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ABSTRACT

We derive the Aztec diamond edge probability generating function, whose coeffi-

cients give the probability that a particular edge is present in a perfect matching of

an Aztec diamond graph chosen uniformly at random. This is done via two different

approaches: the first is based upon Propp’s generalized domino shuffling algorithms,

while the second is based upon Speyer’s Octahedron Recurrence. After a brief intro-

duction to asymptotic analysis of multivariate generating functions, we derive a more

complicated edge probability generating function for weighted Aztec diamonds with

a periodic edge weight assignment, which arises from diabolo tilings of fortresses.
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1 Background

Charles Dodgson (better known to the public as Lewis Carroll) in 1866 invented a

method of computing the determinant of a matrix using a recurrence relating the

connected minor a matrix, called Dodgson condensation1. Attempting to understand

the combinatorics of Dodgson condensation led Mills, Robbins, and Rumsey to their

discovery of “alternating sign matrices”. As explained by Bressoud and Propp in

[BP99], “when Dodgson condensation is applied to an n-by-n matrix and all like

monomials are gathered together, the terms in the final expression are associated with

the n-by-n matrices of 0’s, 1’s and -1’s in which the nonzero entries in each row and

column alternate in sign, beginning and ending with a +1. These are the alternating

sign matrices (or ASMs) of order n”. The combinatorial question of interest was

then naturally the number of ASMs; this question was resolved at first by Doron

Zeilberger in 1992, whose proof drew on results and techniques from partition theory,

symmetric functions, and constant term identities; its eventual publication required

an army of 89 referees (88 people and 1 computer). Then in 1995, Greg Kuperberg

provided a much shorter proof that relied on the machinery of statistical mechanics.

Kuperberg’s work on ASMs began as an outgrowth of his work on enumeration of

tilings in collaboration with Noam Elkies, Michael Larsen, and James Propp. As it

turned out, the theory of ASMs have strong connections to the problem of counting

1See [Dod1866]
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domino tilings of certain plane regions known as Aztec diamonds.2

The Aztec diamond of order n is the union of lattice squares [a, a+1]× [b, b+1] ⊂

R2(a, b ∈ Z) that lie completely inside the tilted square {(x, y) : |x| + |y| ≤ n + 1}.

A domino is a closed 1 × 2 or 2 × 1 rectangle in R2 with corners in Z2, and a tiling

of a region R by dominoes is a set of dominoes whose interiors are disjoint and

whose union is R. The number of domino tilings of the Aztec diamond of order n is

2n(n+1)/2, and four different proofs of this formula were given in [EKLP92]: the first

proof used the connection between Aztec diamonds and alternating sign matrices -

specifically, a bijection between domino tilings of Aztec diamonds and pairs of ASMs

that satisfy a particular “compatibility” condition; the second proof established the

formula as a special case of a theorem on “monotone triangles”, which are also related

to alternating sign matrices; the third proof came from the representation theory of

the general linear group; finally, the fourth proof used the technique of “domino

shuffling”, which in the original [EKLP92] paper actually was the name of an entire

combinatorial approach to tiling enumeration instead of the specific domino shuffling

algorithm that will be discussed later in this section.

If we choose uniformly at random a tiling of a large Aztec diamond, a curious phe-

nomenon is observed: outside of a roughly circular region, the dominoes are “frozen”

in a brick-wall pattern while inside the region the domino orientations appear to be

random. The boundary of this region seems to be the inscribed circle of the tilted

2This history comes from and is recounted in much greater detail in [BP99].
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Figure 1: A random tiling of an Aztec diamond of order 64

square. See Figure 1 for a random tiling of an Aztec diamond of order 64. A rigorous

analysis of the behavior of the domino shuffling algorithm led to the first proof of

the asymptotic circularity of the boundary of the frozen region, the so-called “arctic

circle theorem”, in [JPS95].

We may “dualize” the Aztec diamond by taking the center of each lattice squre to

be a vertex, with an edge adjoining each pair of adjacent lattice squares. Therefore,
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the problem of enumerating domino tilings of the Aztec diamond is equivalent to the

problem of enumerating (perfect) matchings of the dual Aztec diamond graph (ADG).

See Figure 2 for an example of a matching of an order-4 ADG and the equivalent tiling

of an order-4 Aztec diamond. We may generalize the latter problem by assigning

nonnegative real weights to each edge, and make the weight of a particular matching

be equal to the product of the weights of the edges in the matching, then summing

these weights over all possible matchings. The basic case of simply enumerating the

number of matchings thus correspond to calculating the weight-sum where each edge

is given weight 1. Around the time that [JPS98] was written, Alexandru Ionescu

discovered a recurrence relation related to domino shuffling that allows for efficient

computation of the probability that any edge in an unweighted ADG is contained in a

random matching of the ADG. This lead Gessel, Ionescu, and Propp (in unpublished

work) to derive a multivariate generating function for these edge probabilities. The

rediscovery of this “lost” derivation lead to the paper [DGIP], which forms the core

of and shares the same title as this thesis. The generating function then allowed

Cohn, Elkies, and Propp to give more detailed asymptotic analysis of random tilings

of Aztec diamonds in [CEP96] and yield a new proof of the arctic circle theorem.

By a simple local transformation known as “urban renewal”, J. Propp gives several

examples in [Pro03] whereby a number of other tiling enumeration problems can be

reduced to counting weight-sums of matchings of Aztec diamonds with a certain

weight-assignment of edges, leading to an embedding of the given graph into an ADG
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Figure 2: Tiling of an Aztec diamond of order 4

of some order. One of these problems is that of diabolo-tilings of fortresses, which,

after transforming to a weighted ADG via urban renewal, has periodic edge weights

of 1 and 1/2 in alternating order. The exact details of this weight-assignment scheme

will be given in section 4.

1.1 The Weight Sum Algorithm

As its name suggests, the weight sum algorithm allows the computation of the sum

of the weights over all possible matchings of a weighted Aztec diamond. J. Propp

points out in [Pro03] that it is “essentially a restatement of Mihai Ciucu’s cellular

graph complementation algorithm”. Given an Aztec diamond graph of order n, let a

square face centered at (i, j) be called a cell if i+j+n ≡ 1 (mod 2). The weight-sum

algorithm is reductive, in the sense that one starts with a weighted order-n ADG,

apply a edge-weight transformation at the cells, and obtain a (differently) weighted

order-(n − 1) ADG. In the edge-weight transformation, for a cell with edge weights
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Figure 3: One Step of the Weight Sum Algorithm

w, x, z and y in clockwise order, the weights at those edges become z/c, y/c, w/c

and x/c respectively, where c denotes the “cell-factor” wz+xy. See Figure 3 for how

this sub-step is done. The outer edges of the order-n ADG are then stripped away,

leaving an order-(n− 1) ADG. At the end, the cell-factors are all multiplied together

to give the desired weight-sum. For a more detailed description of this algorithm and

its proof, please refer to [Pro03].

1.2 The Edge-Probability Computation Algorithm

With weights assigned to the edges of an ADG, we now have a probability distribution

on these edges, where the probability of a particular edge is equal to the sum of

the weights of matchings containing that edge divided by the sum of weights of all

matchings of the ADG. There is also an iterative algorithm to efficiently compute

these edge probabilities, which we give a condensed description below, and the reader

is again encouraged to refer to [Pro03] for the full version and the proof.
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Given a weighted order-n ADG, we first run through the weight-sum algorithm,

recording the weighted order-k ADG we obtain along the way, for k = n − 1, . . . , 1.

For the purposes of purely computing the edge probabilities, it is not necessary to

keep track of the cell factors. In contrast to the weight-sum algorithm, the edge-

probability algorithm is constructive in the sense that it “builds up” to the edge

probabilities of the given order-n ADG. We start with the weighted order-1 ADG,

which is obtained at the final step of the weight-sum algorithm, and compute its edge

probabilities according to its weights: let A, B, C, D be the four edges arranged

in clockwise order respectively weighted w, x, z, y, then the edge probabilities of A

and C are both wz/(wz + xy), while the edge probabilities of B and D are both

xy/(wz + xy).

Now the induction step: suppose we have the edge probabilities of the order-

(k − 1) ADG; we then embed the order-(k − 1) ADG, with each edge labeled by

its probability, concentrically into an order-k ADG. At this point, if an edge has no

probability labeled on it (as will be the case for the outside edges), consider its edge

probability as 0. Then, in each of the k2 cells, we swap the probabilities across the

center of the cell. Now we perform the final correction step to obtain the actual

edge probabilities of the weighted order-k ADG. Suppose that after the swap, a cell

with edges A,B,C,D in clockwise order has probabilities p, q, r, s respectively. Then

the deficit for that cell is defined as 1 − p − q − r − s. Suppose A,B,C,D have

respective weights w, x, z, y; then the bias for edges A and C is wz/(wz + xy), and
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for edges B and D it is xy/(wz + xy). We now add to the probability of each edge

in this cell its bias times the deficit; for example, for edge A, its probability becomes

p+(1−q−r−s)·wz/(wz+xy). These are the actual edge probabilities for the order-k

weighted ADG that we obtained during the weight-sum algorithm. Note starting with

an order-n ADG with all edges given weight 1, the bias is always 1/2; this is because

the intermediate weighted ADGs that we obtained in the weight sum algorithm will

alternately have uniform edge weights of 1/2 and 1.

1.3 The Domino Shuffling Algorithm

The third algorithm in [Pro03], called domino shuffling, is used for generating a

random matching of an order-n weighted ADG. We briefly describe it here, as we

will invoke it in a later section to explain the significance of the “deficits”, also

known as “net creation rates”. This algorithm works in a similar way as the edge

probability computation algorithm, in that we first need to run through the weight-

sum algorithm to obtain n weighted ADGs of sizes 1 to n, and then “build up” to

the random matching of an order-n weight ADG in n steps, with each step consisting

of 3 substeps: destruction, sliding, and creation. The first step, generating a random

matching of the order-1 weighted ADG, is equivalent to a single flip of a biased coin,

with the bias coming from the weights on the single cell of the order-1 ADG. In

the induction step, having already a random matching of an order-(k − 1) weighted

ADG, we embed it into an order-k ADG, and erase pairs of edges that share a cell
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Figure 4: One Step of the Domino Shuffling Algorithm

(destruction); note that these are the edges which share the same “cocell” in the

order-(k − 1) ADG. Then, in the cells that only contain a single edge, that edge

is reflected across the center of the cell (sliding). Finally, the remaining cells will

be filled with pairs of edges via coin flips, biased according to the weights on each

cell in the order-k weighted ADG. At the end, we get a random matching of the

order-n weighted ADG, with the probability distribution given by its edge weights.

See Figure 4 for an example of performing one step of this algorithm, to generate a

random matching of an order-2 ADG.
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2 The Aztec Diamond Edge Probability Generat-

ing Function

Let us call a weighted ADG standard if it has uniform edge weights. We will now de-

rive the 3-variate generating function that encodes the edge probabilities of standard

ADGs, based on the edge probability algorithm described in the previous section.

The main reason that such a generating function is possible is the existence of re-

currence relations between cell deficits and edge probabilities, due to the fact that

edge-weight transformation in the weight-sum algorithm reduces an order-k standard

ADG to another order-(k − 1) standard ADG.

Color the lattice squares of the Aztec diamond alternately black and white, chessboard-

style, with the north-west “side” always consisting of white squares. Call a horizontal

pair of squares “north-going” if the left square is white and the right square is black,

so that the northernmost two squares are always north-going. In the dual Aztec dia-

mond graph, each square face corresponds to a 2× 2 block of squares in the original

Aztec diamond, and the northgoing edges are the top edges of the cells. Given a

standard ADG, we can by symmetry only consider the northgoing edge probabilities,

as the probability of a particular edge is equal to those of the three edges obtained

by rotating the ADG by 90, 180, and 270 degrees about its center.

The main result of this section is the following theorem:
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Theorem 2.1. In an Aztec diamond of order n, let p(i, j, n) denote the northgoing

edge probability for the cell centered at (i, j). Then we have the following generating

function for the quantities p(i, j, n):

F (x, y, z) :=
∑

p(i, j, n)xiyjzn

=
z/2

(1− yz)(1− (x+ x−1 + y + y−1)z/2 + z2)

The sum is taken over n ≥ 1 and −n ≤ i, j ≤ n with |i − 1/2| + |j − 1/2| ≤ n and

i+ j + n ≡ 1 mod 2.

2.1 Proof via Direct Computation

Proof. Let F (x, y, z) be defined as above, and let f(x, y, z) =
∑
d(i, j, n)xiyjzn de-

note the closely related generating function for the deficits, also known as the net

creation rates. Please refer to the edge probability computation algorithm described

in the earlier section for the definition of deficits. We seek to prove the following two

identities, from which the formula for F (x, y, z) follows by a simple algebraic manip-

ulation. The proof of the first identity will be a tedious but elementary manipulation,

while the second equation is a direct consequence of the edge probability computation

algorithm.

f = z +
1

2
z(x+ 1/x+ y + 1/y)f − z2f (2.1)

F = yzF +
1

2
f (2.2)
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Proof of (2.1): First, we need to interpret this algebraic equation for f as a

recurrence relation between its coefficients d(i, j, n). The first z term on the right hand

side corresponds to the initial condition d(0, 0, 1) = 1, that is, right after embedding

the order-0 (empty) ADG into the order-1 ADG, the four edges each have probability

0, yielding a deficit of 1. So what we need to show is the following recurrence relation:

d(i, j, n) =
1

2
[d(i− 1, j, n− 1) + d(i+ 1, j, n− 1) + d(i, j − 1, n− 1) (2.3)

+ d(i, j + 1, n− 1)]− d(i, j, n− 2)

Let t(i, j, n), b(i, j, n), l(i, j, n), r(i, j, n) denote the respective edge probabilities of

the top, bottom, left and right edges of the cell centered at (i, j), immediately after

the embedding of the order-(n− 1) ADG into the order-n ADG, before any swap or

correction. So these are “approximate” probabilities, and the exact probability for

the top (north-going) edge, for example, will be p(i, j, n) = b(i, j, n) + d(i, j, n)/2,

the sum of the probability on the bottom edge with the deficit d(i, j, n) times the

bias 1/2. We have the following equations, directly derived from the edge probability

computation algorithm:

d(i, j, n− 2) = 1− [t(i, j, n− 2) + b(i, j, n− 2) + l(i, j, n− 2) + r(i, j, n− 2)] (2.4)

d(i− 1, j, n− 1) = 1− [t(i− 1, j, n− 1) + b(i− 1, j, n− 1) (2.5a)

+ l(i− 1, j, n− 1) + r(i, j, n− 2) + d(i, j, n− 2)/2]
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d(i+ 1, j, n− 1) = 1− [t(i+ 1, j, n− 1) + b(i+ 1, j, n− 1) (2.5b)

+ r(i+ 1, j, n− 1) + l(i, j, n− 2) + d(i, j, n− 2)/2]

d(i, j − 1, n− 1) = 1− [b(i, j − 1, n− 1) + l(i, j − 1, n− 1) (2.5c)

+ r(i, j − 1, n− 1) + t(i, j, n− 2) + d(i, j, n− 2)/2]

d(i, j + 1, n− 1) = 1− [t(i, j + 1, n− 1) + l(i, j + 1, n− 1) (2.5d)

+ r(i, j + 1, n− 1) + b(i, j, n− 2) + d(i, j, n− 2)/2]

d(i, j, n) = 1− [t(i, j + 1, n− 1) + b(i, j − 1, n− 1) (2.6)

+ l(i− 1, j, n− 1) + r(i+ 1, j, n− 1)]

− [d(i, j + 1, n− 1) + d(i, j − 1, n− 1)

+ d(i− 1, j, n− 1) + d(i+ 1, j, n− 1)]/2

(2.4) is the definition of the deficit at the (i, j)-cell in the order-(n − 2) ADG.

Moving ahead from the (n − 2)-step to the (n − 1)-step in the algorithm, the four

equations in (2.5) represent the deficits in the four cells surrounding the (i, j)-cell in

the order-(n−1) ADG (note that in the order (n−1) ADG, the square at location (i, j)

is no longer a cell. Finally, moving from (n − 1)-step to the n-step in the algorithm

yields (2.6).

Substituting (2.6) into (2.3) and rearranging, we see that proving the recurrence

relation (2.3) reduces to showing the following equality:
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d(i, j + 1, n− 1) + d(i, j − 1, n− 1) + d(i− 1, j, n− 1) + d(i+ 1, j, n− 1) (2.7)

= 1− [t(i, j + 1, n− 1) + b(i, j − 1, n− 1)

+ l(i− 1, j, n− 1) + r(i+ 1, j, n− 1)] + d(i, j, n− 2)

Summing up the four equations in (2.5), and then substituting (2.4) into the right

hand side yields the following unwieldly equation:

d(i, j + 1, n− 1) + d(i, j − 1, n− 1) + d(i− 1, j, n− 1) + d(i+ 1, j, n− 1) (2.8)

= 4− [t(i− 1, j, n− 1) + b(i− 1, j, n− 1) + l(i− 1, j, n− 1)

+ t(i+ 1, j, n− 1) + b(i+ 1, j, n− 1) + r(i+ 1, j, n− 1)

+ b(i, j − 1, n− 1) + l(i, j − 1, n− 1) + r(i, j − 1, n− 1)

+ t(i, j + 1, n− 1) + l(i, j + 1, n− 1) + r(i, j + 1, n− 1)]

− [1 + d(i, j, n− 2)]

To simplify the right hand side of (2.8) into that of (2.7), we need to recall the fact

that in the edge probability computation algorithm, at the end of step n, after the

“swap” and “correct” sub-steps, the resulting edge probabilities are the actual edge

probabilities for the ADG of order n. Therefore, the edge probabilities around each

vertex needs to sum up to 1. Applying this to the four vertices of the (i, j)-square in
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the order-(n− 1) ADG, we have the following equations:

l(i, j + 1, n− 1) + t(i− 1, j, n− 1) (2.9a)

= 1− [r(i, j, n− 2) + b(i, j, n− 2) + d(i, j, n− 2)]

r(i, j + 1, n− 1) + t(i+ 1, j, n− 1) (2.9b)

= 1− [l(i, j, n− 2) + b(i, j, n− 2) + d(i, j, n− 2)]

l(i, j − 1, n− 1) + b(i− 1, j, n− 1) (2.9c)

= 1− [r(i, j, n− 2) + t(i, j, n− 2) + d(i, j, n− 2)]

r(i, j − 1, n− 1) + b(i+ 1, j, n− 1) (2.9d)

= 1− [l(i, j, n− 2) + t(i, j, n− 2) + d(i, j, n− 2)]

Summing up these four equations, and plugging in (2.4) yields

l(i, j + 1, n− 1) + r(i, j + 1, n− 1) + t(i− 1, j, n− 1) + b(i− 1, j, n− 1)+ (2.10)

l(i, j − 1, n− 1) + r(i, j − 1, n− 1) + t(i+ 1, j, n− 1) + b(i+ 1, j, n− 1)

= 2[l(i, j, n− 2) + r(i, j, n− 2) + t(i, j, n− 2) + b(i, j, n− 2)]

= 2− 2d(i, j, n− 2)

Note that the eight terms on the left hand side of (2.10) appear in the right side

of (2.8), so we make the substitution and simplify (2.8) to obtain (2.7), the equation

we needed to prove:
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d(i, j + 1, n− 1) + d(i, j − 1, n− 1) + d(i− 1, j, n− 1) + d(i+ 1, j, n− 1) (2.11)

= 4− [2− 2d(i, j, n− 2) + t(i, j + 1, n− 1) + b(i, j − 1, n− 1)

+ l(i− 1, j, n− 1) + r(i+ 1, j, n− 1)]− [1 + d(i, j, n− 2)]

= 1− [t(i, j + 1, n− 1) + b(i, j − 1, n− 1)

+ l(i− 1, j, n− 1) + r(i+ 1, j, n− 1)] + d(i, j, n− 2)

�

Proof of (2.2): Again, we first interpret this algebraic relation between F (x, y, z)

and f(x, y, z) as a relation between their coefficients, so what we need to prove is the

following:

[xiyjzn]F = [xiyjzn](yzF +
1

2
f) =⇒ p(i, j, n) = p(i, j− 1, n− 1) + d(i, j, n)/2 (2.12)

To see that this relation holds, we simply recall that p(i, j, n) represent only the

probabilities of the North-going edges, which are the top edges in the cells of the order-

n ADG. So, we trace through one whole step of the edge probabilitiy computation

algorithm: in the “embed” sub-step, the exact top-edge probability at the (i, j − 1)-

cell in the order-(n − 1) ADG becomes the approximate bottom-edge probability at

the (i, j)-cell in the order-n ADG, so in the “swap” sub-step it moves upwards to

the top edge of that same cell. Finally, in the “correct” sub-step, we add d(i, j, n)

(deficit) times 1/2 (bias) to this top-edge probability to get p(i, j, n), the exact top-

edge probability at the (i, j)-cell in the order-n ADG.



17

From (2.1), we can solve for f to obtain

f(x, y, z) =
z

1− z
2
(x+ x−1 + y + y−1) + z2

From the above formula and (2.2), we solve for F to be

F (x, y, z) =
z/2

(1− yz)(1− (x+ x−1 + y + y−1)z/2 + z2)

2.2 Alternative Derivation Via the Octahedron Recurrence

The recurrence relation (2.3), which is the key step in obtaining the ADG edge prob-

ability generating function, can also be derived using the octahedron recurrence,

which is described in detail in [Spe06]. Just like alternating sign matrices and Aztec

diamonds, the octahedron recurrence is also a product of research on Dodgson con-

densation. Speyer notes that “the study of algebraic relations between determinants

and how they are effected by various vanishing conditions is essentially the study of

the flag manifold and Schubert varieties.” This study led Fomin and Zelevinsky to

their invention of cluster algebras.3

In the octahedron recurrence framework, the recurrence relation satisfied by edge

probabilities of Aztec diamonds can be seen as just one example from a whole family

of possible recurrence relations that arise from matchings of certain bipartite planar

graphs, all of which can be encoded in the octahedron recurrence. This alternative

3[Spe06], section 1.1
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derivation is sketched out in [PS05], but as the main focus of that paper is on groves,

their derivation for the Aztec diamond edge probability generating function is missing

some details and contains some small errors. Here we present a more complete version

of the derivation, along with an interpretation of deficits as “net creation rates”.

The octahedron recurrence is a recurrence for quantities gi,j,n where i, j, n are in-

dexed by the 3-dimensional lattice and each gi,j,n is a Laurent polynomial in the initial

conditions. For the uniformly-weighted Aztec diamond, the octahedron recurrence is

gi,j,ngi,j,n−2 = gi−1,j,n−1gi+1,j,n−1 + gi,j−1,n−1gi,j+1,n−1 (2.13)

and initial conditions are gi,j,n = xi,j,n for n = 0,−1. These are the “face variables”

that we can use to encode all matchings of the order-n ADG (arbitrarily centered at

(0, 0)) by g0,0,n as follows:

g0,0,n =
∑
T

m(T )

Where T ranges over all matchings of the order-n ADG, and each matching cor-

responds to a Laurent monomial m(T ) in the variables xi,j,δ, where δ = 0 or −1

according to whether i+ j+n is respectively even or odd. m(T ) is defined as follows:

m(T ) =
∏

|i|+|j|≤n

x
1−α(i,j)
i,j,δ

α(i, j) is defined as the number of edges surrounding the face centered at (i, j). Note

that since the centers of the faces satisfy |i|+ |j| ≤ n, these faces consist of not only

the unit squares contained in the order-n ADG, but also the unit squares outside of

the order-n ADG that share at least one edge with it. Also note that in contrast to
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the previous approach based on the edge-probability computation algorithm, we no

longer restrict our attention to the cells, but also all the squares adjacent to the cells.

Clearly, each matching T gives rise to a Laurent monomial m(T ). What is less

obvious is that this mapping is actually a bijection; that is, the matching T can be

uniquely recovered fromm(T ), so that each coefficient in g0,0,n is 1. This is Proposition

17 in [Spe07]. Its proof involves the idea that for any edge e, the indicator function

1Ie∈T is equal to the negative sum of the exponents of a subset of face variables inm(T ).

This subset of faces is roughly one of the four regions that we obtain when we divide

the order-n ADG by two lines of slope 1 and −1 intersecting at the center of e. Similar

formulas for 1Ie∈T can be found by computing the sum of exponents of face variables

from the other three regions. These formulas can be verified by adjoining a formal

variable t onto the terms of the octahedron recurrence which contain face variables

from the given region in the order-n ADG, and doing some careful bookkeeping.

We now use the octahedron recurrence to prove (2.3):

Proof. Consider a probabilistic version of the ADG octahedron recurrence, by assign-

ing a probability of 2−(n+1
2 ) to each matching of the order-n ADG, according to the

uniform distribution over all matchings. We thus define

G0,0,n =
∑
T

2−(n+1
2 )m(T )

with T ranging over all matchings of the order-n ADG. Looking back at (2.13), we

see that now there is a factor of 2−(n+1
2 ) · 2−(n−1

2 ) on the left hand side, and a factor
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of (2−(n2))2 on the right hand side. Since
(
n+1
2

)
+
(
n−1
2

)
= 2 ·

(
n
2

)
+ 1, we have the

following probabilistic octahedron recurrence for G0,0,n:

Gi,j,nGi,j,n−2 =
1

2
(Gi−1,j,n−1Gi+1,j,n−1 +Gi,j−1,n−1Gi,j+1,n−1) (2.14)

If we look at the expected exponent En(i, j) of xi,j,δ in G0,0,n, we see that it is

calculuated by

En(i, j) =− 1 · pr(2 edges at face (i,j)) + 0 · pr(1 edge at face (i,j))

+ 1 · pr(0 edge at face (i,j))

where pr(?) denotes the probability of ?, i.e. the number of matchings satisfying ?

divided by 2(n+1
2 ).

In the language of domino shuffling, this corresponds to the probability of “cre-

ation” (having no edges) subtracted by the probability of “destruction” (having two

edges) at the face (i, j), thereby we call En(i, j) the “net creation rate”. Recall that

(2.2) is equivalent to the expression p(i, j, n) = p(i, j − 1, n − 1) + d(i, j, n)/2; we

may now interpret this equation as follows: the probability of a north-going edge

at the (i, j)-cell in the order-n ADG is equal to the probability that it comes from

sliding, plus the probability that it comes from creation, minus the probability that

it undergoes destruction. Note that the factor of 1/2 corresponds to the fact that

in the standard ADG, there is equal probability for the pair of top-bottom edges as

the pair of left-right edges to be created or destroyed. Since (2.2) is derived directly
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from domino shuffling, the net creation rates are exactly the deficits that are used in

computing edge probabilities - that is, En(i, j) = d(i, j, n).

To get the expectation of the exponent of the face variable xi0,j0,δ, we differentiate

the probability generating function G0,0,n with respect to this variable and then set

all variables equal to 1:

En(i0, j0) =
∂

∂xi0,j0,δ
(G0,0,n)|xi,j,δ=1

So we perform this operation on (2.14), applying the product rule for derivatives, and

obtain the following linear recurrence for En(i, j):

En(i, j) + En−2(i, j) =
1

2
(En−1(i− 1, j) + En−1(i+ 1, j) (2.15)

+ En−1(i, j − 1) + En−1(i, j + 1))

This is exactly the recurrence relation (2.3) for deficits in the earlier proof of

theorem (2.1), with slightly different notation.

3 Deriving asymptotics using generating functions

Having the generating function for a sequence of combinatorial interest often enables

us to derive asymptotics for the sequence. We now give a short introduction to the

(relatively new) research realm of analytic combinatorics, with a focus on deriving

asymptotics from multivariate generating functions, and how it has been applied

to the Aztec diamond edge probability generating function derived in the previous

section.
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3.1 The univariate case

Given a sequence {an : n ≥ 0} of complex numbers, let f(z) :=
∑

n anz
n be its as-

sociated generating function. Certain recurrences for an lead to functional equations

that can be solved for f ; for example, linear recurrences with constant coefficients

always lead to rational generating functions. Deriving asymptotics for an, i.e. mak-

ing estimate for how an grows as n tends to infinity, is fairly well understood and

somewhat mechanized; at its basis is Cauchy’s integral formula

an =
1

2πi

∫
z−n−1f(z)dz (3.1)

to which complex analytic methods can be applied to obtain good estimates for an.

Depending on the form of the generating function f , one of several known methods

may be use to derive its asymptotics. We begin with a basic estimate: if f has radius

of convergence R, then taking the contour of integration in (3.1) to be a circle of

radius R − ε gives an = O(R − ε)−n for any 0 < ε < R. If f is continuous on the

closed disk of radius R then an = O(R−n). We now mention three methods, which all

refine this basic estimate by pushing the contour out far enough to make the resulting

upper bound asymptotically sharp.

When f is entire, we can use saddle point methods, where the contour of integra-

tion in the Cauchy integral is moved so that it passes through a point (the “saddle

point”) where the integrand is not rapidly oscillating, and then a two-term Taylor

approximation is used for the integrand. Note that this method also works in the
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case where f is not entire, but the saddle point lies within the domain of convergence

of f .

In the case where f is algebraic but has a positive finite radius of convergence

R, if there is no saddle point of z−n−1f(z) in the open disk of radius R, we employ

the circle method (also known as Darboux’s method4). Here we push the contour of

integration near or onto the circle of radius R, with the refinement that if f extends to

the circle of radius R and is k times continuously differentiable there, then integration

by parts yields ∫
z−nf(z)dz = O(n−kR−n).

The transfer theorems of Flajolet and Odylyzko5 are refinements of Darboux’s

theorem. They involve using a contour consisting of an arc of a circle of radius 1/n

around r, an arc of a circle of radius r−ε centered at the origin, and two line segments

connecting the corresponding end points of the two circular arcs. This contour is

contained in a so-called “Camembert-shaped region”, the region of analyticity of an

f(z) singular at r, and allows for asymptotic extractions for the class of functions

named alg-log, which are a product of a power of r − z, a power of log(1/(r − z)),

and a power of log log(1/(r − z)).

The above short overview is mostly based on sections 1 and 2 of [PW08]. For

detailed treatises on univariate asymptotic methods, please refer to Chapter 5 of

4See [Hen91]
5See [FO90]
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[Wil06] or Part B of [FS09].

3.2 The multivariate case

For this sub-section we will focus only on results from the Pemantle-Wilson-Baryshnikov

vein of research on multivariate asymptotics, as it not only yielded the tools for asymp-

totic extraction in the widest class of multivariate generating functions, but also led

to the asymptotics of the Aztec diamond edge probability generating function. Let d

denote the number of variables, so that z = (z1, . . . , zd). Let zr :=
∏d

j=1 arz
r, so that

we have the multivariate generating function

F (z) =
∑
r

arz
r

for a multivariate array {ar : r ∈ Nd}. When d is small, we use (x, y, z) for (z1, z2, z3)

and (r, s, t) for (r1, r2, r3). Now we are interested in the asymptotic behavior of ar.

Unfortunately, things get a lot more complicated and difficult in the multivariate case.

Even for rational functions, multivariate asymptotics is far from trivial and must be

classified into a myriad of different cases. Furthermore, simple-looking generating

functions can lead to complicated asymptotic analyses and expressions: take for ex-

ample the binomial coefficients, ars =
(
r+s
r,s

)
. From the recursion ars = ar−1,s + ar,s−1,

we have

F (x, y) =
∑
r,s≥0

arsx
rys =

1

1− x− y
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It turns out, after employing the highly nontrivial Theorem 1.3 of [PW08], that

ars ∼
(
r + s

r

)r(
r + s

s

)s√
r + s

2πrs
,

which agrees with Stirling’s formula. In contrast, Stirling’s formula can be derived

using a quick application of the saddle point method for the univariate exponential

generating function ez.6

It will be necessary to separate r into its scale |r| and direction r̂ = r/|r|; we

are concerned with asymptotics when |r| → ∞ with r̂ remaining in some specified

set, bounded away from the coordinate planes. In general, for the meromorphic

multivariate generating function F = G/H, withG andH locally analytic and sharing

no common factor, the asymptotic analysis proceeds as follows:

(i) Asymptotics in the direction r̂ are determined by the geometry of the pole variety

V = {z : H(z) = 0} near a finite set, critr̂ of critical points.

(ii) As in the univariate case, fundamental to all the derivation is the Cauchy integral

representation

ar =
1

(2πi)d

∫
T

z−r−1F (z)dz

where T is the product of sufficiently small circles around the origin in each of the

coordinates, 1 is the d-vector of all ones, and dz is the holomorphic volume form

dz1 ∧ · · · ∧ dzd.

(iii) Observe that T may be replaced by any cycle homologous to [T ] in Hd(M), where

6See [FS09] Example VIII.3.
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M is the domain of holomorphy of the integrand.

(iv) Deform the cycle to lower the modulus of the integrand as much as possible; use

Morse theoretic methods to characterize the minimax cycle in terms of critical points.

(v) Use algebraic methods to find the critical points; these are points of V that de-

pend on the direction r̂ of the asymptotics, and are saddle points for the magnitude

of the integrand.

(vi) Reduce this set of critical points to a set contribr̂ ⊂ critr̂ of contributing critical

points using topological methods. Then replace the integral over T by an integral

over quasi-local cycles C(zj) near each zj ∈ contribr̂.

(vii) Evaluate the integral over C by a combination of residue and saddle point tech-

niques.

These steps lead to the meta-formula

ar
∑

z∈contribr

formula(z)

where formula(z) is a function of the local geometry for smooth, multiple, and cone

points. The main research papers that led to this method of multivariate asymptotic

extraction are [PW02], [PW04], and [BP08]. The above short summary is based upon

the beginning sections of the survey paper [PW08] and the forthcoming book [PW11].
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3.3 Asymptotics of the Aztec diamond edge probability gen-

erating function

We first recall the result of Theorem 2.1: the generating function for the edge prob-

abilities of the Aztec diamond is

F (x, y, z) :=
∑

p(i, j, n)xiyjzn

=
z/2

(1− yz)(1− (x+ x−1 + y + y−1)z/2 + z2)

For the simpler creation rate generating function, (1− (x+x−1 +y+y−1)z/2 + z2)−1,

the formula for its coefficients were derived in [CEP96] via a relation to Krawtchouk

polynomials. Then these were summed via contour integrals to prove the Arctic Circle

Theorem. However, this computation was quite specialized and does not generalize

easily to other tiling problems that exhibit arctic circle-type asymptotic behavior. In

[BP08], a new powerful machinery was introduced that not only proves the arctic

circle theorem for Aztec diamonds, but also generalizes to other generating functions

with the same type of contributing points of the singular variety as that of the Aztec

diamond generating function - the so-called quadratic points, also known as cone

points. The following summary is excerpted from Section 1.3 of [BP08].

The fundamental result of [BP08]7 is that the asymptotics of a generating function

with irreducible quadratic denominator are the same as its Fourier transform’s, which

is the dual quadratic. This is the continuous analogue of the Krawtchouk polynomials

7Theorem 3.7 in [BP08]
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that appear when the computations are done in the discrete setting. Multiplying the

denominator by a smooth factor h corresponds to convolving the Fourier transform

with a heavyside function; this is the analogue of summing.8 In other words, the

Fourier transform of a cone is the dual cone, and the Fourier transform of 1/(Qh) is

the integral of the Fourier transform of 1/Q. The details of integral computations

(and thus the proofs of [BP08] Theorems 3.7 and 3.9) involve the notion of generalized

functions, and are presented in Section 6 of [BP08].

As the Aztec diamond edge probability generating function contains a quadratic

and a smooth factor in its denominator, Theorem 3.9 of [BP08] can be applied to

derive its asymptotics. This computation is carried out in full detail in Section 4.1

of [BP08] and yields a new proof of Theorem 1 of [CEP96], which implies the arctic

circle theorem.

4 The Fortress Edge Probability Generating Func-

tion

4.1 The Standard-Weight Fortress

In an n-by-n array of unit squares, cut each square by both of its diagonals, forming

4n2 identical isoceles right triangles. Color the triangles alternately black and white,

8Theorem 3.9 in [BP08]
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Figure 5: A Fortress of Order 4

so that each black triangle is surrounded by three white triangles, and vice versa.

Then remove all the black (respectively white) triangles that have an edge on the top

or bottom (respectively left or right) boundaries of the array. The region that remains

is called a fortress of order n. For even n, the two ways of coloring the triangles lead

to mirror-image fortresses, while for odd n, the two ways of coloring the triangles lead

to genuinely different fortresses. See Figure 5 for a fortress of order 4.

We call the small isoceles right triangles monobolos, and pairs of two adjacent

monobolos are called diabolos, which are either squares or isoceles triangles. Analo-

gous to domino-tilings, we may define diabolo-tilings of fortresses. The dual graph
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to the fortress consists of squares and octagons, which, after urban renewal9, can

be turned into an Aztec diamond graph where edges are weighted according to the

following scheme:

1. Each edge has weight 1 or weight 1/2.

2. If two horizontal (resp. vertical) edges are related by a unit vertical (resp.

horizontal) displacement, they have the same weight, but if they are related by a unit

horizontal (resp. vertical) displacement, their weights differ.

3. If n is 1 or 2 (mod 4), the four extreme-most edges have weight 1/2; if n is 0

or 3 (mod 4), these four edges have weight 1.

For the fortress, we can derive its edge probability generating function in the

same way as before, but now we need to distinguish the four types of cells: type E,

those with all edge weights 1/2, type F , those with all edge weights 1, type G, those

with horizontal edge weights 1/2 and vertical edge weights 1, and type H, those

with horizontal edge weights 1 and vertical edge weights 1/2. See Figure 6 for an

example of classifying the cell types in a fortress ADG of order 2. The derivation of

the generating functions for net creation rates (e, f , g, h) and for edge probabilities

(E, F , G, H) is essentially the same as before, only now we have to keep track of

the relative positions of the four types of cells in the weight reduction process. For

example, suppose we have an order-(k − 1) fortress-weighted ADG, which is derived

9See [Pro03].
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Figure 6: Standard-Weight Fortress ADG of Order 2
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from an order-k fortress-weighted ADG by one step of the weight sum computation

algorithm. Then in the order-(k−1) ADG, if the cocell at location (i, j) is surrounded

by G-cells on the left and right and H-cells above and below, then in the order-k ADG

there is a E cell at location (i, j). So we have the following relations:

e = z +
1

5
z((x+ x−1)g + (y + y−1)h)− z2f

f =
4

5
z((x+ x−1)h+ (y + y−1)g)− z2e

g =
1

2
z((x+ x−1)f + (y + y−1)e)− z2h

h =
1

2
z((x+ x−1)e+ (y + y−1)f)− z2g

E = Hyz +
1

2
e

F = Gyz +
1

2
f

G = Eyz +
1

5
g

H = Fyz +
4

5
h

We can use a computer algebra system such as Maple to solve these relations si-

multaneously. The first four equations are treated as a system of four linear equations

in e, f, g, h with x, 1/x, y, 1/y and z being part of the coefficients, and can be solved

as a 4 by 4 matrix. Then once e, f, g, h are found, the last four equations can be

solved again as a system of four linear equations in E,F,G,H. The edge probability

generating function for all the north-going edges is then I(x, y, z) = E + F +G+H,
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and turns out to be quite a bit more complicated than that of the standard ADG.

Just looking at the denominator (as it dictates the asymptotics), we again have a

factor of 1− yz, and we name what remains as Q. We have the lengthy expression

Q = 25z8y4x4 − 25z6x3y5 − 25z6y5x5 − 25z6y3x3 (4.1)

− 25z6x5y3 − z4y8x4 + 25z4x4y6 + 2z4y6x2

+ 2z4x6y6 − z4y4 + 25z4x6y4 + 25z4x2y4 − z4x8y4

+ 46z4y4x4 + 25z4y2x4 + 2y2z4x2 + 2z4x6y2 − z4x4

− 25x3z2y5 − 25z2y5x5 − 25z2y3x3 − 25z2y3x5 + 25x4y4

There is quite a bit of symmetry in Q, especially after factoring out x4y4z4. Making

the substitutions u = (x + 1/x)/2, v = (y + 1/y)/2, w = (z + 1/z)/2, we have the

following more compact expression for Q:

Q = x4y4z4(100u2 + 200uv + 100v2 − 400w2 + 400w4 (4.2)

− 400uvw2 − 16u4 + 32u2v2 − 16v4)

= x4y4z4[100((u+ v)2 − (2w)2) + 400w2(w2 − uv)− 16(u2 − v2)2]

In Maple we can make a 3-D plot (Figure 7) of the set of points (u, v, w) where

Q = 0, as this is the singular variety that is at the base of asymptotic analysis of

the fortress edge probability generating function. It was noted in [BP08] that the

techniques developed in that paper can be extended to deal with the isolated quartic

singularity of the fortress generating function and derive its asymptotics, though the

details were left for another paper.
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Figure 7: Singular variety of the fortress edge probability generating function
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4.2 The General-Weight Fortress

In the more general case where we use the same periodic weight scheme, but with

a general parameter t instead of 1/2, the generating functions becomes yet more

complicated. The four types of cells E,F,G,H are defined in the same way as before

(with t replacing 1/2). The relations between them and their corresponding creation

rate generating functions are now

e = z +
t2

1 + t2
z((x+ x−1)g + (y + y−1)h)− z2f

f =
1

1 + t2
z((x+ x−1)h+ (y + y−1)g)− z2e

g =
1

2
z((x+ x−1)f + (y + y−1)e)− z2h

h =
1

2
z((x+ x−1)e+ (y + y−1)f)− z2g

E = Hyz +
1

2
e

F = Gyz +
1

2
f

G = Eyz +
t

1 + t2
g

H = Fyz +
1

1 + t2
h

Solving these equations, E + F + G + H again has a factor of 1 − yz in its
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denominator, and the remaining factor Q is the following:

Q = 8y4x4t4z4 + 2y2x2t2z4 − 8t2z2x3y3 + 8t2z4x2y4 + 8t2z4y2x4 (4.3)

− 4z2y3x3 + 4z4y2x4 + 4z4x2y4 − 4y5x3z6 − 4y3x5z6

+ 8y4x4z4 − 4y3x3z6 + 4y4x4z8 − 4y5x5z6 + 4y4x4t4

+ 8y4x4t2 − 4y5x3z2 − 4y3x5z2 + 4y4x6z4 + 4y6x4z4

− 4y5x5z2 − t2z4y4 − t2x4z4 + 4y4x4 − 8y5x3t2z6

− 8y3x5t2z6 + 12y4x4t2z4 − 8y3x3t2z6 + 4y4x4t4z8 + 8y4x4t2z8

− 8y5x5t2z6 − 8y5x3t2z2 − 8y3x5t2z2 + 8y4x6t2z4 + 8y6x4t2z4

− 8y5x5t2z2 − 4t4z6x5y5 − 4t4x3z6y3 + 2t2z4x6y2 + 4t4z4x6y4

+ 2t2z4x6y6 − t2z4x8y4 + 4t4z4y4x2 + 2t2z4y6x2 − 4t4x5z6y3

+ 4t4x4z4y2 − 4t4z6y5x3 + 4t4z4x4y6 − t2z4x4y8 − 4z2y3x3t4

− 4t4z2x5y5 − 4t4z2x5y3 − 4z2y5x3t4

Now there seems to be symmetry after factoring out t2x4y4z4. Making the sub-

stitutions u = (x + 1/x)/2, v = (y + 1/y)/2, w = (z + 1/z)/2, and s = (t + 1/t)/2,

we have the following (much) more compact expression for Q:

Q = t2x4y4z4(64s2u2 + 128s2uv + 64s2v2 − 256s2w2 (4.4)

− 16u4 + 32u2v2 − 16v4 + 256s2w4 − 256s2uvw2

= t2x4y4z4[64s2((u+ v)2 − (2w)2) + 256s2w2(w2 − uv)− 16(u2 − v2)2]

In the standard-weight fortress, t = 1/2 so s = 5/4. Substituting this into (4.4)
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yields (4.2), as expected. It remains to be investigated which other values of t will

correspond to something of combinatorial significance.
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