 2.9. Once this m is chosen, we can fix m and choose large N to

achieve statistical significance, that is,

P

0

B

B

@

T =
�̂S
X

s

r

⇣

(Z|
SZS)

�1
⌘

mm

� T�1
2N�m(1� ↵/2)

1

C

C

A

> 1� �,

for any ↵ > 0 and � > 0 by Equation 2.15.

For the cases, where N is not divisible by m, we can have some groups of size dN/me and other

groups of size bN/mc, and modify the definition of Y
⇤
accordingly. Equations 2.9 and 2.13 still hold,

and we can derive analogs of Equations 2.10 and 2.14.

The proof is instructive as it gives us an explicit matrix ZS . I have have verified the proof

computationally with the results in Table 1.

3 Independent Y and X

In practice, we will not have an infinite number of covariates. To see how many are needed, I

simulated collecting independent covariates and stopped when statistical significance was reached.
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2N m Mean �̂S
X p-value below 0.05 (%)

64 32 1627097 1.2%
64 16 951.2453 39.3%
64 8 26.66189 99.7%

128 32 1752930 20.6%
128 16 991.1441 97.1%
128 8 27.33778 100%

256 64 7345141356974.77 10.5%
256 32 1833113 84.9%
256 16 1002.266 100%

Table 1: So indeed, we see that �̂S
X grows exponentially, and we can ensure statistical significance.

Consider the model in Equation 2.1 and define �̂S as in Equation 2.2. Now, suppose we followed

best practices and did not perform any data dredging. That is, we specified S, and therefore ZS

before observing Y. Our null hypothesis is H0 : �S
X = 0 and the alternate hypothesis is H1 : �S

X 6= 0.

By Chapter 6 of Bickel and Doksum (2015), �̂S
X ⇠ N

�

0,
�

(Z|
SZS)�1

�

mm

�

under the null hypothesis.

Moreover, an unbiased esimator for �2 is s2 =
|Y � ZS�̂S |2

2N �m
, so

�̂S
X

s
q

((Z|
SZS)�1)mm

⇠ T2N�m, (3.1)

that is, the t distribution with 2N �m degrees of freedom. Thus, doing a two-sided t-test, the p-value

associated with a set S is

pS = 2

0

@1� T2N�m

0

@

�

�

�

�

�

�

�̂S
X

s
q

((Z|
SZS)�1)mm

�

�

�

�

�

�

1

A

1

A , (3.2)

where Tn is the cumulative distribution function of the t distribution with n degrees of freedom. For

a test at level of significance ↵ (usually 0.05), we reject the null hypothesis when pS  ↵.

Let Y ⇠ N (0, I) and X be defined as in Equation 2.3, so X is a vector of N 0s and N 1s.

Y and X are independent, so the real value of the coe�cient is �S
X = 0. We simulate covariates

{zj = (z1,j , . . . , z2N,j) : j = 1, 2, . . .} such that zi,j ⇠ Bernoulli(1/2). Thus, the covariates are
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independent of Y and X, so �S
j = 0 for j = 1, . . . ,m� 1. Since the null hypothesis is true, we would

expect to reject the null hypothesis with probability ↵. More concretely, we make a Type I error and

say that the treatment had some e↵ect with probability ↵.

Now, one could imagine that a researcher wants the experiment to favor the treatment, so he or

she collects a lot of data and chooses S after the experiment. By cheating, the researcher increases

the probability of finding a statistically significant result or making a Type I error, depending on

your perspective. By trying many di↵erent S, the researcher is testing multiple hypotheses and will

eventually achieve statistical significance by chance. Once statistical significance is achieved, the

researcher can pretend that he or she followed best practices. Just how easy is it to do this?

It was not possible for me to test every subset of covariates, so I used dynamic programming to

choose S. Therefore, the simulations here give a conservative upper bound, and it may be possible to

achieve statistical signficance with a smaller number of covariates.

Initialize S0 = ;. Upon drawing zk, where k 2 N, I defined sets S1, . . . , Sk as

Sj =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

Sj�1 [ {zk}, j = k

Sj�1 [ {zk}, pSj�1[{zk} < pSj

Sj , otherwise.

(3.3)

The algorithm stops at k when there exists some j such that pSj  0.05 at which point, we record

the minimum such j, the number of covariates in the subset, and k, the number of total covariates

drawn. Set S = Sj . Throughout the paper the k at which we stopped at will be referred to as the set

size. The minimum j such that pSj  0.05 will be referred to as the subset size.

Here are the results. For each N , 1000 simulations were run. Firstly, in a few cases, statistical

significance was not reached after drawing 2N � 2 linearly independent covariates when N was small

as seen in Table 2. This problem disappears for larger N.
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2N Percent Significant

50 98.2%
100 100%
200 100%
400 100%
800 100%

Table 2: Statistical significance is almost always found before we have as many independent covariates
as observations.

As we would expect for a level ↵ = 0.05 test, about 5% of the time, we found statistical significance

immediately with 0 additional covariates. For the cases where more covariates are needed, in Table

3, we list the average set size needed (k in the algorithm) and the average subset size (j in the

algorithm). As one can see, as N increases both averages increase but not by much every time we

double N . Also, the distribution of the subset size is skewed right, and a subset size of 1 is most

common. The percentage of such cases is listed in the third column.

2N Mean Subset Size Subset Size 1 (%) Mean Set Size SD Set Size

50 9.316 17.3% 22.935 12.515
100 12.107 15.6% 33.133 19.612
200 15.080 15.2% 44.168 29.188
400 16.774 16.1% 55.444 43.322
800 17.773 15.2% 70.127 59.416

Table 3: As N gets larger, we need bigger sets, but not that much bigger. Statistics were calculated
after removing the cases of set size 0. Set Size refers to how many total covariates where drawn, that
is, |{zj}| . Subset Size is the number of covariates actually used, that is, |S|.

The fourth column shows that not many covariates are needed compared to the number of

observations, so the researcher does not have to search too hard for his or her covariates. Given a few

dozen covariates, one can often reject the null hypothesis by only choosing single one, which makes

the argument that best practices were followed quite defensible.
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4 Power Boosting

In addition to the case when Y and X are independent, another situation where a researcher may

want to dredge data to achieve statistical significance is when the e↵ect of the treatment on Y is

small and hard to detect, that is, the statistical power is small. The legitimate way to increase

statistical power would be to collect more data, design a better experiment, or measure observations

more precisely to decrease variance. For a variety of reasons such as budget or a deadline to publish,

such corrections may not be possible, so the researcher may resort to data dredging.

First, pretend that we do the proper thing, follow best practices, and fix S = ;, so we consider

the model

Y = �S
XX+ ✏, (4.1)

where ✏ ⇠ N (0,�2I). Consider the simple hypotheses, H0 : �S
X = 0 versus H1 : �S

X = 1. Suppose that

�2 is known. The statistical power, 1� �, is the probability of correctly rejecting H0 when H1 is

true, so Y ⇠ N (X,�2I), where � is the probability of a Type II error. As �2 increases, statistical

power goes down.

Button et al. (2013) discusses many problems with low power studies including low reproducibility

and overestimation of e↵ect size. In order to boost the statistical power, a researcher may try to

include other covariates. In order to simulate this data dredging, the first order of business is to

establish how to choose �2 in order to achieve certain power.

4.1 Choosing �2

The main reference here is Chapter 6 of Bickel and Doksum (2015). Consider the model in Equation

4.1 with 2N observations where we have fixed S = ;. Use the simple hypotheses

H0 : �S
X = 0 and H1 : �S

X = 1.
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Let X be defined as in Equation 2.3, where we assign N subjects to the treatment.

Then, Y ⇠ N
�

�S
XX,�2I

�

. By Corollary 6.1.1, �̂S ⇠ N
�

�S ,�
2(Z|

SZS)�1
�

. In this case, �̂S = �̂S
X

and ZS = X. Assume that �2 is known.

2N Power (1� �) Variance (�2)

50 0.100 58.7446
50 0.300 12.1477
50 0.500 6.50868
50 0.700 4.05055

100 0.100 117.489
100 0.300 24.2954
100 0.500 13.0174
100 0.700 8.1011

200 0.100 234.978
200 0.300 48.5908
200 0.500 26.0347
200 0.700 16.2022

400 0.100 469.957
400 0.300 97.1815
400 0.500 52.0695
400 0.700 32.4044

800 0.100 939.913
800 0.300 194.363
800 0.500 104.139
800 0.700 64.8088

Table 4: Higher variance means lower power.

So, under the null hypothesis,

p
N

�̂S
X

�
⇠ N (0, 1). (4.2)

Thus, for a two-sided level ↵ test, we will reject the null hypothesis if

�

�

�

�

�

p
N

�̂S
X

�

�

�

�

�

�

� ��1
⇣

1� ↵

2

⌘

= z↵/2, (4.3)

where � is the cumulative distribution function for the standard normal distribution.
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To calculate statistical power, we assume that H1 is true, so that actually

p
N

�̂S
X � 1

�
⇠ N (0, 1) (4.4)

and calculate the probability of correctly rejecting H0.

Suppose that we want to reject the null hypothesis with probability 1� �. We apply Equation

4.3 and solve for �2:

1� � = P
 

p
N

�̂S
X

�
� z↵/2

!

+ P
 

p
N

�̂S
X

�
 �z↵/2

!

= P
 

p
N

�̂S
X � 1

�
� z↵/2 �

p
N

�

!

+ P
 

p
N

�̂S
X � 1

�
 �z↵/2 �

p
N

�

!

=

"

1� �

 

z↵/2 �
p
N

�

!#

+ �

 

�z↵/2 �
p
N

�

!

= �

 

�z↵/2 +

p
N

�

!

+ �

 

�z↵/2 �
p
N

�

!

.

This can be accomplished with a binary search. The computed variances can be found in Table 4.

4.2 Simulation

As one can see from Table 4, with high variances, the power is rather low, so despite the treatment

having an e↵ect on Y, the probability of finding statistical significance can be very low. The researcher

may find this situation unacceptable, not be able to increase statistical power through legitimate

means, and thus, feel the need to cheat by including other covariates. Given a nearly statistically

significant result, one may avail oneself of illegitimate means to decrease the p-value such as varying

S. Again, we try to answer the question of how easy is it to construct such S.

Simulations were run at 4 power levels: 0.1, 0.3, 0.5, and 0.7. The results can be found in Table

5. The direction of the results are largely expected. As the power gets larger, fewer covariates and a

smaller subset are needed to construct S. While the direction is not surprising, perhaps the small
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2N Power (1 - �) Mean Subset Size Subset Size 1 (%) Mean Set Size SD Set Size

50 0.050 9.316 17.3% 22.935 12.515
50 0.100 10.161 18.5% 22.743 12.889
50 0.300 8.720 30.4% 19.846 13.749
50 0.500 7.855 36.5% 18.488 13.592
50 0.700 5.879 47.6% 16.726 13.113

100 0.050 12.107 15.6% 33.133 19.612
100 0.100 12.342 17.9% 31.059 20.217
100 0.300 9.557 31.9% 24.863 19.780
100 0.500 8.374 41.9% 22.458 20.159
100 0.700 7.743 48.2% 21.743 20.157

200 0.050 15.080 15.2% 44.168 29.188
200 0.100 14.966 21.3% 41.698 30.197
200 0.300 11.343 32.3% 34.343 29.155
200 0.500 9.980 43.8% 31.262 30.123
200 0.700 6.926 52.8% 23.980 25.789

400 0.050 16.774 16.1% 55.444 43.322
400 0.100 16.570 19.7% 53.071 42.845
400 0.300 14.025 33.5% 43.711 42.415
400 0.500 10.263 44.7% 34.586 37.821
400 0.700 9.312 54% 32.130 40.195

800 0.050 17.773 15.2% 70.127 59.416
800 0.100 18.948 20.6% 66.160 59.417
800 0.300 12.558 34.7% 51.478 54.661
800 0.500 9.725 46.7% 40.853 51.674
800 0.700 7.062 56.5% 31.455 44.540

Table 5: As the power increases, we need less covariates, and the subset size decreases, too. Power
0.05 corresponds to the case where Y and X are independent.

size of our set of covariates and subset is. Even at the very low power of 0.3, |S| = 1 one-third of the

time. At power 0.7, about half the time only 1 covariate is needed in the subset. Moreover, the total

amount of additional covariates that need to be collected (Set Size) is small relative to N.

If the test is underpowered, cheating with a supply of independent covariates, one e↵ectively

increases the power. In many fields of research, a power of 0.8 is standard McDonald (2009). For

this reason, the minimum set size such that the null hypothesis was rejected in 80% of cases is of

interest. This threshold can be seen in the third column of Table 6. We find that while we need a
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substantial number of covariates to achieve this at low power, the the size of our subset is rather

small. When statistical power is 0.5, the number of total additional covariates needed was less than

30. Out of the covariates collected, often less than 10 were needed to construct S. These numbers

barely changed with the number of observations. So, if one allows this sort of cheating, an experiment

that is reproducible 50% of time becomes reproducible 80% of the time by adding a handful of

cherry-picked covariates.

2N Power (1 - �) 80% Set Size 80% Subset Size Mean Subset Size (80%)

50 0.050 35 34 6.912
50 0.100 34 34 7.103
50 0.300 30 29 4.872
50 0.500 22 16 2.584
50 0.700 7 2 1.149

100 0.050 50 39 8.775
100 0.100 49 41 7.850
100 0.300 38 27 4.533
100 0.500 26 13 1.839
100 0.700 7 3 1.135

200 0.050 72 49 9.811
200 0.100 69 53 8.720
200 0.300 55 41 4.385
200 0.500 30 11 1.577
200 0.700 6 3 1.137

400 0.050 99 69 8.632
400 0.100 95 63 8.096
400 0.300 72 36 2.996
400 0.500 27 6 1.500
400 0.700 4 2 1.099

800 0.050 134 85 6.327
800 0.100 129 74 6.353
800 0.300 74 36 2.346
800 0.500 26 5 1.450
800 0.700 5 2 1.088

Table 6: If we only want an 80% power test, the set and subset sizes become much smaller.
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4.2.1 E↵ect Size

2N Power (1 - �) Percent �̂S
X > 0 Mean �̂S

X when �̂S
X > 0

50 0.100 69.8% 4.480
50 0.300 84.9% 1.923
50 0.500 93.7% 1.431
50 0.700 97.4% 1.168

100 0.100 66.7% 4.186
100 0.300 86.7% 1.873
100 0.500 92.2% 1.386
100 0.700 96.7% 1.173

200 0.100 67.2% 4.050
200 0.300 85.8% 1.818
200 0.500 94.4% 1.361
200 0.700 97.6% 1.163

400 0.100 68.1% 3.983
400 0.300 87.3% 1.810
400 0.500 93.5% 1.370
400 0.700 97% 1.142

800 0.100 70.9% 3.948
800 0.300 88.4% 1.793
800 0.500 92.9% 1.361
800 0.700 97.7% 1.152

Table 7: Even at low power, we find the correct e↵ect despite data dredging. However, the size of
the e↵ect is overestimated at these low powers.

The actual value is �S
X = 1. At best, one would hope that �̂S

X is close to 1, and at the very least,

one would hope that �̂S
X > 0 so the direction of the e↵ect is correct. In Table 7, we see that even at

low power, the direction of the e↵ect is usually correct.

Define experimental e↵ect size as the magnitude of �̂S
X. While the direction may be correct, when

the power is 0.1, the experimental e↵ect size is nearly 4 times the actual e↵ect size. When the power

is 0.3, the experimental e↵ect size is about 80% larger. When the power is 0.5, the experimental

e↵ect size is about 40% larger. And when the power is 0.7, the experimental e↵ect size is about 15%

larger. So, the results agree with Button et al. (2013) and support the findings of Open Science
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Collaboration (2015), which found that upon reproducing the studies, mean e↵ect size was only half

as large as the original study.

5 Discussion

It should now be clear that one can easily manipulate one’s data by data dredging and doing multiple

hypothesis testing. In the first part, I showed mathematically that if you collect enough data

irrelevant to your independent and dependent variables, you can not only find statistical significance

but significantly overstate your e↵ect size. The second section discusses how easily one can find an

e↵ect that does not exist. Much of the time this can be done with a single covariate, so a researcher

could obscure the fact that multiple hypothesis testing was done. Finally, the third part shows that

when the e↵ect does exist, data dredging leads to a false sense of reproducibility and misidentifying

the e↵ect either in direction or magnitude. In this manner, poorly designed studies may vastly

overstate the importance of their findings.

While it was alreadly well-known that data can be manipulated to find statistical significance,

this work reveals exactly how easily it can be done in the case of a balanced treatment and classical

linear regression. The ease of computability allows one to exploit the closed-form solutions to increase

the e↵ect size without bound, and yet, maintain statistical significance. In the simulations, while a

large number of covariates had to be generated at times, the actual subset needed was usually very

small. Even in cases with a large amount of observations, often one or two covariates su�ced. These

small subsets lend a false sense of legitimacy to these models obtained by multiple hypothesis testing.

It would not be hard for a dishonest researcher to claim that he or she specified the ill-gotten model

beforehand after mining a small amount of data.

For honest researchers, these results emphasize the importance of adhering to the prescriptions of
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Senn (1994): (1) randomly assigning the treatment, (2) identify covariates of prognostic value before

the experiment and including all of them in the regression, and (3) only look at additional covariates

post-study to inform future models and experiments. Moreover, statistical power should be increased

in legitimate ways by increasing the sample size, better study design, or more precise measurement.

Reproduction of experiments must be done to ensure validity of the results and magnitude of the

e↵ect size.

It remains to establish the results of the simulations theoretically, that is, given a large number

of independent covariates, only a small number are required in the regression to get statistical

significance. Morever, the results in this paper only deal with indicator variables. These results

would be expected to hold for covariates with other distributions such as standard normal.

All in all, this paper gives credence to Ioannidis’ assertion that most research findings are false.

In particular, when researchers are not transparent about their experimental design and all the

hypotheses tested, they could easily generate credible models through data dredging. Another

implication is that many statistically significant discoveries may not be all that important due to

manipulation of the e↵ect size. Therefore, these results indicate a greater need for data transparency

and reproducibility.

6 Code

The C++ code for the simulations can be found on GitHub. 1 Boost (Boost, 2002) was used for

random number generation. Armadillo was used for linear algebra routines (Sanderson, 2010). Data

analysis was done in R with the data.table package (R Core Team, 2015; Dowle et al., 2014). Tables

were generated with the xtable package (Dahl, 2016).

1
https://github.com/ppham27/cheating-linear-models-simulations
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