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ABSTRACT

Asymptotic formulae for two-dimensional arrays (fr,s)r,s≥0 where the associated

generating function F (z, w) :=
∑
r,s≥0

fr,sz
rws is meromorphic are provided. Our ap-

proach is geometrical. To a big extent it generalizes and completes the asymptotic

description of the coefficients fr,s along a compact set of directions specified by smooth

points of the singular variety of the denominator of F (z, w). The scheme we develop

can lead to a high level of complexity. However, it provides the leading asymptotic

order of fr,s if some unusual and pathological behavior is ruled out. It relies on

the asymptotic analysis of a certain type of stationary phase integral of the form∫
e−s·P (d,θ)A(d, θ)dθ, which describes up to an exponential factor the asymptotic be-

havior of the coefficients fr,s along the direction d = r
s

in the (r, s)-lattice. The cases

of interest are when either the phase term P (d, θ) or the amplitude term A(d, θ)

exhibits a change of degree as d approaches a degenerate direction. These are han-

dled by a generalized version of the stationary phase and the coalescing saddle point

method which we propose as part of this dissertation. The occurrence of two spe-

cial functions related to the Airy function is established when two simple saddles of

the phase term coalesce. A scheme to study the asymptotic behavior of big powers

of generating functions is proposed as an additional application of these generalized

methods.
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CHAPTER 1

INTRODUCTION

The ultimate aim of the research in this dissertation is to provide asymptotic for-

mulae for two-dimensional arrays (fr,s)r,s≥0 where the generating function F (z, w) :=∑
r,s≥0

fr,s z
r ws is known. Such arrays arise most often in combinatorial applications,

where classes of objects indexed by one or more positive integers are being counted.

When the cardinalities fr,s satisfy various, often recursive relations, the associated

generating function F (z, w) will satisfy corresponding equations or functional equa-

tions, leading to a complete or partial description of F (z, w) as an analytic function of

its arguments. Methods of approximating fr,s given F (z, w) are not well understood,

and this is the subject of the present dissertation.

The motivation for this work, as well as some basic techniques for dealing with

generating functions, lies in the area of combinatorics. These are summarized in the

second and third chapters.

In chapter 2 basic definitions pertaining to generating functions are presented,

along with some elementary properties. These are illustrated by several combinatorial

examples. Some analytic techniques are introduced as well, specifically those for

which an elementary and self-contained exposition is possible.
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Chapter 3 summarizes much of what is known about approximating the coeffi-

cients (fn)n≥0 of a one-variable generating function F (z) :=
∞∑
n=0

fn z
n. The name for

this is singularity analysis in one dimension, and there are a number of useful tech-

niques and results, some as recent as the 1990’s and some dating back to the 1960’s

and beyond. In one variable, as in the multivariate setting, all analytic techniques

start by using Cauchy’s integral formula to rewrite fn as an integral of F (z)
zn+1 over a

contour in the complex plane. The trick is to make this integral tractable, in the

sense that it may be well approximated for large values of n. There is a substantial

toolkit available, including the use of well chosen contours passing near the dominant

singularity, as well as saddle point methods when the contour must be taken through

or arbitrarily close to a stationary phase point.

One of the reasons that this analysis had not previously been extended to the

multivariable setting is that the corresponding multivariate complex variable theory

is more difficult and the multivariate stationary phase method less systematized.

The analytic machinery required to analyze and approximate generating functions

in one variable is pretty well known to the combinatorial community. However,

the corresponding apparatus required for approximation in the multivariate setting

is much less well known to combinatorialists and indeed to most mathematicians

outside of the Several Complex Variables and Applied Math communities.

The thrust of the research of Pemantle and Wilson has been to harness the theory

of several complex variables in order to derive asymptotic formulae for wide classes

of multivariable generating functions. Their approach is geometrical and topological.

The multivariate Cauchy integral is represented as a middle-dimensional integral over

a cycle in the complement of the singular locus of the generating function, and this is

2



then simplified using tools from multivariate residue theory, stratified Morse theory

and multivariate saddle point analysis. The use of powerful theories such as stratified

Morse theory depend, to some degree, on having asked the right questions: in this

case, asking for asymptotics of fr,s as (r, s) → ∞ with r
s

remaining constant, or at

any rate not coming near any of a set of degenerate directions.

In the present dissertation, we tackle the problem of degenerate directions. Specif-

ically, we investigate asymptotics of fr,s as (r, s)→∞ and r
s

converges to a degenerate

direction at a prescribed rate. The goal is to determine the bandwidth, that is, the

function g(s) such that fr,s exhibits a phase transition when r is of order g(s) and

r
s

approaches a degenerate direction. Because the powerful topological techniques

cannot be immediately applied to this situation, it is necessary to delve deeper into

multivariate saddle point methods.

Chapter 4 introduces some basic theory of several complex variables. In particular,

the Cauchy’s integral formula for several variables is introduced and various canonical

forms for multivariate analytic functions are discussed. At the end of this chapter we

present a couple of new uniqueness results for canonical representations of analytic

functions of several complex variables using one-complex variable methods.

The first of two chapters dealing mainly with new results is chapter 5. This

chapter develops some machinery for approximating a certain type of stationary phase

integral, namely
∫
e−s·P (t(s),z)A(t(s), z) dz where the phase P (t, z) and/or amplitude

A(t, z) near the stationary phase point z0 exhibit a phase change: the power series

for P (t(s), ·) has a different leading order at s =∞ versus s <∞. These results draw

on existing saddle point methods, though these methods often have been formulated

only for special cases and need to be adapted to the present problem. In the cases

3



of interest here, saddle points coalesce, and Airy-type limits are encountered. The

end of chapter 5 is devoted to a self-contained discussion on the asymptotic behavior

of the coefficient of zn of a generating function of the form f(z)n · g(z)m · h(z). The

scheme we develop is applied to rediscover a particular local limit law of the map

Airy-type.

The final chapter, chapter 6, applies the results of chapter 5 to the Cauchy inte-

grals arising from bivariate rational generating functions. As an example, some com-

binatorial problems are analyzed from start to finish: bivariate generating functions

are derived, critical directions identified, asymptotics are reduced to computations of

certain integrals, and finally asymptotic approximations for these are derived which

are uniform throughout the problematic region, i.e., as (r, s)→∞ with r
s

approach-

ing a degenerate direction. Putting these steps together can lead to a high degree

of complexity in general, but it is possible to provide a formula for the leading term

of fr,s when F (z, w) is a meromorphic function and some unusual and pathological

behavior is ruled out.

4



CHAPTER 2

GENERATING FUNCTION METHODS

2.1 Laplace and the dawn of modern counting

Pierre Simon Laplace (1749-1827) experienced for the good of all humankind a

revelation when he discovered the idea of generating functions as a means to count.

According to Rota [Rot75]: “Laplace discovered the remarkable correspondence be-

tween set theoretic operations and operations on formal power series and put it to

great use to solve a variety of combinatorial problems”.

The idea of Laplace was to associate to a sequence of numbers of interest a

power series. In the modern jargon, the formal power series or sometimes also called

generating function associated to a sequence of (complex) numbers (an)n≥0 is the

series

(2.1) A(z) :=
∞∑
n=0

an z
n .

The above z is a complex variable. The definition is to be understood in a purely

algebraic sense and by no means do we claim that A(z) defines a function of z. After

all it is possible that the radius of convergence of A(z) is zero. Thus, a priori, a power

series is not meant to be evaluated at any particular value of z. The exception to this

5



is z = 0 which is the only point in the complex plane where a priori we can ensure

convergence.

We will let C[[z]] denote the set of formal power series in the indeterminate

z. For an arbitrary element such as A(z) in (2.1) we will write [zn]A(z) to refer

to the coefficient of zn in the series. Given two elements F (z) :=
∞∑
n=0

fn z
n and

G(z) :=
∞∑
n=0

gn z
n, their sum and product are respectively defined as

F (z) +G(z) :=
∞∑
n=0

un z
n ,(2.2)

F (z) ·G(z) :=
∞∑
n=0

vn z
n ,(2.3)

where un := fn+gn and vn :=
n∑
k=0

fk ·gn−k. These operations are well-defined in C[[z]]

and indeed make of this set an integral domain. Furthermore, if F (z) and G(z) are

absolutely convergent for all |z| < r, with r > 0, then the series in (2.2) and (2.3) are

also absolutely convergent for all such z and their limit is precisely to F (z) + G(z)

and F (z) ·G(z) respectively.

It is convenient to rewrite (2.3) as follows

(2.4) F (z) ·G(z) =
∞∑
n=0

{ ∑
p+q=n

fp · gq

}
zn ,

where the indices p and q range over the nonnegative integers.

If H(z) is the the generating function associated to a third sequence (hn)n≥0, the

reader should not be very surprise to stare at the formula

(2.5) F (z) ·G(z) ·H(z) =
∞∑
n=0

{ ∑
p+q+r=n

fp · gq · hr

}
zn ,

where the indices in the middle summation again range over the nonnegative integers.

6



Observe that parenthesis in left-hand side above are not needed because the right-

hand side in (2.5) implies that multiplication in C[[z]] is associative.

Whether or not a formal power series defines an analytic function, their relevance

for counting problems is mainly based upon formulas (2.4) and (2.5) and the gener-

alization of these to a higher number of factors. To see the value of this assertion

consider the following problem.

Question: How many ways are there to write the number 2001 as a sum of mul-

tiples of 1, 2, 3 and 5? In a more precise way: how many four-tuples (k1, k2, k3, k5)

of nonnegative integers are there such that k1 + 2 · k2 + 3 · k3 + 5 · k5 = 2001?

Define

an := the number of (k1, k2, k3, k5) such that k1 + 2 · k2 + 3 · k3 + 5 · k5 = n .

Although our motivating question relates only to the coefficient a2001 one could

aspire for a formula or procedure to compute explicitly the general coefficient an. We

may even wonder about an asymptotic formula for the coefficients an as n → ∞,

after all, one expects these coefficients to be astronomically large if n is large.

We will show that

an = the coefficient of zn of the Taylor series about z = 0(2.6)

of
1

1− z − z2 + z4 + z7 − z9 − z10 + z11
.

In equivalent words, the generating function associated to the sequence (an)n≥0 is the

multiplicative inverse in C[[z]] of the polynomial

(1− z − z2 + z4 + z7 − z9 − z10 + z11).
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To show (2.6), consider the power series 1

F (z) :=
∞∑
k1=0

zk1 ·
∞∑
k2=0

z2k2 ·
∞∑
k3=0

z3k3 ·
∞∑
k5=0

z5k5 ,

= (1− z)−1 · (1− z2)−1 · (1− z3)−1 · (1− z5)−1

= (1− z − z2 + z4 + z7 − z9 − z10 + z11)−1 .

But, on the other hand, using the generalization of formulas (2.4) and (2.5) you may

agree that

F (z) =
∞∑
n=0

#
{

(k1, k2, k3, k5) : k1 + 2k2 + 3k3 + 5k5 = n
}
zn ,

=
∞∑
n=0

an z
n .

Since two formal power series are equal if and only if they are associated to the same

sequence, (2.6) follows from the above two representations for F (z).

In what remains in this section we will use (2.6) to obtain more tractable expres-

sions for an. For example, using that F (z) is analytic near z = 0 we have that

(2.7) an =
1

n!
· d

n

dzn

[
F (z)

]
.

The above formula is very useful to compute an for small values of n. To mention

some few we obtain that

(2.8)

a0 = 1 , a1 = 1 , a2 = 2 , a3 = 3 ,

a4 = 4 , a5 = 6 , a6 = 8 , a7 = 10 ,

a8 = 13 , a9 = 16 , a10 = 20 , a11 = 24 .

1The series
∞∑
k=0

zn·k, with n > 0 an arbitrary integer, simply represents the power series associated

to the sequence (bk)k≥0 where bk := 1 if n divides k, however, bk := 0 otherwise. Furthermore, using

the definition in (2.4) it follows that
∞∑
k=0

zn·k = 1
1−zn .
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However, (2.7) is not an efficient formula for large values of n. A more suitable

approach to deal with the case in which n is large is to determine a linear recursion sat-

isfied by the coefficients (an)n≥0. Indeed, a well-known fact is that a one-dimensional

power series is rational if and only if its coefficients satisfy a linear recursion.

To reveal this recursion in our particular case notice that

1 = (1− z − z2 + z4 + z7 − z9 − z10 + z11) · F (z) ,

=
∞∑
k=0

ak (1− z − z2 + z4 + z7 − z9 − z10 + z11) zk .

As a result, by recognizing the coefficient of zn on both sides of the above identity,

we obtain the formula

(2.9) an = an−1 + an−2 − an−4 − an−7 + an−9 + an−10 − an−11 .

This linear recursion together with its initial values provided in (2.8) is enough

to compute explicitly the numerical value of any an. For example, using computer

algebra for n = 2001 we obtain that there are 44, 879, 079 ways to write the number

2001 as sum of multiples of 1, 2, 3 and 5.

An alternative approach to find a rather more explicit formula for an proceeds

from the partial fraction decomposition of F (z). Indeed if u, v are non-trivial roots

of unity such that u3 = 1 and v5 = 1 then one determines that

F (z) =
1

(1− z)4 · (1 + z)

· 1

(u− z) · (u2 − z)

· 1

(v − z) · (v2 − z) · (v3 − z) · (v4 − z)
.
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The method of partial fractions then assures that there are constants Aj, Bj, Cj

and Dj such that

F (z) =
A1

1− z
+

A2

(1− z)2
+

A3

(1− z)3
+

A4

(1− z)4
(2.10)

+
B1

z + 1
+

C1

u− z
+

C2

u2 − z

+
D1

v − z
+

D2

v2 − z
+

D3

v3 − z
+

D4

v4 − z
.

Observe that

A4 = lim
z→1

(1− z)4 · F (z) ,

=
1

2 · (2− u− u2) · (4− v − v2 − v3 − v4)
,

=
1

2 · 3 · 5
.

The advantage of (2.10) is that the coefficient of zn of each term in the right-

hand side is relatively simpler to determine than for F (z). Indeed, by repeated

differentiation of the geometric series one determines for all a 6= 0 and nonnegative

integer k > 0 that

[zn]
1

(a− z)k
=

1

an+k

(
n+ k − 1

k − 1

)
,(2.11)

∼ nk−1

an+k · (k − 1)!
.

The above asymptotic formula is only valid as n → ∞ and can be derived using

Stirling’s formula (see (2.52) ahead).

Using the above identity, it is now direct to read-off the the coefficient of zn on

both sides of (2.10). We obtain the explicit formula

(2.12) an =
4∑

k=1

Ak ·
(

n

k − 1

)
+ n ·

{
B1 · (−1)n +

2∑
k=1

Ck
uk(n+1)

+
4∑

k=1

Dk

vk(n+1)

}
.
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Furthermore, the asymptotic formula in (2.11) implies that the term A4 ·
(
n
k−1

)
dominates the others terms in the above summation for large values of n. This lets

us obtain that

(2.13) an ∼
1

30

(
n

3

)
,

as n→∞.

For example, if we use the above approximation to estimate a2001 we obtain that

there are approximately 44, 511, 144 ways to write the number 2001 as sums of multi-

ples of 1, 2, 3 and 5. This differs from the actual number of ways, which is 44, 879, 079,

however, the relative error incurred in the approximation is less than 1%. Thus, in

any situation where the actual value of an is not needed but only an approximation

with a small relative error, the estimation of an using (2.13) instead of (2.9) or (2.12)

should be preferred.

The example we discussed pretty much describes all the known methods to obtain

information about rational generating functions in one variable.

It is worth to remark that none of our discussion up to (2.12) required analyticity

as a main feature. Indeed, the computation of the first few coefficients an could have

been done by hand without the need of (2.7). However, analyticity was implicitly

used to obtain (2.13) because Stirling’s formula is a classical application of the theory

of analytic functions of one complex variable.

2.2 Automata and regular languages

An automaton is a mathematical model of a machine equipped with memory and

capable of performing certain finite number of operations in a finite number of steps.

11



A first example of an automaton, the so called Turing machine, was conceived

by Alan Mathison Turing (1912-1954) in his paper On Computable Numbers [Tur36].

Since then, several other models have been conceived. In this section we will focus on

the so called finite automata which have been broadly used in the analysis of regular

languages.

A language is a set of words constructed using a finite alphabet. For example,

given the alphabet of two letters A := {a, b} examples of words could be aba, bb or

even ∅ which is the usual notation (in language theory) to refer to the empty word.

The length of a word is defined to be the number of characters it uses. Accordingly,

the empty word is defined to have length zero.

Given two words u and v we will write (u)(v) to denote the word obtained by

concatenating u and v with u followed by v. Thus, for example, (aba)(bb) = ababb

and (∅)(aba) = aba.

According to the classification of Chomsky [Cho56] a language is regular if it co-

incides with the set of all words recognized by a deterministic finite-state automaton.

For example, the language L0 of all the words formed with the alphabet {a, b}

that contain somewhere the string “aba” is a regular language (see figure 2.1). We

will refer to the automaton represented in figure 2.1 as “Hal”. Its so called states are

q0, q1, q2 and q3. q0 is called the initial state whereas q3 is referred to as the final

state.

The words recognized by Hal are by definition words formed with the edge labels

read along any path in the graph that starts in the state q0 and ends at q3. Thus, for

example, the word baaabbabababba is recognized by Hal for the final state is reached as

soon as Hal inspects the ninth character. However, the word baabba is not recognized

12



by Hal for the associated path ends in the state q1.

q1 q2 q3q0

b

a b a

a

b

a,b

Figure 2.1: Representation of a four-state automaton via a multi-labelled graph. The
associated automaton recognizes all words constructed with the alphabet
{a, b} that contain somewhere the string “aba”.

The proof that the words recognized by Hal are only words containing the string

aba is simple and will be omitted. For the converse, suppose that there is a word

containing the string aba which is not recognizable by Hal. Let x be a shortest

of them. x must be of length at least 3. Furthermore, x must start with an “a” or

otherwise by erasing its first character we would obtain a shorter word still containing

the string aba. For the same reasons the second letter must be a “b”. The third

letter cannot be an “a” for then x = (aba)(y) and any letter of this form is certainly

recognized by Hal. But the third letter cannot be a “b” either for then by erasing

the first character of x we could find a shorter word containing the string aba. This

is not possible because the third letter in x must be either an “a” or a “b”. We have

incurred in a contradiction and therefore such a word x cannot not exist.

13



The conclusion of the previous paragraph is that Hal recognizes only and all words

contained in the (regular) language L0.

Question: How many words are there in L0 of length n?

Interestingly, and as discovered by Chomsky and Schützenberger [ChoSch63], Hal

may be of great inspiration to answer this question. Before occupying ourselves in any

computation we introduce some generic notation. Given an arbitrary integer n ≥ 0

and a language L we will define [L]n to be the number of words in L of length n.

Accordingly, we will define [L](z) :=
∞∑
n=0

[L]n z
n and will refer to it as the generating

function associated to L.

Our question is equivalent to the problem determining the coefficients of [L0](z).

However, motivated by the inner structure of Hal, we will consider the (also regular)

languages defined as

L1 := words recognized by the automaton with initial state q1 ,

L2 := words recognized by the automaton with initial state q2 ,

L3 := words recognized by the automaton with initial state q3 ,

and their associated generating functions [L1](z), [L2](z) and [L3](z).

A simple inspection to figure 2.1 reveals that

L0 = {a} × L1 + {b} × L0 ,(2.14)

L1 = {a} × L1 + {b} × L2 ,(2.15)

L2 = {a} × L3 + {b} × L0 .(2.16)

The notation used above may require some clarifications. {a} and {b} are used to

represent the languages with the single word ”a” and ”b” respectively. The symbol

14



”×” stands for concatenation of languages. Thus, for example, L1 × L0 denotes the

language formed by all words which start with the word in L1 and are followed by a

word in L0. The symbol ”+” replaces the standard union sign, however, it is used to

emphasize that the sets in the union are disjoint.

The set theoretical identities in (2.14), (2.15) and (2.16) translate almost directly

into the following relations involving generating functions

[L0](z) = z · [L1](z) + z · [L0](z) ,(2.17)

[L1](z) = z · [L1](z) + z · [L2](z) ,(2.18)

[L2](z) = z · [L3](z) + z · [L0](z) .(2.19)

We will explain only the first of these identities. A similar argument will apply

to obtain the other two. First, observe that (2.14) implies for all n ≥ 1 that

[L0]n = [{a} × L1 + {b} × L0]n ,

= [{a} × L1]n + [{b} × L0]n ,

= [L1]n−1 + [L0]n−1 ,

where for the middle identity we have used that {a} × L1 and {b} × L0 are disjoint.

Using that [L0]0 = 0 we obtain

[L0](z) =
∞∑
n=1

[L0]n z
n ,

=
∞∑
n=1

[L1]n−1 z
n +

∞∑
n=1

[L0]n−1 z
n ,

= z · [L1](z) + z · [L0](z) .

This proves (2.17).

15



Observe that L3 is simply all words formed with the alphabet {a, b}. Thus,

[L3]n = 2n and hence, [L]3(z) = 1
1−2z

. Because of this, the identities in (2.17), (2.18)

and (2.19) can be easily put into a linear form. Namely,
(1− z) −z 0

0 (1− z) −z

−z 0 1




[L0](z)

[L1](z)

[L2](z)

 =


0

0

z
1−2z

 .

As a result, by inverting the linear system, we obtain that

[L0](z) =
z3

(z3 − z2 + 2z − 1)(2z − 1)

= z3 + 4z4 + 11z5 + 27z6 + 63z7 + 142z8 + 312z9 + 673z10 + . . .

In particular, we see that there are 11 binary words of length 5 that contain

the string aba. These are: ”abaaa”, ”abaab”, ”ababa”, ”ababb”, ”aabaa”, ”aabab”,

”babaa”, ”babab”, ”aaaba”, ”baaba” and ”bbaba”. Also, there are 673 binary words

of length 10 containing somewhere the string aba although this time is not so easy

to list all of them.

The first few coefficients of [L0](z) can be computed by repeated differentiation.

On the other hand, the method of partial fractions could be used to determine an

exact formula for the coefficients of [L0](z). Instead, we shall be concerned with the

problem of estimating the order of [L0]n, as n→∞.

It is common knowledge among generating functionologists that the closet sin-

gularity to the origin of a generating function provides a great deal of information

about its coefficients. In our case, [L0](z) has as many singularities as zeroes in its

denominator.
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These last are

z1 = 0.5 ,

z2 = 0.56984 . . . ,

z3 = 0.21507 . . .+ i · 1.30714 . . . ,

z4 = 0.21507 . . .− i · 1.30714 . . . .

The argument we will present to show that z1 determines the leading asymptotic

order of [L0]n should serve as model of a much more general technique. Since the

analyticity of [L0](z) will play a fundamental role in our approach it is common

among the specialists to describe this approach as an analytic method. 2

Define ρ0 := z1/2 and ρ1 := (z1 + z2)/2 and observe that z1 is the only singularity

of [L0](z) within the annulus [z : ρ0 ≤ |z| ≤ ρ1] (see figure 2.2). To obtain an

asymptotic formula for [L0]n we first represent this coefficient using Cauchy’s formula

(see [Rud87]) over the contour [z : |z| = ρ0], which we parametrize counterclockwise.

The resulting integral is then compared with the integral over the contour [z : |z| =

ρ1] by means of the residue theorem (see [Rud87]). In accomplishing this plan we

obtain that

[L0]n =
1

2πi

∫
|z|=ρ0

[L0](z)

zn+1
dz ,(2.20)

= Res

(
− [L0](z)

zn+1
, z = z1

)
+

1

2πi

∫
|z|=ρ1

[L0](z)

zn+1
dz ,

= 2n +
1

2πi

∫
|z|=ρ1

[L0](z)

zn+1
dz .

2The method of partial fractions is much more efficient to determine the leading asymptotic order
of the coefficients of a rational generating function of one variable. However, analytic methods can
be used to deal more generally with meromorphic functions even in the realm of several variables.
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z3

z1 z2

z4

ρ0

ρ1

Figure 2.2: [L0](z) is analytic everywhere except at z = z1, z2, z3, and z4. Since z1 is
the closet singularity to the origin, the leading asymptotic order of [L0]n
coincides with the residue of [L0](z)

zn+1 at z = z1.

The hope is that the term produced by the residue in (2.20) represents the leading

asymptotic order of [L0]n, as n→∞. To verify this, parametrize [z : |z| = ρ1] letting

z = ρ1e
iθ, with θ ∈ [0, 2π]. One then determines that∣∣∣∣ 1

2πi

∫
|z|=ρ1

[L0](z)

zn+1
dz

∣∣∣∣ ≤ c · ρ−n1 ,

where c is the maximum value of |[L0](z)| as z ranges over the circle of radius ρ1.

This maximum value is finite because [L0](z) is a continuous function of z over the

circle of radius ρ1.
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Using asymptotic notation, the above inequality implies that

1

2πi

∫
|z|=ρ1

[L0](z)

zn+1
dz = O

(
ρ−n1

)
,

as n→∞.

As a result, the last formula in (2.20) can be written in the more compact form

[L0]n = 2n ·
[
1 +O

({ρ1

2

}−n)]
,

as n→∞. The O
({

ρ1

2

}−n)
represents a term which up to a constant factor, which

is independent of n, is bounded by
{
ρ1

2

}−n
. (See section 3.1 for further reference on

the meaning and uses of the big-O symbol.)

Since ρ1 < 2, it follows that
{
ρ1

2

}−n → 0, as n→∞, and therefore the

(2.21) lim
n→∞

[L0]n
2n

= 1 .

In probabilistic terms the finding in (2.21) is almost obvious. Indeed, the same

conclusion could be obtained using Kolmogorov’s 0-1 law (see [Dur95]). A more

intuitive explanation goes as follows. Since there are a total of 2n binary words of

length n, the probability of picking any one of them at random is 1
2n

. Therefore, the

ratio in the above limit represents the probability of picking up at random a word

containing the pattern aba among all binary words of size n. Intuitively, if n is big,

it is extremely unlikely to not observe the pattern aba within a random word of size

n. Conversely, if a word of a very big size is chosen at random (among all words of

the same size) then it is very likely to observe the pattern aba within it. The above

limit shows that this intuition is correct.
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2.3 Plane trees, algebraic generating functions and the sta-
tionary phase method.

A tree is an undirected graph which is connected and free of cycles. The size

of a tree is defined to be its number of nodes. A plane tree or also called ordered

tree is a tree that can be embedded in the plane and has a distinguished node called

root. More precisely, these are trees with a root where the order given to the subtrees

dangling from any node is taken into account. (For a compact reference about the

terminology used in graph theory see the Appendix section in [Sta86].)

For example, in figure 2.3, T3 and T4 count as different plane trees although,

thought of as undirected graphs, they would be equal.

Question: How many plane trees are there of size n?

Let Gn be the number of plane trees of size n and G(z) :=
∞∑
n=1

Gn z
n be the

generating function associated to these coefficients. It turns out that the recursive

structure of plane trees will translates into a functional equation for G(z). Indeed,

we will show that

(2.22)
{
G(z)

}2 −G(z) + z = 0 .

In particular, G(z) is algebraic meaning by this it is the solution of a polynomial

equation with coefficients in C[z] i.e. the ring of polynomials in the variable z with

complex coefficients.

We will not enter into a deep discussion on algebraic generating functions, how-

ever, we want to emphasize that they have been and are nowadays subject of active

research. (See section 6 in [Sta99].)

20



T1

T2

T3 T4

Figure 2.3: Examples of plane trees of various sizes. T1 is of size 1. T2 is of size 8.
Observe that T3 and T4 count as different plane trees of size 10 despite
that, as graphs, they are equivalent.

If in (2.22) we complete the square and use that there are no plane trees of size

0, in other words, G(0) = 0, we can determine that

(2.23) G(z) =
1−
√

1− 4z

2
.

The binomial formula states that

[zn] (1 + a · z)b = an · b(b− 1) · ... · (b− n+ 1)

n!
,

provided that n is a nonnegative integer and a, b ∈ C are nonzero. If in (2.23) we

recognize the coefficient of zn on both sides, the binomial formula lets us conclude,

for all n ≥ 1, that

Gn =
(2n− 2)!

n! (n− 1)!
=

1

n

(
2n− 2

n− 1

)
.(2.24)

The above coefficients are known as Catalan numbers.
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To clarify the functional equation in (2.22) we will count the number of plane

trees partitioning them according the number of subtrees dangling from the root.

We will let Gn(k) to be the number of trees of size n which have k subtrees

dangling from the root. Since the order in which these k subtrees are placed below

the root matters, it should be clear, for all n ≥ 1, that

Gn(k) =
∑

n1+...+nk=(n−1)

Gn1 · ... ·Gnk ,

= [zn−1]

{
∞∑

n1=1

Gn1 z
n1

}
· ... ·

{
∞∑

nk=1

Gnk z
nk

}
,

= [zn−1]{G(z)}k .

Therefore

[zn]G(z) =
∞∑
k=1

[zn−1]{G(z)}k ,

= [zn] z ·
∞∑
k=1

{G(z)}k ,

= [zn]
z

1−G(z)
.

Observe that the above identity not only holds for all n ≥ 1 but by inspection also

for n = 0. Consequently, G(z) = 1
1−G(z)

and this proves (2.22).

The above computations are not as trivial as they may seem at a first glance.

The condition G(0) = 0 is required to ensure that the
∞∑
k=1

{G(z)}k is effectively a

power series. Indeed, it implies that [zn]{G(z)}k = 0, for all k > n. As a result, the

coefficient of zn in
∞∑
k=1

{G(z)}k is well-defined because it is a finite sum of nonzero

terms. 3 It is now matter of routine to check that
(
1 − G(z)

)
and

∞∑
k=1

{G(z)}k are

3Otherwise, if there were infinitely many nonzero terms to consider in the summation the series
would diverge for its coefficients are known to be nonnegative integer numbers. A deeper discussion
concerning this remark will be given in section 2.5 but in the more general context of bivariate power
series.
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multiplicative inverses in C[[z]].

The procedure we have just exposed to determine G(z) can be applied to more

restricted classes of plane trees. For example, consider the class of unary-ternary

trees. These are plane trees where each node has either 0, 1 or 3 nodes dangling from

it.

Question: How many unary-ternary trees are there of size n?

Let Un denote this number and let U(z) :=
∞∑
n=1

Unz
n be their associated generating

function. As you may expect U(z) is algebraic and we would like to determine the

functional equation it solves. We will do this by partitioning the set of unary-ternary

trees into three sets. Namely those with none, one or three subtrees dangling from

the root node.

Define U(k, n) with k = 0, 1 or 3 to be number of unary-ternary trees of size n

with k subtrees dangling from the root. Accordingly, we set Uk(z) :=
∞∑
n=1

U(k, n) · zn.

Since there is only one unary-ternary tree (which happens to be of size 1) with no

subtrees dangling from its root node then U0(z) = z. On the other hand, it should

be clear that there as many unary-ternary trees of size n with only one tree dangling

from the root as there are unary-ternary trees of size (n− 1). Thus U(1, n) = Un−1,

for all n ≥ 2, and therefore U1(z) = z ·U(z). Finally, following the same outline used

in the previous discussion on plane trees, we obtain that

[zn]U3(z) = [zn−1]

{
∞∑
i=1

Ui z
i

}
·

{
∞∑
j=1

Uj z
j

}
·

{
∞∑
k=1

Uk z
k

}
,

= [zn−1] {U(z)}3 ,

= [zn] z{U(z)}3 .

Therefore, U3(z) = z · {U(z)}3.
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Summarizing, U0(z) = z, U1(z) = z · U(z) and U3(z) = z · {U(z)}3. But, due to

the disjointness of the three classes of unary-ternary trees considered, it should be

clear that U(z) = U0(z) + U1(z) + U3(z). This implies that U(z) is a solution of the

functional equation

(2.25) U(z) = z · Φ(U(z)) ,

with Φ(u) := 1 +u+u3. This functional equation cannot be solved as directly as the

one in (2.22). One attempt to find U(z) would be to solve (2.25) selecting the proper

branch which produces U(z) = z+z2+z3+... because there is only one unary-ternary

tree of size 1, 2 and 3 respectively. However, it is will prove more fruitful to explore

a rather more analytical approach.

For a functional equation of the form in (2.25) there is a standard way to relate

the coefficients of U(z) to the coefficients of Φ(u), this last regarded as a power series

in u. The Lagrange inversion formula (see section 5.4 in [Sta99]) asserts that

(2.26) Un =
1

n
[un−1] {Φ(u)}n .

For relatively small values of n one may easily determine an exact numerical

value for Un using (2.26). However, a manageable formula for Un is not readily from

(2.26) and this identity only constitutes an intermediate step to find more explicit

information about the coefficients Un.

The demonstration of (2.26) proceeds as follows. Observe that U(z) must be

analytic in some neighborhood of the origin after all 0 ≤ Un ≤ Gn and G(z) itself is

analytic near the origin. On the other hand, Un = 1
n
[zn−1]U ′(z). (This last identity is

actually true for an arbitrary power series.) Representing [zn−1]U ′(z) as an integral
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using Cauchy’s formula (see [Rud87]) and then using (2.25) we find that

Un =
1

n
· 1

2πi

∫
γ

U ′(z)

zn
dz ,

=
1

n
· 1

2πi

∫
γ

{
Φ(U(z))

U(z)

}n
· U ′(z) dz ,

where γ is any circle of a sufficiently small radius so that it is contained in the domain

of convergence U(z). If we then substitute: u = U(z), then it follows that

Un =
1

n
· 1

2πi

∫
U(γ)

{
φ(u)

u

}n
du .

The Lagrange inversion formula follows from the fact that U(γ) above is a closed

contour having winding number equal to one about u = 0. This proves (2.26).

As a result, for all R > 0 we find that

(2.27) Un =
1

n
· 1

2πi

∫
|u|=R
{g(u)}n du ,

where we have defined

g(u) :=
Φ(u)

u
,

=
1

u
+ 1 + u2 .

The problem of determining the asymptotic behavior of Un is therefore equivalent

to the understanding of the asymptotic behavior of the integral in (2.27). But, it

should be expected that for large values of n the main contribution to the integral in

(2.27) comes from integration near those u’s which maximize the modulus of |g(u)|

along the circle [u : |u| = R]. To characterize these points observe that

g(u eiθ) = g(u) · exp
{

(Lg)(u) · θ + . . .
}
,
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where we have defined

Lg(u) := i
u · g′(u)

g(u)
,

provided that g(u) 6= 0. Thus, if u is a local maximum of |g(u)|, with |u| = R, then

the <{Lg(u)} = 0. This is a “first order condition” satisfied by all local maximum

of |g(u)| along the circle [u : |u| = R].

This condition is certainly satisfied wherever g′(u) = 0 and g(u) 6= 0. In our

context, a point of these characteristics is r := 1
3√2

and, as can be seen from figure

2.4, it turns out that u = r maximizes the |g(u)| along the circle [u : |u| = r].

This motivates to select R = r in (2.27). Furthermore, if in (2.27) we normalize the

integrand by {g(r)}n and parametrize the contour of integration as u = reiθ, with

θ ∈ [−π, π], then we obtain that

(2.28) Un =
r · {g(r)}n

2πn
·
∫ π

−π

{
g(reiθ)

g(r)

}n
eiθ dθ .

To estimate the above integral we do not need to integrate all the way from −π

to π. Indeed, if we define m(ε) := min
θ:ε≤|θ|≤π

ln
∣∣∣ g(r)
g(reiθ)

∣∣∣ then

(2.29)

∫ π

−π

{
g(reiθ)

g(r)

}n
eiθ dθ =

∫ ε

−ε

{
g(reiθ)

g(r)

}n
eiθ dθ +O

(
e−n·m(ε)

)
,

for all n ≥ 0. Observe that m(ε) > 0 because, for all nonzero θ ∈ [−π, π],
∣∣∣ g(r)
g(reiθ)

∣∣∣ > 1.

The identity in (2.29) will be of practical use only if the integral on the left-hand

side is comparable in size to the integral on the right-hand side; that is, if the part of

the original integral we have neglected tends to be of a much smaller size (for large

values of n) than the part of the integral we have kept.
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|g(   )|ξ 2

θ

Figure 2.4: Plot of |g(ξ)|2 with ξ := r eiθ and θ ∈ [−π, π]. The graph shows that
u = r maximizes the |g(u)| along the circle [u : |u| = r].

The estimation of the integral on the right-hand side in (2.29) will be outlined

using the stationary phase method (see theorem 5.2 and corollary 5.3 in [PemWil01]).

We first rewrite{
g(reiθ)

g(r)

}n
· eiθ = exp

(
−n · ln

{
g(r)

g(reiθ)

})
· eiθ ,

= exp

(
−n ·

{
3

3 + 2r
θ2 + . . .

})
· (1 + . . .) ,

where, on the second identity, we have made explicit the first nontrivial terms of the

Taylor series of ln
{

g(r)
g(reiθ)

}
and eiθ about θ = 0.

While the Taylor series of eiθ is known to converge for all values of θ, the series for

ln
{

g(r)
g(reiθ)

}
a priori is only known to converge if θ is sufficiently small. The advantage

of (2.29) is precisely that we may chose ε > 0 small enough to ensure the convergence
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of this last series for all θ in the disk [θ : |θ| ≤ ε]. The stationary phase method

then asserts that to obtain a good approximation of the integral between [−ε, ε] it is

enough to consider the leading term in each of the determined series. More precisely,

(see section 3.1 for clarifications on the notation) it lets us conclude that∫ ε

−ε

{
g(reiθ)

g(r)

}n
eiθ dθ ∼

∫ ε

−ε
exp

(
− 3n

3 + 2r
θ2

)
dθ ,

=

√
3 + 2r

6n
·
∫ +ε(n)

−ε(n)

e−τ
2/2 dθ ,

∼
√
π(3 + 2r)

3n
.

Above, for the last identity, we have used that ε(n) := ε ·
√

6n
3+2r

→ ∞, as n → ∞,

and the well-known fact that the
∫∞
−∞ e

−τ2/2dτ =
√

2π.

Thus, the
∫ ε
−ε

{
g(reiθ)
g(r)

}n
eiθ dθ is of order n−1/2. In particular, it is the leading

order on the right-hand side in (2.29). As a result, using (2.28) we obtain the asymp-

totic formula

(2.30) Un ∼
r

2
·
√

3 + 2r

3π
· n−3/2 · {g(r)}n ,

as n→∞.

The above formula estimates that there are 356 unary-ternary trees of size 10.

However, the Lagrange inversion formula implies that there are exactly 349 of these

trees. The relative error is less than 2%. On the other hand, there are exactly

86,236913,825615,976816 unary-ternary trees of size 50. If instead we use (2.30) to

aproximate this number we obtain 86,660613,708482,684088 and the relative error in

the estimation is this time less that 0.5%. Formula (2.30) states that the relative

error will approach zero as n → ∞. However, even for a small number like n = 50

this relative error is surprisingly small.
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2.4 Symbolic combinatorics

The success of Generating function methods in studying combinatorial quantities

is mainly due to the way summation and multiplication of power series has been

defined. In this section we will support this claim from the more abstract but very

general point of view of the so called symbolic combinatorics.

Symbolic combinatorics deals with combinatorial classes where a notion of size

is associated to each member in the class. For example, a combinatorial class could

be the set of unary-ternary trees where the size of a tree is defined as its number of

vertices.

In a more abstract setting consider two arbitrary combinatorial classes F and

G. We model the notion of size in each class prescribing the existence nonnegative

integer-valued functions | · |F and | · |G defined on F and G respectively. Letting the

symbol #A to stand for the cardinality of an arbitrary set A, consider the quantities

Fn := #
{
f ∈ F : |f |F = n

}
,

Gn := #
{
g ∈ G : |g|G = n

}
.

Thus, Fn and Gn count the number of elements of size n in F and G respectively.

We will assume that these coefficients are finite for all n ≥ 0. This lets us define the

power series

F (z) :=
∞∑
n=0

Fn z
n ,

G(z) :=
∞∑
n=0

Gn z
n ,

to which we will refer to as the generating function associated to (the combinatorial

class) F and G respectively. The process of assigning a generating function to a
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combinatorial class in terms of a size function is a standard procedure in symbolic

combinatorics. The spirit of symbolic combinatorics as a method for enumeration is

that often the generating function associated to an elaborated combinatorial class can

be related in a very explicit way to the generating functions associated to simpler

classes (usually, subclasses). Indeed, very natural set theoretical operations using

combinatorial classes translate into algebraic manipulations of their associated gen-

erating functions.

As a simple example suppose that the combinatorial classes F and G are disjoint.

The Union class of F and G is defined to be the set F ⊕ G, where the symbol ⊕ is

used instead of the more standard union sign to emphasize that the sets participating

in the union are disjoint. A natural size function on F ⊕ G is

|h| :=

 |h|F , h ∈ F

|h|G , h ∈ G
.

If (F ⊕G)(z) denotes the generating function associated to F ⊕G, then it should be

clear that

(2.31) (F ⊕G)(z) = F (z) +G(z) .

As another example consider the Product class of F and G defined to be cartesian

product F×G. Observe that the former hypothesis of disjointness is no longer needed.

The size of a generic element (f, g) in F × G will be defined naturally as

|(f, g)| := |f |F + |g|G .

If (F × G)(z) denotes the generating function associated to F × G then a simple

calculation reveals that

(2.32) (F ×G)(z) = F (z) ·G(z) .
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The above formula generalizes to an arbitrary number of combinatorial classes.

Thus, for example, given an integer k ≥ 1, the generating function associated to the

class Fk (where the size of a kth-tuple is defined to be the summation of the sizes of

each coordinate) is {F (z)}k.

The remarkable fact that the set theoretical constructions F ⊕ G and F × G

translate into the setting of generating functions to the relations in (2.31) and (2.32)

is the foundation of symbolic combinatorics. These two relations set the bases to

consider quite more complicated set theoretical constructions.

For example, consider a combinatorial class F with no elements of size 0. (The

class of planar trees would satisfy this requirement.) The Sequence class associated

to F will be defined to be the set

S(F) := {?} ⊕
∞⊕
k=1

Fk .

Above, {?} is used to represent a combinatorial class containing an element “?” which

by definition is of size 0 and is disjoint from the class F itself and all its cartesian

powers.

Question: What is the generating function associated to S(F)?

We will denote this generating function as S(F )(z).

Observe that “?” is the only element of size 0 in S(F). On the other hand, the

number of k-tuples of size n in S(F ) is the coefficient of zn in {F (z)}k. As a result,

the number of elements of size n in S(F) is the
∞∑
k=0

[zn]{F (z)}k. This summation is

indeed finite for all the terms with k > n vanish. This is because all k-tuples are of

size at least k for there are no elements of size 0 in F . We deduce that

S(F )(z) =
1

1− F (z)
.
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The above identity trivializes most of our discussion on plane trees in section 2.3.

If T is used to denote the combinatorial class of plane trees then our findings in there

imply that

(2.33) T (z) =
1−
√

1− 4z

2
.

From the point of view of symbolic combinatorics a plane tree with k subtrees

dangling from its root node can be seen as an ordered pair formed with the root

node followed by a k-tuple of trees. If {◦} is used to denote the combinatorial class

containing root node then

(2.34) G = {◦} × S(G) .

This equality is not in the standard set theoretical sense but rather as combinatorial

classes. It means that the left and right hand side sets have exactly the same number

of elements of size n. This is good enough to conclude that the power series associated

to the combinatorial class on the left is the same as the one associated to the class

on the right. Since the generating function associated to {◦} is z we deduce that

T (z) = z · 1

1− T (z)
.

This shows that T (z) is algebraic and (2.33) is the only solution to this equation

satisfying T (0) = 0.

The identity in (2.34) is a form of specification of the class of plane trees. Indeed,

in the jargon of symbolic combinatorics, it is described as a combinatorial specification

of the class T . Not surprisingly, many generating functions associated to a class with

a similar kind of combinatorial specification are algebraic.
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To finalize our incursion into symbolic combinatorics we will consider one more

construction. Given a combinatorial class F with no elements of size 0, the Multiset

class associated to F is the combinatorial class formed by all multi-subsets of F . 4

We will denote this class with the script M(F). The size of a multiset is defined to

be the summation of the sizes of its elements.

For example, consider M({•,N}) and suppose that the size of “•” is defined to

be 1 whereas “N” has size 3. Examples of multi-subsets are [N], [N, •,N] or even

[•, •, •, •]. They are respectively of sizes 3, 7 and 4. Since the order in which the

elements of a multi-subset are listed does not matter we can think of a multi-subset

of {•,N} as an element in the product class S({•}) × S({N}). After all, if ”?” is

used to denote the added element of size 0 in S({•}) and S({N}) then we have the

correspondences

[N] ←→ (?, (N)) ,

[N, •,N] ←→ ((•), (N,N)) ,

[•, •, •, •] ←→ ((•, •, •, •), ?) .

This implies the combinatorial specification

M({•,N}) = S({•})× S({N}) .

In particular, since the generating function associated to S({•}) and S({N}) are

respectively 1
1−z and 1

1−z3 , then 1
(1−z)·(1−z3)

is the generating function associated to

M({•,N}).
4A multi-subset is like a finite subset in the sense that the order in which its elements are listed

does not matter, however, repetition of elements is allowed.
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The above computation generalizes trivially to consider a more abstract case. Sup-

pose that F is a finite combinatorial class and let |f | denote the size of a generic ele-

ment f ∈ F . Let F (z) andM(F )(z) respectively denote the generating function asso-

ciated to F and M(F). Then, the combinatorial specification: M(F) =
∏
f∈F
S({f})

implies that

M(F )(z) =
∏
f∈F

1

1− z|f |
.

The above formula does not establish yet a clear relation between M(F )(z) and

F (z). To make this relation explicit observe that in the above product the factor

(1− zn) appears as many times as there are elements of size n in F . If this number

is accordingly denoted as Fn then

M(F )(z) =
∞∏
n=0

(
1

1− zn

)Fn
,

= exp

{
∞∑
n=0

Fn · log

(
1

1− zn

)}
.

Since F is finite, the summation within the exponential above involves only a finite

number of terms. Finally, since log
(

1
1−w

)
= w + w2

2
+ w3

3
+ . . ., we obtain that

∞∑
n=0

Fn · log

(
1

1− zn

)
=
∞∑
k=1

1

k
·

{
∞∑
n=0

Fn · zn·k
}
.

The sought formula is thus obtained to be

M(F )(z) = exp

{
∞∑
k=1

F (zk)

k

}
.

The revealed relation between M(F )(z) and F (z) is very different from what one

could have expected. However, it is a fascinating relation. It is the first non-trivial

relation we have encountered relating the generating function of a given combinatorial

class and one of its derived classes.
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We anticipated that many combinatorial classes will have generating function that

are algebraic. However, our discussion on multi-sets shows that there is a lot more

to be found.

As an application, we will consider the class of unordered plane trees. These are

rooted-trees where the order of the subtrees dangling from a node does not matter.

The notion of size is the same as for plane trees. Hence, for a given size, there are

much fewer unordered plane trees than plane trees itself. For example, the unordered

plane trees displayed in figure 2.5 are all equal.

Figure 2.5: Three different representations of the same unordered plane tree.

We will denote the class of unordered plane trees with the script U . Accordingly,

U(z) will denote the associated generating function. In contrast with (2.34), U has

the combinatorial specification U = {◦} × M(U), where {◦} represents again the

combinatorial class containing the root node. As a result, we obtain that

(2.35) U(z) = z · exp

{
U(z) +

U(z2)

2
+
U(z3)

3
+ . . .

}
.

To determine a formula in closed form for U(z) from the above relation seems not
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possible. However, it may be used to establish a recurrence for its coefficients. Letting

Un := [zn]U(z) it should be clear that U0 = 0 and U1 = 1. Thus, U(z) = z + . . .

Consider the auxiliary power series

W (z) :=
U(z)− z

z
,

=
∞∑
j=1

Uj+1 z
j .

A simple algebra manipulation let us rewrite (2.35) in the more appropriate form

log
{

1 +W (z)
}

=
∞∑
k=1

U(zk)

k
.

Using that: log(1 + w) =
∞∑
k=1

(−1)k+1wk

k
, we obtain that

(2.36)
∞∑
k=1

(−1)k+1

k
· {W (z)}k =

∞∑
k=1

1

k
· U(zk) .

In the above form it is simple to recognize the coefficient of zn on both sides.

First observe that we do not need to consider all terms on the summations: since

W (z) = z+ . . . and U(z) = z+ . . . then zk is the smallest power of z appearing in the

series of {W (z)}k and U(zk). Since the coefficient of zn in U(zk) is Un
k

provided that

k divides n (we will write k|n to mean that k divides n) the above identity implies,

for all n ≥ 0, that

Un+1 −
1

2
·

 ∑
j1+j2=(n+2)

Uj1 · Uj2

+ . . .+
(−1)n+1

n
·

{ ∑
j1+...+jn=2n

Uj1 · . . . · Ujn

}

=
∑
k:k|n

1

k
· Un

k
.

The subscripts jl all satisfy the inequality jl ≥ 2; in particular, jl ≤ n. As a result,

Un+1 can be defined recursively in terms of U1, . . . , Un allowing, at least theoretically,
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the exact computation of these coefficients for arbitrarily large values of n. This does

not resolve the problem of determining the asymptotic behavior of Un for large values

of n. However, as remarked by Flajolet and Sedgewick (see [FlaSed93], section 1.6),

Polya discovered (using singularity analysis) that

Un ∼ C · A
n

n3/2
,

for some appropriate constants C and A > 0.

2.5 Bivariate power series

The natural generalization of power series are the so called bivariate series. Our

interest in them is not just theoretical. Indeed, like regular one variable power series,

bivariate power series can be, for example, of great use in enumeration problems. A

formal bivariate power series is of the form

F (z, w) :=
∑
r,s≥0

fr,s z
r ws .

Above the indeterminate z and w are complex variables and each coefficient fr,s is a

complex number. Conversely, given an array of complex numbers (fr,s)r,s≥0 we will

refer to F (z, w) as the power series or generating function associated to the array

(fr,s)r,s≥0.

The set of bivariate power series in the indeterminates z and w will be denoted

C[[z, w]]. Two bivariate series will be said to be equal if and only if they have the

same coefficients. This lets us define [zr ws]F (z, w) or more briefly [zr ws]F to be

the coefficient of zr ws in the series F (z, w). The special notation F (0, 0) will be used

to refer to the constant term in the series F (z, w).
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Given two generic bivariate power series

F (z, w) =
∑
r,s≥0

fr,s z
r ws ,

G(z, w) =
∑
r,s≥0

gr,s z
r ws ,

we will define their sum and product respectively as

F (z, w) +G(z, w) :=
∑
r,s≥0

ur,s z
r ws ,(2.37)

F (z, w) ·G(z, w) :=
∑
r,s≥0

vr,s z
r ws ,(2.38)

where ur,s := fr,s + gr,s and vr,s :=
r∑
p=0

s∑
q=0

fp,q · gr−p,s−q. These operations are well-

defined in C[[z, w]] and make of this set an integral domain. Furthermore, C[[z]] and

C[[w]] can be regarded as sub-rings of C[[z, w]].

The last observation is of great use in obtaining information about bivariate power

series using well-known properties of regular power series. A typical example of this

process is the characterization of the units in C[[z, w]] which we discuss next.

An element H ∈ C[[z, w]] is called a unit if it has a multiplicative inverse. If

it exists it is denoted H−1(z, w) or sometimes 1
H(z,w)

. As might be expected, an

element H(z, w) ∈ C[[z, w]] is a unit if and only if H(0, 0) is nonzero. To prove this

assertion we will embed C[[z, w]] with a topology under which the ring operations

are continuous.

A topology of these characteristics is the so called formal topology. It is induced

by the metric d(F,G) := 2−m(F,G), where

m(F,G) := min
{
k ≥ 0 : [zr ws](F −G) = 0, for all 0 ≤ r, s ≤ k

}
.

A necessary and sufficient condition in order for a sequence (Fk)k≥0 of bivariate

power series to be convergent (in the formal topology) is the sequence of complex
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numbers ([zr ws]Fk)k≥0 be eventually constant, for all pairs of nonnegative integers

r and s. Furthermore, the lim
k→∞

Fk = F if and only if for all nonnegative integer n

there is m such that [zr ws] (Fk − F ) = 0, provided that 0 ≤ r, s ≤ n and k ≥ m.

It follows that

lim
k→∞

(Fk +Gk) =
(

lim
k→∞

Fk

)
+
(

lim
k→∞

Gk

)
,

lim
k→∞

(Fk ·Gk) =
(

lim
k→∞

Fk

)
·
(

lim
k→∞

Gk

)
,

provided of course that the lim
k→∞

Fk and lim
k→∞

Gk exist.

Furthermore, if H(z, w) =
∑
r,s≥0

hr,s z
r ws and for each n ≥ 0 we define Hn(z) :=

∞∑
r=0

hr,n z
r then

(2.39) H(z, w) =
∞∑
n=0

Hn(z) · wn ,

in the sense that the partial sums of the above summation converge in the discrete

topology to H(z, w).

The characterization of the unit elements of C[[z, w]] proceeds as follows. It

is immediate to verify that a necessary condition in order for H(z, w) to have a

multiplicative inverse is to have H(0, 0) 6= 0. To show the converse suppose that

H =
∑
r,s≥0

hr,s z
r ws

with h0,0 6= 0. We need to show that there is G ∈ C[[z, w]] such that H(z, w) ·

G(z, w) = 1. Consider the decomposition H(z, w) =
∞∑
s=0

Hs(z) · ws, with Hs(z) :=

∞∑
r=0

hr,s z
r. The condition h0,0 6= 0 implies that H0(z) is a unit element in C[[z]] and

thus there exists G0(z) ∈ C[[z]] such that H0(z) · G0(z) = 1. Define Gs(z), with

s ≥ 0, recursively to satisfy the relation
s∑
r=0

Gr(z) ·Hs−r(z) = 0.
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The series
∞∑
n=0

Gn(z) ·wn is convergent in C[[z, w]] because the coefficient of zr ws

in the partial sums
k∑

n=0

Gn(z) · wn remains constant for all k ≥ s. Define G(z, w) :=

∞∑
n=0

Gn(z) · wn. It follows that

n∑
s=0

Gs(z)ws ·
n∑
s=0

Hs(z)ws =
n∑
s=0

{
s∑
r=0

Gr(z) ·Hs−r(z)

}
ws + wn+1 · Pn(z, w) ,

= 1 + wn+1 · Pn(z, w) .

Pn(z, w) is certain power series whose coefficients are of no interest. The left-hand side

above converges toG(z, w)·H(z, w) due to the continuity of the product. On the other

hand, the lim
n→∞

wn+1 · Pn(z, w) = 0 because the coefficient of zr ws in wn+1 · Pn(z, w)

is zero for all n ≥ s. Taking limits both sides we conclude that G(z, w) ·H(z, w) = 1.

This shows that H(z, w) is a unit and completes the proof of our claim.

The preceding discussion provides the main ingredients we will require in relation

to the formal theory of bivariate power series. In our context, the term formal is to

be used to refer to any property of bivariate power series that can be deduced only

using the ring structure of C[[z, w]].

Next we study (as we did in the case of regular power series) the problem of

whether a bivariate series can be thought of as a function. As in the one-dimensional

case a bivariate generating function does not necessarily define a function of the

two-complex variables (z, w). Convergence of bivariate power series is understood in

terms of absolute convergence. If the
∑
r,s≥0

|fr,s zr0 ws0| <∞ then the terms in the series

must be bounded and hence there is a constant c > 0 such that

|fr,s| ≤ c · |z0|−r · |w0|−s ,

for all r, s ≥ 0. This implies that the partial sums
n∑

r,s=0

fr,s z
r ws are absolutely
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convergent for all (z, w) in the set [|z| ≤ |z0|]×[|w| ≤ |w0|]. Moreover, the convergence

of the partial sums can be shown to be uniform as long as (z, w) remains in a compact

subset of [|z| < |z0|]×[|w| < |w0|]. Thus, we may think of F (z, w) not just as a formal

power series but indeed as continuous function of z and w for |z| ≤ |z0| and |w| ≤ |w0|.

Moreover, since the series
∑
r,s≥0

fr,s z
r ws is absolutely convergent, we may reorganize

the summation in any possible way without altering the convergence nor the limiting

value. In particular, we may rewrite

F (z, w) =
∑
s≥0

{∑
r≥0

fr,s z
r

}
ws .

Thus, for each z in the disk [|z| < |z0|], F (z, w) is an analytic function of w on the

disk [|w| < |w0|]. A similar conclusion can be obtained in regards to z in the disk

[|z| < |z0|]. As a result, F (z, w) is analytic in each variable separately in the set

[|z| < |z0|]× [|w| < |w0|].

We remark that the set where a bivariate series is convergent is not necessarily

the product of two disks. For example, the series
∞∑
n=0

znwn is convergent for all

(z, w) such that |z · w| < 1, however, it must diverge whenever |z · w| > 1. The set

{(z, w) : |z · w| < 1} is certainly not a product of disks because it contains points of

the form (t, 1
2t

) and ( 1
2t
, t) with t > 0 arbitrarily small.

Bivariate power series like their one-dimensional counterpart are of use in counting

or combinatorial problems. However, the problem of determining asymptotics for the

coefficients of bivariate generating functions is far from being a direct generalization

of the techniques we have learned to study regular power series.

We will remark further in the complications involved on bivariate generating func-

tions in the coming sections. However, to end our discussion, it will be instructive
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to consider an example where the toolkit of tricks for regular power series is very

suitable to analyze the coefficients of a bivariate power series.

Consider

F (z, w) :=
1

2− z − w
.

This is the multiplicative inverse of the unit element (2 − z − w). In particular,

there are coefficients fr,s such that F (z, w) =
∑
r,s≥0

fr,s z
r ws. Our goal is to determine

as explicitly as possible the coefficients of F (z, w). A first step in this direction is

consequence of the identity (2− z−w) ·F (z, w) = 1. Multiplying out, it follows that

2 · f0,0 +
∞∑
s=1

(
2 · f0,s − f0,s−1

)
ws +

∞∑
r=1

(
2 · fr,0 − fr−1,0

)
zr

+
∑
r,s≥1

(
2 · fr,s − fr−1,s − fr,s−1

)
zr ws = 1

This implies that

fr,s =


1

2r+s+1 , r = 0 or s = 0 ,

fr−1,s+fr,s−1

2
, otherwise .

If we think of the coefficient fr,s as displayed over a grid on the position (r, s) the

above recursion shows that fr,s is the average of its two most immediate neighbors to

the South and to the West. With this visualization in mind it should be clear that

0 ≤ fr,s ≤ 1
2
. Moreover, an inductive argument shows that

(2.40)
1

2r+s+1
≤ fr,s ≤

1

2
,

for all r, s ≥ 0. But these inequalities are far from being accurate. To justify that fr,s

could be much bigger than 1
2r+s+1 but much smaller than 1

2
consider the power series

L(z, w) :=
∑
r,s≥0

1

2r+s+1
zr ws =

2

(2− z) · (2− w)
,

U(z, w) :=
∑
r,s≥0

1

2
zr ws =

1

2 · (1− z) · (1− w)
.
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|z|=1 |z|=2

|w|=2

|w|=1

|z|

|w|

|z|+|w|=2

Figure 2.6: Representation of the domain of convergence of L(z, w), U(z, w) and
F (z, w).

L(z, w) is absolutely convergent only for all |z| < 2 and |w| < 2. However, U(z, w)

is absolutely convergent if and only if |z| < 1 and |w| < 1. On the other hand, F (z, w)

is absolutely convergent if and only if |z|+ |w| < 2. (See figure 2.6).

The disparity between these domains of convergence is an indication that the

coefficients of L(z, w) go to zero at a much faster rate than the coefficients of F (z, w).

This allows convergence for more points in the series of L(z, w) than in the series

for F (z, w). By the same reasoning, it is expected that the coefficients of F (z, w)

decrease toward zero at a much faster rate than the coefficients of U(z, w). Thus, by

all accounts the bounds in (2.40) seem to be very inaccurate for most coefficients fr,s.
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To reveal more accurate information about the coefficients (fr,s)r,s≥0 we will fit

one-variable methods in our analysis.

Since F (z, w) is absolutely convergent for all (z, w) such that |z| + |w| < 2 we

can organize the terms in the series in any particular way. One suitable way is to

rearrange them in the form

F (z, w) =
∞∑
s=0

{
∞∑
r=0

fr,s z
r

}
ws .

On the other hand, for a given 0 < z < 2, we may think of F (z, w) as a power

series in w which is absolutely convergent for |w| < (2− z). For all such w we obtain

that

F (z, w) =
1

2− z
· 1

1− w
(2−z)

=
∞∑
s=0

1

(2− z)s+1
ws .

Using the last two representations for F (z, w) we can conclude that
∞∑
r=0

fr,s z
r =

1
(2−z)s+1 , for all 0 < z < 2. But, this equality must be satisfied for all |z| < 2. Thus,

using (2.11), we obtain the exact formula

fr,s = [zr]
1

(2− z)s+1
,

=
1

2r+s+1

(
r + s

r

)
.

2.6 Gaussian approximation and the Stirling’s formula

One widely popular method to study bivariate generating function is inspired by

the techniques used in probability theory to obtain central or local limit theorems.

Although the applicability of these ideas to bivariate generating functions is limited

many bivariate power series of interest can be studied or at least partially studied via
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this approach. The term gaussian approximation is used to emphasize the appearance

of the standard normal density distribution

p(x) :=
1√
2π
· e−x2/2 .

We motivate the setting of the gaussian approximation and the type of asymp-

totics which are expected by its use considering a very general probabilistic example.

Suppose that x, x1, x2, . . . are independent identically distributed N-valued random

variables (see [Dur95]). We will define

µ :=
∞∑
j=0

j · P [x = j] ,(2.41)

σ2 :=
∞∑
j=0

(j − µ)2 · P [x = j] ,(2.42)

provided that µ is finite. µ is the so called expected value of x and is usually denoted

E(x). On the other hand, σ2 is referred to as the variance of x and is usually denoted

V (x).

If the expected value and variance of x are finite, the well-known strong law of

large numbers (see [Dur95]) states that the

lim
s→∞

1

s

s∑
j=1

xj = µ ,

almost surely. In particular, if we define ys :=
s∑
j=1

xj then, for big values of s, it is

likely that ys will be close to s · µ. It is then an interesting problem to estimate the

probabilities pr,s := P [ys = r] when the ratio r
s

is close to µ.

The probabilities pr,s have been well studied in probability theory. The result we

will quote in here is the so called Local Central limit theorem for lattice distributions

(see [Dur95], section 2.5). For simplicity we will assume that the P [x = n] > 0, for all

45



nonnegative integer n. Under these circumstances the Local Central limit theorem

states that

(2.43) pr,s =
1√
s σ2
·
{
p

(
r − s · µ√

s σ2

)
+ o(1)

}
,

uniformly for all r ≥ 0, as s→∞. This can be used to estimate the probabilities pr,s

when r
s

is close to µ. Indeed, since p(x) zero-free then p
(
r−s·µ√
s σ2

)
remains bounded

away from zero as long as r−s·µ√
s σ2

remains in a compact subset of the real line. As a

result, for all δ > 0, we can conclude that

(2.44) pr,s ∼
1√
sσ2
· p
(
r − s · µ√

s σ2

)
,

uniformly for all |r − s · µ| ≤ δ · s3/2, as s→∞. (See figure 2.7.)

The classic proof of the Local Central limit theorem involves the so called char-

acteristic function of x. It is defined to be the function ϕx(t) := E(eitx), with t ∈ R.

Since X is an N-valued random variable, it follows that

ϕx(t) =
∞∑
n=0

P [x = n] · eitn ,

and the series is convergent because the
∞∑
n=0

P [x = n] = 1.

In a spark of ingenuity one may come to realize that ϕx(t) is very close to be

the power series associated to the sequence (P [x = n])n≥0. Indeed, since this last is

defined to be

(2.45) X(z) :=
∞∑
n=0

P [x = n] · zn ,

it follows that

(2.46) ϕx(t) = X(eit) .

46



r/s= µ

s

r

Figure 2.7: Bandwidth about the line r = s · µ in the (r, s)-lattice where a gaussian
approximation of the probabilities pr,s remains valid.

The identity in (2.46) is nowadays a well-known bridge between the theory of

asymptotic expansions and probability theory. Expectedly, asymptotic formulas of

certain classes of two-dimensional arrangements will involve the standard normal

density distribution in a way that resembles (2.44). The following result parallels, at

a very basic level, the discussion of Bender in [Ben73]. It is a typical example of the

appearance of gaussian approximations in relation to the asymptotic behavior of the

coefficients of a bivariate generating function.

Proposition 2.1. (Gaussian approximation.) Suppose that A(z, w) is of the

form

(2.47) A(z, w) := U(w ·X(z)) ,
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for certain power series

U(z) :=
∞∑
n=0

un z
n ,(2.48)

X(z) :=
∞∑
n=0

pn z
n ,(2.49)

where U(z) has a positive radius of convergence, pn > 0, for all n, and the
∞∑
n=0

pn = 1,

∞∑
n=0

n · pn <∞ and
∞∑
n=0

n2 · pn <∞. Then, for all δ > 0,

(2.50) [zr ws]A(z, w) ∼ us√
s · σ2

· p
(
r − s · µ√
s · σ2

)
,

uniformly for all (r, s) such that |r − s · µ| ≤ δ · s3/2, as s→∞.

The proof of proposition 2.1 goes as follows. The first two conditions on the

pn’s imply the existence of random variables x, x1, x2, . . . independent and identically

distributed such that P [x = n] = pn, for all n ≥ 0. (See Kolmogorov’s extension

theorem in [Dur95].) The other two conditions are just another way to say that

µ <∞ and 0 < σ2 <∞, with µ and σ as defined in (2.41) and (2.42) respectively.

Define ys :=
s∑

n=1

xn. For a fixed s, the characteristic function associated to the

random variable ys is found to satisfy

ϕys(t) := E

(
s∏

n=1

eitxn

)
=

s∏
n=1

E(eitxn) ,

= {E(eitx)}s ,

= {X(eit)}s .

The second equality is justified by the independence of x1, . . . , xn. The third equality

uses that these random variables are equally distributed as x. For the last identity

we have used (2.46).
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The previous computation implies that the
∑
r≥0

P [ys = r] zr = {X(z)}s, for all

|z| ≤ 1. As a result, we obtain that

∑
r,s≥0

us · P [ys = r] zr ws =
∞∑
s=0

us · {X(z) · w}s

= U(X(z) · w)

= A(z, w).

Thus, [zr ws]A(z, w) = us · P [ys = r] and (2.50) now follows from (2.44). This

completes the proof of proposition 2.1.

We will apply the proposition to deduce the well-known Stirling’s formula which

provides an asymptotic equivalent to n! for big values of n. Our starting point may

seem somehow unconnected with the previous discussion, however, it is key for the

eventual use of (2.50).

Observe that n! ≤ nn. This crude estimate can be improved using Cauchy’s

formula (see [Rud87]). For all R > 0, it implies that

1

n!
=

1

2π

∫
|z|=R

ez

zn
dz

iz
.

As a result,

1 ≤ 1

n!
≤ eR

Rn
.

The optimal upper bound is reached at R = n. This is because the function R→ eR

Rn

is strictly decreasing for R < n, however, it is strictly increasing for R > n. Thus,

for all n > 0, we obtain that

(2.51) 1 ≤ nn

n!
≤ en .

The above inequalities motivate us to consider the arrangement ar,s := sr

r!
.
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The generating function associated to the coefficients
(
ar,s
)
r,s≥0

will be denoted

as A(z, w). The discussion in section 2.5 implies that the
∑
r,s≥0

ar,s z
r ws is absolutely

convergent for all (z, w) such that |w| · e|z| < 1.5 Furthermore, observe that

A(z, w) =
∞∑
s=0

ws ·
∞∑
r=0

(sz)r

r!
,

=
∞∑
s=0

ws · esz ,

=
1

1− w · ez
.

This identity resembles (2.47), with U(z) = 1
1−z and X(z) = ez. The only difficulty

to use proposition 2.1 is that X(1) 6= 1. To overcome this problem consider, for each

t > 0, the power series

Bt(z, w) := A

(
t · z, w

X(t)

)
= U

(
w · X(t · z)

X(t)

)
.

This series is precisely in the setting of proposition 2.1. Furthermore, X(t·z)
X(t)

, thought

of a power series in z, is induced by a random variable xt such that P [xt = n] = tn e−t

n!
.

xt is consequently a Poisson random variable with parameter t (see [Dur95]). Its mean

and variance are easily determined to be µt = σ2
t = t.

Observe that

Bt(z, w) =
∑
r,s≥0

tr · ar,s
{X(t)}s

zr ws .

To obtain an asymptotic formula for

an,n =
nn

n!
,

it is enough to determine an asymptotic formula for [zr, ws]Bt(z, w), as (r, s) → ∞

and (r, s) stays “nearby” the line r = s. We plan to do this using proposition 2.1.
5Observe that the series is not absolutely convergent for all (z, w) such that |w · ez| < 1. As a

counterexample consider (2i, 1/2).
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Select t = 1 to have µt = 1. With this selection of t, σ2
t = 1. As a result, for all

δ > 0, proposition 2.1 implies that

e−s · ar,s =
1√
s
p

(
r − s√
s

)
,

∼ 1√
2πs

e−(r−s)2/(2s) ,

uniformly for all (r, s) such that |r − s| ≤ δ · s3/2, as s → ∞. In particular, letting

r = s = n, we obtain the Stirling’s formula. Namely,

(2.52) n! ∼
√

2π · nn+1/2 · e−n ,

as n→∞.

The procedure described to obtain (2.52) is very generic. Typically, asymptotics

for the coefficients ar,s of a power series A(z, w) can be computed on a bandwidth

along a particular direction in the (r, s)-lattice which depends on certain parameter.

In the case of Stirling’s formula this direction was the line r = s and the parameter

was the nonnegative real number t. To obtain asymptotics for the coefficients along

the diagonal line the parameter t was adjusted to have µt = 1.

This two-step procedure is very standard in the asymptotic study of bivariate

power series even in situations that are not related to a gaussian approximation. At

a first exposure, however, it may seem strange the sudden appearance of a parameter

like, for example, t was in relation to Stirling’s formula. To amplify on this, we

reconsider the bivariate generating function

A(z, w) :=
1

1− w · ez
.

Its domain of absolute convergence is the set

{
(z, w) : |w| · e|z| < 1

}
.
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In particular, each point of the form (t, e−t), with t > 0, is a boundary point of

this domain. However, a more remarkable fact is that (t, e−t) is the only singularity

of A(z, w) on the closed set

[|z| ≤ t]× [|w| ≤ e−t] .

In the terminology introduced by Pemantle and Wilson in [PemWil01], this means

that each point of the form (t, e−t), with t > 0, is a strictly minimal singularity of

A(z, w). Moreover, in this particular example, all points of this form are also simple

poles of A(z, w). (See figure 2.8.)

It turns out that each such singularity of A(z, w) is informative of the asymptotic

behavior of its coefficients but only along a direction in the (r, s)-lattice specified by

the singularity itself. From this new perspective, the seemingly artificial introduction

and later adjustment of the parameter t is equivalent to the problem of identifying a

singularity of A(z, w) which produces asymptotics for the coefficients [zr ws]A(z, w)

along a direction of interest. A discussion on this approach will be treated in great de-

tail in the introduction of chapter 6. There, we will summarize the scheme developed

by Pemantle and Wilson in [PemWil01] to obtain asymptotics for the coefficients of

bivariate meromorphic functions along directions specified by simple poles.

We remark that the situation in the presence of poles of higher order is radically

different. In that case, the pole usually determines the asymptotic behavior of the

coefficients not along a single direction by rather in a cone of directions. Further,

along these directions, the coefficients behave polynomially in (r, s) up to an error

which is rapidly decreasing as (r, s)→∞. For further details on these findings refer

to [PemWil02].

52



−|z|

e−t(t,       )

|w|=e

|z|

Figure 2.8: Representation of a strictly minimal singularity. For all t > 0, (t, e−t) is
the only pole of A(z, w) in the set [z : |z| ≤ t]× [w : |w| ≤ e−t].
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CHAPTER 3

SINGULARITY ANALYSIS IN ONE DIMENSION

3.1 Asymptotic expansions

To set the terminology we will briefly review the basic aspects of the theory

of asymptotic expansions. For a compact reference on the subject of asymptotic

expansions we recommend [Bru81] and [BleHan86].

R will represent a subset of C or of the Riemann sphere embedded with the

induced topology (see [Rud87]). Typically, R = {0, 1, 2, . . .} ∪ {∞}, R = [0,∞] or

it is an open subset of the Riemann sphere. Given x0 ∈ R, suppose that f(x) and

g(x) are complex-valued functions defined for all x in some punctured neighborhood

of x0. We say that f(x) is a big-O of g(x) as x → x0, and write: “f(x) = O(g(x)),

as x→ x0” provided that there is a neighborhood N of x0 and a constant c > 0 such

that |f(x)| ≤ c · |g(x)|, for all x ∈ N \ {x0}.

We say that f(x) is a little-o of g(x) as x → x0, and write: “f(x) = o(g(x)),

as x → x0” provided that for all ε > 0 there is a neighborhood Nε of x0 such that

|f(x)| ≤ ε · |g(x)|, for all x ∈ Nε \ {x0}.

Suppose that g(x) is zero-free in some punctured neighborhood of x0. We will say

that f(x) is of the same order as g(x) as x approaches x0, and write: “f(x) ∼ g(x),
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as x → x0” provided that the lim
x→x0

f(x)
g(x)

= 1. Equivalently, f(x)− g(x) = o(g(x)), as

x→ x0.

Suppose that (gn(x))n≥0 is a sequence functions defined in a punctured neighbor-

hood of x0. We say that (gn(x))n≥0 is an asymptotic sequence as x approaches x0

provided that for any nonnegative integer N , gN+1(x) = o(gN(x)), as x→ x0. Given

a sequence (αn)n≥0 of complex numbers we will write f(x) ≈
∞∑
n=0

αn ·gn(x), as x→ x0,

provided that for all N ,

f(x)−
N∑
n=0

αn · gn(x) = O(gN+1(x)) , as x→ x0 .

The series
∞∑
n=0

αn · gn(x) is then said to be an asymptotic expansion (or asymptotic

development) of f(x) with respect to the asymptotic sequence (gn(x))n≥0. We observe

that if f(x) ≈
∞∑
n=0

βn · gn(x), as x→ x0, then necessarily αn = βn.

For example, for all x0 ∈ C, the functions gn(x) := (x− x0)n form an asymptotic

sequence in the complex plane as x → x0. Furthermore, if f(x) is analytic near the

x = x0 then f(x) ≈
∞∑
n=0

f (n)(x0)
n!
· (x− x0)n, as x→ x0. A bit more intriguing example

is the asymptotic expansion

e−1/|x−x0| ≈
∞∑
n=0

0 · (x− x0)n , as x→ x0 .

The series on the right-hand side is convergent for all x, however, the left and right-

hand side are nowhere equal. This shows that a convergent asymptotic expansion

does not necessarily converge to the function it expands.

As another example, consider the functions gn(x) := 1
xn

, which form an asymptotic

sequence as x → ∞ in the Riemann sphere. For example, by repeated integrations
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by parts, it is simple to verify that

ex ·
∫ ∞
x

e−t

t
dt ≈

∞∑
n=0

(−1)n · n!

xn+1
, as x→∞ .

Observe that the series on the right-hand side is nowhere convergent on the complex

plane. Thus, the example shows that an asymptotic development does not necessarily

converge.

Another notion we will repeatedly use in the coming discussion is the following.

For the special case in which R = (0,∞) or R is a cone in the complex plane we

will say that a function f(x) is rapidly decreasing at ∞ provided that, for all N ≥ 0,

f(x) = O(|x|−N), as x → ∞. Thus, rapidly decreasing functions are smaller at

infinity than any functions with asymptotic developments in powers of x−1. Smaller

yet are the functions of exponential decay at ∞, namely those satisfying f(x) =

O(e−c·|x|), as x→∞, for some positive constant c.

The preceding discussion generalizes to consider the so called uniform big-O and

uniform little-o when functions are indexed by a parameter. Let T be also a subset

of C or of the Riemann sphere embedded with the induced topology. Given x0 ∈ R,

suppose that f(t, x) and g(t, x) are complex-valued functions defined for all x in some

punctured neighborhood of x0 and for all t ∈ T (except, possibly t = ∞, if T is a

neighborhood of infinity in the Riemann sphere). We will think of f(t, x) and g(t, x)

as a functions of x indexed by the parameter t.

We will write: “f(t, x) = O(g(t, x)) uniformly for all t ∈ T , as x→ x0” provided

that there is a neighborhood N of x0 and a constant c > 0 such that |f(t, x)| ≤

c · |g(t, x)|, for all x ∈ N \ {x0} and t ∈ T . Accordingly, we will write: “f(t, x) =

o(g(t, x)) uniformly for all t ∈ T , as x → x0” provided that for all ε > 0 there is
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a neighborhood Nε of x0 such that |f(t, x)| ≤ ε · |g(t, x)|, for all x ∈ Nε \ {x0} and

t ∈ T .

The definitions of

(a) “f(t, x) ∼ g(t, x) uniformly for all t ∈ T , as x→ x0”,

(b) “f(t, x) is rapidly decreasing uniformly for all t ∈ T , as x→∞”, and

(c) “f(t, x) is exponentially decreasing uniformly for all t ∈ T , as x→∞”,

are the trivial adaptation of the former definitions but using the notion of uniform

big-O and uniform little-o.

In regards to uniform asymptotic expansions, we will mostly deal with expansions

of the form: “f(t, x) ≈
∞∑
n=0

αn(t) · gn(t, x) uniformly for all t ∈ T , as x → x0.” The

notation again assumes that (gn(t, x))n≥0 is an asymptotic sequence as x→ x0; that

is to say, for all nonnegative integer N , gN+1(t, x) = o(gN(t, x)) uniformly for all

t ∈ T , as x → x0. The natural condition is now to require that for all nonnegative

integer N , the difference

f(x)−
N∑
n=0

αn(t) · gn(t, x) = O(gN+1(t, x)) , uniformly for all t ∈ T , as x→ x0 .

3.2 The method of partial fractions

The method of partial fraction is very suitable to determine explicitly the co-

efficients of a rational function of one complex variable. However, this method is

also suitable to obtain, with very little effort, the leading asymptotic order of its

coefficients. The lesson to learn from the discussion that will follow is that (with
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the exception of rare cases) the closest singularity to the origin of a rational func-

tion contains a great deal of information about the leading asymptotic order of its

coefficients.

Let p(z) and q(z) be polynomials in the variable z of degree d and e respectively

and assume that q(0) 6= 0. Our interest is in determining the coefficient of zn in the

power series representation of F (z) := p(z)
q(z)

about z = 0. Without loss of generality

we may assume that p(z) and q(z) do not have common zeroes.

The linearity in the numerator motivates to study first the rational function 1
q(z)

.

We first consider the case in which all the roots of q(z) are distinct. If these are r1,

. . . ,re then q(z) = q(0) ·
e∏
j=1

(1− r−1
j · z). The method of partial fractions implies that

there are nonzero constants cj such that 1
q(z)

=
e∑
j=1

cj

1−r−1
j ·z

. 1 As a result, we obtain

the exact formula

[zn]
1

q(z)
=

e∑
j=1

cj · [zn]
1

1− r−1
j · z

,

=
e∑
j=1

cj · r−nj .

More generally, if p(z) =
d∑

k=0

pk · zk we obtain the exact formula

(3.1)

[zn]p(z)
q(z)

=
e∑
j=1

d∑
k=0

cj · pk · rk−nj ,

=
e∑
j=1

−p(rj)
rj ·q′(rj) · r

−n
j .

Since p(z) and q(z) do not have common roots it follows that p(rj) 6= 0, for all

j. As a result, the leading order(s) within the summation is of course r−n where

r := min
{
|rj| : j = 1, . . . , n

}
. Hence, if cancellation is ruled out among the terms of

1Although it is not relevant for our discussion, we remark that cj = −1
rj ·q′(rj) .
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order r−n then the following asymptotic formula applies

[zn]
p(z)

q(z)
∼
∑

j:|rj |=r

−p(rj)
rj · q′(rj)

· r−nj ,

as n→∞.

The case in which q(z) has roots of repeated multiplicity is slightly more com-

plicate yet a similar conclusion can be obtained. Suppose that q(z) has m-distinct

roots, r1, . . . , rm, and that rk is of multiplicity mk. We let r to denote the modulus

of the root(s) closest to the origin.

The method of partial fractions this time implies that there are coefficients ck,l

such that 1
q(z)

=
m∑
k=1

mk∑
l=1

ck,l

(1−r−1
k ·z)l

. Moreover, we must have ck,mk 6= 0, for all k.

Furthermore, since 1
(1−r−1·z)l =

∞∑
n=0

(
n+l−1
l−1

)
· r−n · zn and

(
n+l−1
l−1

)
∼ nl−1

(l−1)!
, as n → ∞,

we deduce that

[zn]
p(z)

q(z)
=

d∑
j=1

pj ·
m∑
k=1

mk∑
l=1

ck,l ·
(
n− j + l − 1

l − 1

)
· r−nk ,

=
m∑
k=1

ck,mk · p(rk)
(mk − 1)!

· nmk−1 · r−nk ·
{

1 +O

(
1

n

)}
,

as n→∞. Since for all k, p(rk) 6= 0, it follows that r−n is the leading order among

the terms in the summation.

3.3 An analytic approach

The discussion in the previous section shows that the leading asymptotic behavior

of the coefficients of a rational generating function F (z) = p(z)
q(z)

is determined by the

closest zero of q(z) to the origin. The coefficient of zn in F (z) will be denoted as fn.

In a more analytical prospect, the assumption we made that q(0) 6= 0 implies that

the disk of convergence of F (z) is [z : |z| < r] where r refers to the modulus of the
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root(s) closest to the origin. As a result, the

lim sup
n→∞

ln |fn|
n

= − ln |r| .

Thus we get the correct exponential rate, at least for the lim sup, for the coefficients

fn with no work at all. To determine more explicitly the leading order of fn we use

Cauchy’s integral formula (see [Rud87]) to write

fn =
1

2πi

∫
|z|=ρ0

F (z)

zn+1
dz ,

where 0 < ρ0 < r. Let ρ1 > r and assume that there is only one root of q of minimum

modulus and that the moduli of other roots is greater than r. Denote this root by

rM . We then have, by the residue theorem (see [Rud87]), that

1

2πi

∫
|z|=ρ0

F (z)

zn+1
dz − 1

2πi

∫
|z|=ρ1

F (z)

zn+1
dz = −Res

(
F (z)

zn+1
; z = rM

)
.

If we assume that rM is a zero of multiplicity one then F (z) = p(z)
q(z)

has a simple

pole at z = rM ; in particular, the residue term above is then just p(rM )
rM ·q′(rM )

· r−nM . On

the other hand, the integral over the circle [z : |z| = ρ1] is bounded from above by:

sup
|z|=R

|F (z)| · ρ−n1 , and is therefore exponentially smaller than the residue term (which

is of order r−n). Thus the leading term asymptotic for fn is

fn = − p(rM)

rM · q′(rM)
· r−nM +O(ρ−n1 ) .

In fact, if we let ρ1 to tend to infinity, each zero of q(z) contributes by a residue term.

Thus, for example, if all the zeroes of q(z) have multiplicity one then all the poles of

F (z) are simple and one recovers (3.1).

If there is more than one root of minimum modulus, simply sum the contributions.

If the root rj appears with multiplicity mj > 1 and we define qj(z) := q(z)
(z−rj)m then
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the residue at z = rj is found to be instead

Res
(
F (z)
zn+1 ; z = rj

)
= 1

(mj−1)!
∂mj−1

∂zmj−1

[
p(z)

zn+1·qj(z)

]
(rj) ,

= (−1)mj−1 ·
(
n+mj−1

n

)
· p(rj)

r
mj
j ·qj(rj)

· r−nj +O
(
n+mj−2
mj−2

)
,

= (−n)mj−1

(mj−1)!
· p(rj)

r
mj
j ·qj(rj)

· r−nj +O(nmj−2) ,

as n→∞. This gives a “polynomial correction” for the case of multiple roots.

The advantage of the analytic solution is that it vastly more general. The method

of partial fractions requires F (z) = p(z)
q(z)

to be a quotient of polynomials. Instead,

suppose that p(z) and q(z) are only required to be analytic in some disk B(0, R), and

that q(z) has a zero, say z0, inside the disk. The same computation then gives

(3.2)
[zn]F (z) = 1

2πi

∫
|z|=ρ1

F (z)
zn+1 dz ,

= 1
2πi

∫
|z|=ρ2

F (z)
zn+1 dz − Res

(
F (z)
zn+1 ; z = z0

)
,

provided that 0 < ρ1 < |z0| < ρ2 < R and no other pole of F (z) is in [z : |z| ≤ ρ2].

Then, 1
2πi

∫
|z|=ρ2

F (z)
zn+1 dz = O(ρ−n2 ) and the residue is easily computed as before. For

instance, in the case of a simple root of q(z) at z = z0, the residue is still p(z0)
z0·q′(z0)

·z−n0 .

Question: What does the analytic approach give us for a general function F (z)?

If the power series F (z) is purely formal, that is to say, nowhere convergent,

then we learn nothing. If F (z) is entire, we learn very little, though more can be

said by means beyond the scope of this discussion. Assume then that the radius

of convergence of F (z) is positive and finite. If the minimal modulus singularity of

F (z) is a pole (or poles) then the preceding analysis applies. If it is a branch-point,

there are standard modifications of the method which we will discuss shortly. If it is

an isolated singularity, there are good prospects for a successful modification of the

method, though it is more of an art than a science; this will be discussed too.
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Logically, the worst case is if the domain of convergence of F (z) has an entire

circle as its natural boundary (this means that F (z) can not be continued analytically

locally across any point in the boundary of the circle). This can and does happen.

For example, the generating function
√

1+z
1−z ·

∞∏
n=1

cos
(
z2n

2n

)
, appearing in the problem

of counting permutations of {1, . . . , n} which admit a square root, has every 4mth-

root of unity (with m ≥ 1) as a singularity and therefore, has the unit circle as its

natural boundary.

A point of philosophy. We have motivated the problem of understanding the

asymptotic behavior of the coefficients of generating functions due to their application

in enumerative combinatorics. A classical theorem of Pólya-Carlson 2 states that:

“If F (z) has integer coefficients and radius of convergence 1, then either F (z)

is rational or F (z) has the unit circle for its natural boundary.”

In regards to the class of generating functions with the boundary of their disk of

convergence as their natural boundary, there is a recent contribution due to Flajolet et

al. [FGPP03] which provides a hybridization of the Darboux’ and singularity analysis

methods to tackle the asymptotic analysis of the coefficients of a variety of generating

functions in this class.

In terms of rational functions and although the asymptotic analysis of their coef-

ficients is trivial in one-dimension this commodity just disappears when considering

2With the help of Philippe Flajolet we could find more details on the history of this theorem. It
was first conjectured by Pólya and finally proved by Carlson (see [Car21]). In [Pól23], Pólya wrote:
“En poursuivant les remarques de MM. Borel et Fatou sur les séries à coefficients entiers, je suis arrivé
à quelques résultats, mais je n’ai pu ni démontrer ni réfuter la supposition suivante: Lorsqu’une série
entière à coefficients entiers converge dans un cercle de rayon un, ou bien la fonction représentée
est rationnelle ou bien son domaine d’existence est limité par le cercle de convergence. J’ai dû me
contenter d’énoncer ce théorème et de proposer aux mathématiciens de décider s’il est vrai ou non.
[...] quelques années plus tard, M. Carlson le résolut par l’affirmative.”
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more than one variable even in the simplest case of bivariate power series. Our

findings in this regard will be presented in chapter 6.

3.4 Dealing with other types of singularities

The remaining discussion of one-variable asymptotics will be as follows. A dis-

cussion of an example with an isolated essential singularity will shed some light on

the role of oscillating integrals and the method of stationary phase. We will then

look at the classical formal power series derivation of asymptotics for branch-points

induced by non-integral powers following the discussion of Henrici (see theorem 11.10

in [Hen77]). These will be compared to the so called transfer theorems following the

discussion of Flajolet and Odlyzko (see [FlaOdl90]) which use analytic methods to

obtain the leading term asymptotics for a very wide class of power series.

Since contour integration is an art, it is wise to ask first for the guiding principles

behind choosing the contour. To answer this, we recall the Cauchy integral formula

(see [Rud87])

(3.3) [zn]F (z) =
1

2πi

∫
γ

F (z)

zn+1
dz ,

where γ is any closed contour encircling the origin and no singularity of F (z). If

[zn]F (z) is of order r−n then the radius of convergence of the power series associated

to F (z) is precisely r. However, if we use the above formula to represent [zn]F (z) and

select γ to be a circle of radius ρ ∈ (0, r) then the integrand has order of magnitude

ρ−n. Since [zn]F (z) is known to be of order r−n we conclude that in the integration

there is a lot of cancellation taking place. Indeed, the cancellation reduces the integral

by an exponential factor of
(
ρ
r

)n
. As ρ expands toward r the oscillation kills at a
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lower exponential rate, until, right near r, it is not really killing at all. This leads

to the stationary phase principle: find a stretch of the contour where the integrand

is not oscillating; this will be the leading contribution to the integral. A related

technique is the saddle point method: if there is no point of stationary phase on the

starting contour, move the contour until you go through one, and make sure you go

through at the right angle (that minimizes the oscillation of the integrand).

We do not plan to have a systematic discussion of the stationary phase method

or the saddle point method. These are part of a whole toolkit to deal with oscillatory

integrals. However, their principles will be used and illustrated in great detail in

chapter 5 where we present with a generalized version of both methods. We turn

now to some examples.

Example 3.1. (An isolated essential singularity.)

Let F (z) = exp
(

z
1−z

)
. This function is analytic for all z ∈ C except for the point

z = 1 which is an (isolated) essential singularity. By this we mean that there is no

n ≥ 0 such that the lim
z→1
|(1− z)n · F (z)| <∞. This follows from the identity

F (z) = 1
e
· exp

(
1

1−z

)
,

= 1
e

∞∑
n=0

1
n!(1−z)n .

It is possible to compute the coefficients of F (z) directly from its combinatorial

interpretation: F is the exponential generating function for the number of unordered

partitions of an n element set into ordered sequences. The analytic approach, how-

ever, will allow us to compute these coefficients asymptotically.

Although the disk of convergence of the power series associated to F (z) is the

disk [z : |z| < 1], the fact that F (z) is analytic in C \ {1} let us choose a variety
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of contours (not necessarily contained in this disk) to use Cauchy’s integral formula

as in (3.3). Indeed, since F (z) is analytic at infinity (meaning by this that its is

bounded at infinity) we may choose γ to be any vertical line contained in the strip

[z : 0 < <{z} < 1]. (See figure 3.1.)

Next, we seek for stationary points of the integrand in (3.3). These are solutions

of the equation: d
dz

[
F (z)
zn+1

]
= 0. There is only one stationary point within the strip

[z : 0 < <{z} < 1], namely

zn := 1−
√

1
n+1

+ 1
4(n+1)2 + 1

2(n+1)
,

= 1− n−1/2 +O(n−1) .

The motivation one has to look for stationary points is that it is always possible

to chose a contour going through them such that the integrand is locally maximized

(along the contour) precisely at the stationary point. The hope is that, for big values

of n, most of the contribution to the integral in (3.3) is from integration near this

point. The existence of a contour of these characteristics is warranted by the basic

principles of the method of steepest descents (see chapter 7 in [BleHan86]). However,

it is usually intricate to describe such a contour in a precise manner. Luckily, in

most applications, it is not necessary to determine the contour of steepest descents

but rather to chose a contour that passes through the stationary point with the right

angle. We will clarify what we mean by “the right angle” in the coming computations.

A convenient choice of γ in (3.3) is γ := {zn + i · t : t ∈ R}. Furthermore, if in

(3.3) we normalize the integrand by F (zn)

zn+1
n

we obtain that

(3.4) [zn]F (z) =
F (zn)

zn+1
n

· 1

2π

∫ ∞
−∞

Gn(t) dt ,

where accordingly it has been defined Gn(t) := F (zn+it)
F (zn)

(
zn

zn+it

)n+1

.
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The factor F (zn)

zn+1
n

in (3.4) is easily shown to be asymptotically equivalent to e2
√
n− 1

2 .

Therefore, to determine the leading order of [zn]F (z) all reduces to find the leading

order of the integral in (3.4).

Re{z}

Im{z}

z=1

n

Figure 3.1: Since F (z) is analytic at infinity, the integration of F (z)
zn+1 over the circular

arc tends to zero, as n → ∞. As a result, [zn]F (z) = 1
2πi

∫
γ
F (z)
zn+1dz,

where γ can be chosen to be any vertical line contained in the strip
[z : 0 < <{z} < 1].
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To justify the appropriateness of the contour γ, it is convenient to rewrite Gn(t) in

the exponential form e−Hn(t). Indeed, using Taylor’s formula (see [Rud87]) it follows

that there is ε > 0 such that

(3.5)

 Hn(t) = H ′′n(0) · t2 +O(n2t3) ,

H ′′n(0) = n3/2 · (1 + o(1)) ,

uniformly for all t ∈ [−ε, ε], as n→∞. This implies that, in an interval of the form

[−tn, tn] with n1/2 · tn = o(1), the function Hn(t) is minimized solely at t = 0. The

hope now is that

1

2π

∫ ∞
−∞

Gn(t) dt ∼ 1

2π

∫ ∞
−∞

e−H
′′
n(0)·t2 dt(3.6)

=
1√

4πH ′′n(0)
,

∼ 1√
4πn3/2

,

as n→∞.

Only the first asymptotic formula in (3.6) deserves a justification. This is verified

as follows. (3.5) implies that the main contribution to the integral on the right-hand

side in (3.6) comes from a region where |t| is not much bigger than n−3/4. We hope

the main contribution to the left-hand side in (3.6) comes from this region as well

and is nearly the same. Accordingly, we pick a cutoff a little greater, say

Ln = n−3/4 ·
√

lnn ,

and break the left and right-hand integral in (3.6) into two parts, |t| ≤ Ln and

|t| ≥ Ln.

We will show that up to the cutoff the two integrals are close, however, past the

cutoff they are both small.
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To deal with the case |t| ≤ Ln, observe that∣∣∣∣ 1

2π

∫ Ln

−Ln
Gn(t)− e−H′′n(0)·t2 dt

∣∣∣∣ ≤ 1

2π

∫ Ln

−Ln

∣∣∣eH′′n(0)·t2−Hn(t) − 1
∣∣∣ · e−H′′n(0)·t2 dt ,(3.7)

= o(1) ·
∫ Ln

−Ln
e−H

′′
n(0)·t2 dt .

But, it is simple to derive that

1

2π

∫ Ln

−Ln
e−H

′′
n(0)·t2 dt =

1

2π
√

2H ′′n(0)

∫ √2H′′n(0)Ln

−
√

2H′′n(0)Ln

e−τ
2/2 dτ ,(3.8)

∼ 1√
4πn3/2

.

(3.7) and (3.8) combined imply that

(3.9)
1

2π

∫ Ln

−Ln
Gn(t) dt ∼ 1√

4πn3/2
,

as n→∞.

On the other hand, observe that

|Gn(t)| =

∣∣∣∣ zn
zn + it

∣∣∣∣n+1

· exp

(
<
{

1

1− zn − it
− 1

1− zn

})
,

≤ (1 + t2)−(n+1)/2 · exp

(
− (1− zn)−3 · t2n

1 + (1− zn)−2 · t2n

)
,

for all |t| ≥ Ln. Since (1−zn)−3·t2n
1+(1−zn)−2·t2n

∼ lnn, as n → ∞, it follows for all δ > 0

sufficiently small that

(3.10)
1

2π

∫
|t|≥Ln

Gn(t) dt = O

(
1

n1−δ

)
,

as n → ∞. Selecting 0 < δ < 1
4
, (3.9) and (3.10) imply the asymptotic formula in

(3.6). As a result, back in (3.4) we obtain the desired asymptotic formula

[zn]F (z) =
e2
√
n

√
4πen3/2

·
(
1 + o(1)

)
.
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Example 3.2. (A branch-point.)

Among singularities that are not isolated, the nicest are branch-points. Many

though not all branch-points can be written as a non-integral power times an analytic

function. Thus we consider the class of functions of the form F (z) =
(
1− z

a

)−b ·ψ(z),

where a is a nonzero complex-number, b is a complex number that is not an integer,

and ψ(z) is an analytic function in a disk of the form [z : |z| < r], with r > |a|.

In particular, F (z) is analytic on the disk slit from a to the boundary. Following

Henrici’s exposition (see [Hen77]), the following can be said about the coefficients of

F (z).

Theorem 3.3. (Darboux’s theorem.) Let F (z), ψ(z), etc. be as defined before

and suppose that ψ(z) =
∞∑
j=0

αj (z − a)j is the power series representation of ψ(z)

near z = a. Then, for any nonnegative integer k ≥ <{b},

(3.11) [zn]F (z) = (−a)−n

{
k∑
j=0

αj · (−a)j ·
(
j − b
n

)
+ o

(
|a|k ·

(
k − b
n

))}
,

as n→∞, where
(
x
n

)
:= 1

n!

n∏
j=1

(x− j + 1).

Proof. Recall that
(
1− z

a

)−b
=

∞∑
n=0

(−a)−n
(−b
n

)
zn. Thus, formally speaking, (3.11)

results from the calculation

F (z) =
∞∑
j=0

αj · (−a)j ·
(

1− z

a

)j−b
,

=
∞∑
n=0

(−a)−n ·

{
∞∑
j=0

αj · (−a)j ·
(
j − b
n

)}
zn .

To justify all this, fix k. The hypothesis on ψ(z) implies that

ψ(z) =
k∑
j=0

αj · (z − a)j +Rk(z) · (z − a)k+1 ,
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where Rk(z) is certain analytic function in the disk [z : |z| < r]. In particular, for all

|z| < |a|, it applies that

F (z)−
k∑
j=0

αj · (−a)j ·
(

1− z

a

)j−b
= (−a)k+1 ·

(
1− z

a

)k+1−b
·Rk(z) .

The coefficient of zn in the left-hand side above is recognized to be: [zn]F (z) −

(−a)−n ·
k∑
j=0

αj · (−a)j
(
j−b
n

)
. Accordingly, if we define

Gk(z) :=
(

1− z

a

)k+1−b
·Rk(z) ,

to conclude (3.11) all reduces to show that

(3.12) [zn]Gk(z) = o

(
|a|−n ·

(
k − b
n

))
.

It is for this that the assumption k ≥ <{b} will be used. Indeed, it implies that

Gk(z) is analytic for |z| < |a| but continuous for |z| ≤ |a|. Furthermore, Gk(z) is

(l + 1)-times continuously differentiable, with l a nonnegative integer maximal with

the property l ≤ <{k − b}. This lets us use Cauchy’s formula and to integrate by

parts (l + 1)-times to obtain

[zn]Gk(z) =
1

2πi

∫
|z|=|a|

Gk(z)

zn+1
dz ,

...

=
1

n(n− 1) · . . . (n− l)
· 1

2πi

∫
|z|=|a|

G
(l+1)
k (z)

zn−l
dz .

The Riemann-Lebesgue lemma (see [Rud87]) implies that the
∫
|z|=|a|

G
(l+1)
k (z)

zn−l
dz is a

o(a−n). As a result, [zn]Gk(z) is a o(n−(l+1) |a|−n). But, using Stirling’s formula

(2.52) it follows that
(
k−b
n

)
is of order n−<{k−b}. (3.12) then follows by noticing that

<{k − b} < (l + 1). This completes the proof of the theorem.
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Example 3.4. (Transfer theorems.)

The previous example was in some sense a very special case: we knew the expan-

sion of
(
1− z

a

)−b
explicitly, and were able to show how the series behaved under a

perturbation that multiplied by an analytic factor. The next example also deals with

a special class of functions, but a very wide and hence useful class.

We will let C to denote the class of functions of the form

G(z) := (1− z)α · g
(

1

1− z

)
,

where g(z) = (log z)γ · (log log z)δ for arbitrary real numbers α, γ and δ. Instead of

requiring F (z) = (1 − z)α · ψ(z), for ψ(z) analytic in an open disk centered at the

origin and containing z = 1, we derive information under the assumption only that

F (z) = O(G(z)) or F (z) = o(G(z)), as z → 1. (Naturally, we can normalize so that

the dominant singularity appears somewhere else other than z = 1.) The price we

pay is that we require F (z) to be analytic in a sector of the form (see figure 3.2)

∆ :=
{
z : |z| ≤ (1 + ε) , | arg(z − 1)| ≥ δ

}
,

for certain sufficiently small ε > 0 and a fixed δ ∈
(
0, π

2

)
.

The transfer method of Flajolet and Odlyzko [FlaOdl90] consists of three results.

The first is an explicit asymptotic description of the coefficients of all functions in C.

The second and third are the following theorems.

Theorem 3.5. (big-O theorem.) Suppose that F (z) =
∞∑
n=0

fn z
n is analytic in ∆

and that G(z) =
∞∑
n=0

gn z
n is in the class C. If F (z) = O(G(z)), as z → 1 along ∆,

then

fn = O(gn) , as n→∞ .
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Theorem 3.6. (little-o theorem.) Suppose that F (z) =
∞∑
n=0

fn z
n is analytic in ∆

and that G(z) =
∞∑
n=0

gn z
n is in the class C. If F (z) = o(G(z)), as z → 1 along ∆,

then

fn = o(gn) , as n→∞ .

z=1

δ

−δ

Re{z}

(1+ε)

Im{z}

Figure 3.2: Representation of a domain ∆ where analyticity is required to use the
big-O and little-o theorems.
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To see an application of the transfer theorems in the context of asymptotic

expansions, consider the class C ′ containing only functions of the form G(z) =

(1 − z)α · g
(

1
1−z

)
, with α an arbitrary real number, and g(z) = (log z)γ, with γ

a nonnegative integer.

Corollary 3.7. (Σ-transfer.) Suppose that F (z) is analytic in ∆ and F (z) ≈
∞∑
j=0

Gj(z), as z ∈ ∆ → 1, where, for all j ≥ 0, Gj ∈ C ′ and Gj+1(z) = o(Gj(z)), as

z ∈ ∆→ 1. If F (z) =
∞∑
n=0

fn z
n and Gj(z) =

∞∑
n=0

g
(j)
n zn then

fn ≈
∞∑
j=0

g(j)
n , as n→∞ .

Proof. Observe that elements in the class C ′ are analytic in ∆. As a result, since

Gj+1(z) = o(Gj(z)), as z → 1 along ∆, the little-o theorem let us conclude that

g
(j+1)
n = o(g

(j)
n ), as n→∞. Therefore, (g

(j)
n )j≥0 is effectively an asymptotic sequence

as n→∞. Define

hk(z) := F (z)−
k∑
j=0

Gj(z) .

By hypothesis, for each k, hk(z) = o(Gk), as z → 1 along ∆. Another application

of the little-o theorem gives that [zn]hk(z) = o(g
(k)
n ), as n→∞. The corollary then

follows by noticing that [zn]hk(z) = fn −
k∑
j=0

g
(j)
n .

The counterpart to corollary 3.7 is the asymptotic determination of the coefficients

of functions in the class C ′. In general, there are several cases to consider, depending

on whether α is or not an integer. For example, corollary 5 in [FlaOdl90] implies that

[zn] (1− z)α ·
(

log
1

1− z

)γ
∼ n−α−1

Γ(−α)
· (log n)γ ,
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this provided that α, γ /∈ {0, 1, . . .}.

To finalize our discussion we will prove the big-O theorem. We remark that the

little-o theorem follows from the big-O theorem if one can keep track of the constants.

That is, if F (z) = o(G(z)), as z → 1 along ∆, then for all ε > 0, |F (z)| ≤ ε · |G(z)|,

for all z in some neighborhood of z = 1 in ∆. Thus if the constant in the conclusion

of the big-O theorem can be made to go to zero as the constant in the hypothesis

goes to zero, the little-o theorem is proved.

To not get too far afield, we will only prove the big-O theorem for the restricted

class C ′′ in place of C, where C ′′ contains all functions of the form G(z) = (1 − z)α,

with α a real number. Our exposition parallels the original discussion of Flajolet and

Odlyzko in [FlaOdl90].

First note that for G(z) = (1 − z)α ∈ C ′′, [zn]G(z) is of order n−(α+1). Thus, to

prove the big-O theorem, it will be enough to show that fn = O(n−(α+1)), as n→∞.

Next, note that the assumption that F (z) = O(|1 − z|α) near z = 1 implies (using

only continuity, not analyticity) that for some constant c > 0, |F (z)| ≤ c · |1 − z|α,

for all z ∈ ∆ \ {1}.

Cauchy’s formula implies that

(3.13) fn =
1

2πi

∫
γn

F (z)

zn+1
dz ,

where γn is a contour carefully selected as the union of four elementary contours (see

figure 3.3). Since we will bound the integral in (3.13) we need not to worry about

the orientations.

Let γ
(1)
n be the circular arc parameterized by

(
1 + eit

n

)
, for δ ≤ t ≤ (2π − δ).

Let γ
(2)
n be the line segment between

(
1 + eiδ

n

)
and the number β of modulus
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(1 + ε) such that arg(β − 1) = δ.

Let γ(3) be the arc on the circle of radius (1 + ε) running between β and β the

long way, and let γ
(4)
n be the ray joining β̄ with

(
1 + e−iδ

n

)
.

Observe that

(3.14)

∣∣∣∣ 1

2πi

∫
γ

(1)
n

F (z)

zn+1
dz

∣∣∣∣ ≤ c

2π
·
(

1− 1

n

)n+1

· n−(α+1) ·
∫
γ

(1)
n

|dz| .

Since the sequence
(
1− 1

n

)n
is bounded and the

∫
γ

(1)
n
|dz| is at most 2π

n
, we con-

clude that ∣∣∣∣ 1

2πi

∫
γ

(1)
n

F (z)

zn+1
dz

∣∣∣∣ = O(n−(α+1)) ,

as n→∞.

On the other hand,∣∣∣∣ 1

2πi

∫
γ(3)

F (z)

zn+1
dz

∣∣∣∣ ≤ sup
z∈γ(3)

|F (z)| · (1 + ε)−n ,

= o(n−(α+1)) ,

as n→∞.

The symmetry between γ
(2)
n and γ

(4)
n lets us reduce the computation only for γ

(2)
n .

We parametrize the integral as z = 1 + t·eiδ
n

, for t = 1 to t = n · |β − 1|. Since,

|F (z)| ≤ c · |z − 1|α ≤ c
(
t
n

)α
, for all z ∈ γ(2)

n , we obtain that∣∣∣∣ 1

2πi

∫
γ

(2)
n

F (z)

zn+1
dz

∣∣∣∣ ≤ c

2π
· n−(α+1) ·

∫ ∞
1

tα ·
(

1 +
t · cos(δ)

n

)−n
dt .

The integral on the right-hand side is convergent for all n ≥ (α + 1). Since the

integrand is a decreasing function of n, the above inequality implies that∣∣∣∣ 1

2πi

∫
γ

(2)
n

F (z)

zn+1
dz

∣∣∣∣ = O(n−(α+1)) ,

as n→∞. Finally, since we have bounded all four integrals by multiples of n−(α+1),

the big-O theorem for the class C ′′ follows from (3.13).
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γ (3)

γn
(2)

γ (1)
n

γn
(4)

β
_

Re{z}
z=1

1/n

β
(1+ε)

Im{z}

Figure 3.3: Plot of the contour γn := γ
(1)
n + γ

(2)
n + γ(3) + γ

(4)
n used to prove the big-O

theorem of Flajolet and Odlyzko on the class C ′′.
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CHAPTER 4

MULTI-VARIABLE GENERATING FUNCTIONS

4.1 Basic notation.

Throughout this chapter d ≥ 2 will be a fixed integer and i :=
√
−1. We will use

boldface to denote vectors in Cd and hence also in Rd or Nd. As otherwise stated we

will assume that all vectors are d-dimensional.

The coordinates of a vector will be denoted consistently using the letter used to

name it; thus, for example, the coordinates of a z ∈ Cd will be (z1, . . . , zd) whereas

the ones for n will be (n1, . . . , nd). We will reserve the notation 0 to refer to the zero

vector. On the other hand, 1 will represent the vector with all entries equal to 1.

The scripts n and k will be always assumed to be vectors with nonnegative integer

coordinates. We will define 〈n〉 :=
d∑
j=1

nj. The notation n ≤ k will be used to mean

that nj ≤ kj for all j = 1, . . . , d. Similarly, we will write n < k to mean that nj < kj

for all j = 1, . . . , d.

The scripts z and w will mostly denote vectors with complex-valued entries. A

specific notation relating their real and imaginary part will be used. We will define

xj + i yj := zj and uj + i vj := wj where xj, yj, uj and vj are real numbers. The dot

product of z and w is defined as z ·w :=
∞∑
j=0

zj · w̄j. The Euclidean norm of z will be
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denoted ‖z‖2 :=
√

z · z.

For convenience we will define n! := n1! · . . . · nd! and zn := zn1
1 · . . . · z

nd
d .

We will also use the convention that a function, ostensibly of one-complex variable,

applied to an element of Cd acts on each coordinate separately — thus, for example,

we will define

ez := (ez1 , . . . , ezd) .

The only exceptions to this rule will be 1
z

:= 1
z1·...·zd

, provided that the denominator

does not vanish, and |z| := |z1| · . . . · |zd|.

4.2 Formal power series.

A multidimensional array indexed by d-tuples is a function f : Nd → C. We will

use the alternative notation (fn) to refer to the multidimensional array f such that

f(n) = fn, for all n. The formal power series or generating function associated to

multidimensional array (fn) is defined to be the

F :=
∑

n

fn zn .

The set of formal power series in the variables z1, . . . , zd will be denoted as C[[z]].

For F ∈ C[[z]] we will write [zn]F to refer to the coefficient of zn in F . The special

notation F (0) will be adopted to denote the constant term in the series. Furthermore,

as we did in the one-dimensional case, we will attach to a naming notation relating

generating functions and their coefficients. Thus, for example, the coefficients of the

formal power series F , G and H will be consistently denoted and without further

explanation as fn, gn and hn respectively.
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Given two formal power series F (z) and G(z) we will define their sum and product

respectively as

F +G :=
∑

n

un zn ,(4.1)

F ·G :=
∑

n

vn zn ,(4.2)

where un := fn + gn and vn :=
∑

k:0≤k≤n

fk · gn−k. With these operations C[[z]] is a

commutative ring. Moreover, it is also an integral domain because if F, G ∈ C[[z]]

are such that F ·G = 0 then either F = 0 or G = 0.

Following an argument similar to the one given for bivariate power series in section

2.5, one can show that a formal power series F has a multiplicative inverse if and only

if F (0) 6= 0. In other words, the units of C[[z]] are series with a nonzero constant

term. We will mostly use the notation 1
F

to refer to the multiplicative inverse of a

unit element F instead of the more conventional notation F−1.

We will introduce in C[[z]] pseudo-differential operators. We define the partial

derivative of F with respect to zj as the formal power series defined as

(4.3)
∂F

∂zj
:=

∑
n:nj≥1

nj fn zn−ej ,

where ej is the vector that has all its coordinates identically zero, however, its jth

coordinate equals 1. If we regard C[[z]] as a vector space over C then ∂
∂zj

is a linear

operator. Since the operators ∂
∂zj

and ∂
∂zk

commute we can unambiguously define, for

all k, the pseudo-derivative

(4.4)
∂kF

∂zk
:=

∂k1

∂zk1
1

. . .
∂kd

∂zkdd
F =

∑
n:n≥k

n!

(n− k)!
fn zn−k .

In particular, for all k, we have the identity

[zk]F =
1

k!

∂kF

∂zk
(0) .
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4.3 Domain of convergence.

Hereafter, we will reserve the term polyradius to refer to vectors r such that

r > 0. The open polydisk centered at z and with polyradius r is set defined as

∆(z, r) :=
{
w : |wj−zj| < rj, for all j

}
. Accordingly, the closed polydisk centered at

z with polyradius r it is defined to be the set ∆[z, r] :=
{
w : |wj−zj| ≤ rj, for all j

}
.

The special notation ∆(z) and ∆[z] will be used to refer to the open and closed

polydisk centered at 0 with polyradius (|z1|, . . . , |zd|) respectively. Moreover, we will

define T [z] :=
{
w : |wj| = |zj| , for all j

}
. Observe that T [z] is a manifold with real

dimension d and therefore it is strictly contained in the boundary of ∆(z) which has

real dimension (2d− 1).

In one-complex variable the domain of convergence of a power series is either

empty, an open disk or the entire complex plane (see section 10.5 in [Rud87]). In

several complex variables the situation is quite more intriguing. For example, the

bivariate power series
∞∑
n=0

xn yn is absolutely convergent only for those (x, y) ∈ C2

such that |x| · |y| < 1. This domain is not even convex hence it cannot be a disk

(using the euclidian norm in C2) nor a polydisk in C2.

Our discussion on the domain of convergence of formal power series begins with

the following result.

Theorem 4.1. Let w be such that wj 6= 0 for all j and suppose that a formal power

series F is absolutely convergent at w; that is to say, the
∑
n

|fn wn| <∞. Then, for

all z ∈ ∆(w) and k the series ∂kF
∂zk is uniformly absolutely convergent on ∆[z]. 1

1Given a set D ⊂ Cd and functions gn(z) defined for all z ∈ D, the series
∑
n
gn(z) is said to be

uniformly absolutely convergent (in D) if there is a finite constant c > 0 such that the
∑
n
|gn(z)| ≤ c,

for all z ∈ D.
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Proof. Define c :=
∑
n

|fnwn|; in particular, |fn| ≤ c
|wn| , for all n.

Given z ∈ ∆(w) it follows for all x ∈ ∆[z] and k that

∑
n:n≥k

∣∣∣∣ n!

(n− k)!
fn xn−k

∣∣∣∣ ≤ c · k!

|wk|
∑

n:n≥k

n!

k! (n− k)!

∣∣∣∣ zn−k

wn−k

∣∣∣∣ ,
=

c · k!

|wk|

d∏
j=1

1

(1− |zj/wj|)kj+1
,

where the last identity proceeds from (2.11).

The above inequality implies that there is a finite constant c′ > 0 such that

∑
n:n≥k

∣∣∣∣ n!

(n− k)!
fn xn−k

∣∣∣∣ ≤ c′ , for all x ∈ ∆[z] .

This shows that the series ∂kF
∂zk as defined in (4.4) is uniformly absolutely convergent

over ∆[z]. This completes the proof of the theorem.

We may rephrase theorem 4.1 as follows.

Corollary 4.2. A sufficient condition in order for a formal power series F and its

pseudo-derivatives of any order to be uniformly absolutely convergent on any compact

subset of a polydisk ∆(0, r) is that there is a finite constant c > 0 such that

(4.5) |fn| ≤ c · r−n , for all n .

Proof. Given λ ∈ (0, 1) the above inequality implies that

∑
n

|fn (λ r)n| ≤ c ·
∑

n

λ〈n〉 ,

=
c

(1− λ)d
.

Therefore F is absolutely convergent at each point of the form λ r. Using theorem

4.1 we can conclude that for all k the formal power series ∂kF
∂zk is uniformly absolutely
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convergent over the polydisk ∆[λ r]. The corollary follows by noticing that any

compact set of ∆(0, r) is contained in a polydisk of the form ∆[λ r], for some λ ∈

(0, 1).

The condition in (4.5) indeed ensures that F defines a C∞-function. Before we

state our next result it will be useful to introduce some notation.

We will define for j = 1, . . . , d the differential operator

(4.6)
∂

∂zj
:=

1

2

(
∂

∂xj
− i ∂

∂yj

)
.

The above operators commute over any class of C∞-functions defined on an open

subset of Cd. This motivates to define for each k the higher order differential operator

∂k

∂zk
:=

∂k1

∂zk1
1

. . .
∂kd

∂zkdd
.

To distinguish between pseudo-differential operators (whose domain is the ring

of formal power series) and the ones just defined (whose domain are C∞-functions

defined over an open set in Cd) we will use the notation ∂kF
∂zk (z) whenever F is a

C
∞-function defined in some open neighborhood of a point z. The following result is

now an almost direct consequence of corollary 4.2.

Corollary 4.3. The condition in (4.5) implies that the formal power series F con-

verges to a C∞-function on the polydisk ∆(0, r). Moreover, for all z in this polydisk

and for all k

∂kF

∂zk
(z) =

∑
n:n≥k

n!

(n− k)!
fn zn−k ,

and the series is uniformly absolutely convergent on any compact subset of ∆(0, r);

in particular, for all n one finds that

(4.7) fn =
1

n!

∂nF

∂zn
(0) .
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Proof. It is almost direct to see that condition (4.5) implies that for all k there is a

constant ck > 0 such that ∣∣∣∣[zn]
∂kF

∂zk

∣∣∣∣ ≤ ck · r−n ,

for all n.

Therefore, using an inductive argument on the order of the partial derivatives, to

prove the corollary, it will be enough to show that F is C1 over ∆(0, r). Without

loss of generality, all reduces to prove that F has a continuous partial derivative with

respect to zd. We prove this by induction on the number of variables

Corollary 4.2 implies that the
∑
n

fn zn converges uniformly over compact subsets

of ∆(0, r). This lets us think of F as a continuous function such that
∑
n

fn zn = F (z),

for all z ∈ ∆(0, r). Furthermore, for the same reasons, for j = d, the formal series

in (4.3) converges uniformly over compact subsets of ∆(0, r) to certain continuous

function Fj(z). The uniform convergence implies that

F (z) =

∫ zd

0

Fd(z1, . . . , zd−1, ξ) dξ + F (z1, . . . , zd−1, 0) ,

for all z ∈ ∆(0, r). This implies immediately that F is continuously differentiable

with respect to zd. Moreover, it follows that

∂F

∂zd
(z) = Fd(z) =

∑
n:n≥ed

nd fn zn−ed ,

for all z in this polydisk. This completes the proof of the corollary.

The domain of convergence of a formal power series F ∈ C[[z]] is defined to be

the set of points z such that the series
∑
n

fn zn is uniformly absolutely convergent for

all points in an open polydisk containing z. We will use the notation D(F ) to refer

to the domain of convergence of F .
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Clearly, D(F ) is an open subset of Cd. Moreover, due to corollary 4.2, if z ∈ D(F )

then ∆[z] ⊂ D(F ). This last fact is expressed in the literature of several complex

variables by saying that D(F ) is a complete Reinhardt domain centered at 0. As a

result, we obtain that

D(F ) =
⋃

z∈D(F )

∆(z) ,

and hence D(F ) is a union of open polydisk centered at 0.

Another set of interest related to a formal power series F is

B(F ) :=
{

z : there is a finite constant c > 0 such that : |fn zn| ≤ c, for all n
}
.

An often useful relation between D(F ) and B(F ) is that

(4.8) D(F ) = Interior
(
B(F )

)
.

The proof of the above identity proceeds as follows. The fact, Interior
(
B(F )

)
⊂

D(F ) is almost an immediate consequence of corollary 4.2. On the other hand, if

z ∈ D(F ) then the series
∑
n

|fn zn| is convergent and hence there is a finite constant

c > 0 such that |fn zn| ≤ c, for all n. Thus z ∈ B(F ). This shows that D(F ) ⊂ B(F ).

But, being D(F ) open, we can conclude that D(F ) ⊂ Interior
(
B(F )

)
. This proves

the identity.

Observe that B(F ) like D(F ) is also a complete Reinhardt domain centered at

0. Thus both sets are characterized by its intersection with Rd+. This motivates to

define the sets

logD(F ) := {x ∈ Rd : ex ∈ D(F )} ,

logB(F ) := {x ∈ Rd : ex ∈ B(F )} .
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Corollary 4.4. The set logD(F ) is open and convex.

Proof. To show that logD(F ) is open first observe that the set D(F ) ∩ Rd+ is open

in Rd. On the other hand, an argument similar to the one used to prove (4.8) shows

that: D(F ) ∩ Rd+ = Interior
(
B(F ) ∩ Rd+

)
. But the transformation ex : Rd → R

d
+

is an homeomorphism; in particular, since the pre-image of D(F ) ∩ Rd+ is logD(F )

whereas the pre-image of B(F ) ∩ Rd+ is logB(F ) we obtain that

(4.9) logD(F ) = Interior
(

logB(F )
)
.

This implies that logD(F ) is open.

Recall that the interior of a convex set in Rd is also convex. Thus, to show the

convexity of logD(F ) it will be enough to show that logB(F ) is convex. Hence,

suppose that x,y ∈ logB(F ); in particular, there is c > 0 such that |fk| ek·x ≤ c and

|fk| ek·y ≤ c, for all k. Then for all λ ∈ (0, 1) we have that

|fk| ek·(λx+(1−λ)y) =
{
|fk|ek·x

}λ
·
{
|fk|ek·y

}1−λ
≤ c .

This shows that {λx + (1−λ)y} ∈ logB(F ) and hence that logB(F ) is convex. This

completes the proof of the corollary.

Because of corollary 4.4, D(F ) is described as being logarithmically convex. This

can be of great use to determine in many situations an upper bound for the exponential

growth of the coefficients of F in a predetermined direction k; that is, an upper bound

for the log |fs·k|, as s→∞. Indeed, suppose that the quantity

γ(k) := − sup
x∈∂ logD(F )

k · x
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is attained at certain x ∈ ∂ logD(F ) and that logB(F ) is closed. Then, due to (4.9),

it follows that ex ∈ B(F ) and hence there is a finite constant c > 0 such that

(4.10) log |fs·k| ≤ s · γ(k) + log(c) .

The cases where most is known about the asymptotic behavior of the coefficients

fs·k is when their exponential growth is exactly s · γ(k); that is, when there is a

constant c > 0 such that |fs·k| ∼ c ·es·γ(k), as s→∞. In this context typically a local

analysis of the function F near the point ex which makes γ(k) = −k · x is enough to

get a great deal of asymptotic information of the coefficients of F along the direction

specified by k.

To finish our discussion we quote a result (see [Pem02], chapter 5) which answers

negatively to the question of whether the exponential rate of growth of fs·k is s ·γ(k).

Lemma 4.5. Let F be a power series and suppose that x ∈ ∂ logD(F ) is such that

γ(k) = −k · x. If the hyperplane through x normal to k is not a support hyperplane

of logD(F ) then the quantity |fs·k| · e−s·γ(k) decreases exponentially, as s→∞.

Proof. The hypotheses of the lemma imply that there is a y ∈ logD(F ) such that

(y− x) · k > 0 .

In addition to this, (4.9) implies that y ∈ logB(D) and hence, there is a constant

c > 0 such that |fs·k| · es(k·y) ≤ c, for all s. As a result, we obtain that

|fs·k| · e−s·γ(k) ≤ c · e−s(y−x)·k ,

and this proves the lemma.
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4.4 Analytic functions

In this section we explore in more depth properties that characterize a function

which can be represented as a convergent power series near the origin. For the sake

of generality it will be convenient to consider power series centered at other points

besides the origin. Such a point will be generically denoted by a. A formal power

series centered at a is by definition any series of the form
∑
n

fn (z− a)n.

Consider for j = 1, . . . , d the differential operators

(4.11)
∂

∂z̄j
:=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
,

whose domain are C∞-functions defined on an open subset of Cd.

An observation of major relevance is that

∂

∂z̄j

[
(z− a)k

]
= 0 ,

for all j = 1, . . . , d. This implies that any finite linear combination of terms of

the form (z − a)k for various k’s is in the kernel of the differential operators ∂
∂z̄j

,

j = 1, . . . , d. Moreover, if F ∈ C[[z]] has a nonempty domain of convergence D(F ),

corollary 4.3 promise that

(4.12)
∂F

∂z̄j
(z) = 0 ,

for all j = 1, . . . , d and for all z ∈ D(F ).

Given an open set D ⊂ Cd, a C1(D)-function F (z) that holds the above equations

for all j = 1, . . . , d and all z ∈ D is said to satisfy the Cauchy-Riemann equations

over D. In terms of the theory of one-complex variable this simply means that F is

analytic in each coordinate provided that the other (d− 1) coordinates remain fixed.
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Because of this, F (z) is said to be analytic or sometimes holomorphic on D. We will

denote the set of analytic functions over an open set D with the symbol H(D).

With the introduced terminology we see that if the domain of absolute convergence

of a power series F is not empty then F ∈ H(D(F )). A form of converse to this

property is the following result whose proof will be momentarily postponed.

Theorem 4.6. Suppose that F (z) is a continuous function in an open set D which is

a complete Reinhardt domain centered at 0; that is, for all z ∈ D the closed polydisk

D[z] ⊂ D. If F (z) satisfies the Cauchy-Riemann equations over D then

(4.13) F (z) =
∑

n

F (n)(0)

n!
zn ,

and the series is uniformly absolutely convergent on any compact subset of D. Fur-

thermore, the coefficients of F admit the alternative representation

(4.14) [zn]F =
1

(2πi)d

∫
T [w]

F (u)

un+1
du ,

valid for all n and all w ∈ D.

The representation of an analytic function as a power series such as in (4.13)

is primarily the consequence of the so called Cauchy’s integral formula (in several

complex variables). This is a generalization of the very same well-known formula in

the theory of one-complex variable (see [Rud87]). Under the same conditions imposed

to F (z) in theorem 4.6, Cauchy’s integral formula states that

(4.15) F (z) =
1

(2πi)d

∫
T [w]

F (u)

u− z
du ,

for all z ∈ D(w) and w ∈ D.
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Since the above integral is defined through a convolution we may differentiate

both sides to obtain the more generally the formula

(4.16)
F (n)(z)

n!
=

1

(2πi)d

∫
T [w]

F (u)

(u− z)n+1
du .

To prove Cauchy’s formula consider z and w as in (4.15). Since F is analytic over

D, the function u1 → F (u1, z2, . . . , zd) is analytic for |u1| < |w1|. Thus we may use

the one-complex variable Cauchy’s formula to obtain that

F (z) =
1

2πi

∫
|u1|=|w1|

F (u1, z2, . . . , zd)

u1 − z1

du1 .

We may repeat the preceding argument this time considering the function u2 →

F (u1, u2, . . . , zd) which is analytic for |u2| < |w2|. Another use of the one-complex

variable Cauchy’s integral formula produces the new identity

F (z) =
1

(2πi)2

∫
|u1|=|w1|

[∫
|u2|=|w2|

F (u1, u2, . . . , zd)

(u1 − z1) · (u2 − z2)
du2

]
du1 .

Repeated applications of the same argument finally leads to the iterated integral

F (z) =
1

(2πi)d

∫
|u1|=|w1|

. . .

∫
|ud|=|wd|

F (u)

(u1 − z1) · . . . · (ud − zd)
dud . . . du1 .

Cauchy’s formula in (4.15) follows from the above identity by means of Fubini’s

theorem (see [Rud87]) due to the fact that, for each fixed z ∈ D(w), the integrand

above is a continuous function of u over T [w].

We have now all the elements we required to prove theorem 4.6. Thus, let us

consider w ∈ D. Since D is a Reinhardt domain centered at 0 we may use Cauchy’s

formula to represent F (z) for z ∈ ∆(w) as an integral like in (4.15).

On the other hand, it is well-known that the
∞∑
n=0

tn converges uniformly over

compact subsets of [t : |t| < 1] toward 1
1−t . This implies that the

∑
n

(
zj
uj

)n
is uniformly
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convergent toward 1
1−zj/uj , for all u ∈ T (w) and z restricted to a compact subset of

∆(w). In particular, since

1

u− z
=

1

u1

(
1− z1

u1

)
· . . . · ud

(
1− zd

ud

) ,
then it follows that

1

u− z
=

1

u

∑
n1

(
z1

u1

)n1

· . . . ·
∑
nd

(
zd
ud

)nd
,

=
∑

n

zn

un+1
,

and this last series is uniformly convergent for all u and z as before. Thus, back in

(4.15), we may exchange the order of the integral with the above series to obtain that

F (z) =
∑

n

{
1

(2πi)d

∫
T [w]

F (u)

un+1
du

}
zn .

The compactness of T [w] ensures that the above series is uniformly absolutely con-

vergent for all z restricted to a compact subset of D(w). Theorem 4.6 is now a direct

consequence of (4.16).

A remarkable fact is that the Cauchy-Riemann equations is all what it is needed

to ensure that a function can be represented as a power series. It was Hartogs (see

theorem 1.7 on [Nis01]) who showed that if F is analytic over D — and notice that

this only requires the partial derivatives in (4.12) to exist and vanish everywhere over

D — then F must be continuous over D and hence the representation in (4.13) also

applies. The same conclusion can be obtained under much weaker conditions. For

example, Ohsawa (see [Ohs98], theorem 1.10) shows that if a function F is locally

square integrable and satisfies the Cauchy-Riemann equations in the distributional

sense — that is the
∫
D F (z) ∂g

∂z̄j
(z) dx1 dy1 . . . dxd dyd = 0, for all g ∈ C∞0 (D) and for

all j = 1, . . . , d — then F must be analytic.
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In what remains on this section we will state some basic yet relevant facts about

analytic functions of several complex-variables. In the remaining discussion and with-

out further mention it will be assumed that D is an open subset of Cd.

Theorem 4.7. (Liouville’s theorem.) Suppose that F : Cd → C is analytic and

that there is an integer l ≥ 1 and a polyradius r such that the: max
z∈T [ρ r]

|F (z)| = O(ρl),

as ρ→∞. Then F must be polynomial of degree less or equal to l. In particular, if

|F | is bounded then F must be a constant function.

Proof. The hypotheses of the theorem imply that there is a constant c > 0 such that

|F (z)| ≤ c · ρl, for all z ∈ T [ρ r] and all ρ sufficiently large. As a result, using (4.14)

we obtain that ∣∣∣∣F (n)(0)

n!

∣∣∣∣ ≤ 1

(2π)d

∫
T [ρ r]

|F (u)|
|un+1|

|du| ≤ c ρl−〈n〉

rn
.

Letting ρ → ∞ we obtain that F (n)(0) = 0, for all 〈n〉 > l. In particular, back

in (4.13) we obtain that F (z) =
∑

n:〈n〉≤l

F (n)(0)
n!

zn and hence F (z) is a polynomial of

degree at most l. This shows the theorem.

Theorem 4.8. (Weierstrass’ theorem.) If sequence of holomorphic functions

(Fj)j≥0 converges uniformly to a function F on each compact subset of D then F is

analytic over D.

Proof. First observe that F must be continuous over D for it is the uniform limit

of continuous functions. Let a ∈ D and r be a polyradius such that ∆[a, r] ⊂ D.

To prove the theorem it is enough to show that the Cauchy-Riemann equations are

satisfied over ∆(a, r). For each j we may use Cauchy’s integral formula to rewrite

Fj(z) =

∫
a+T [r]

Fj(u)

u− z
du ,
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for all z ∈ ∆(a, r). The Bounded Convergence theorem lets us then assert that

F (z) =

∫
a+T [r]

F (u)

u− z
du ,

for all z ∈ ∆(a, r). In particular, differentiating both sides we obtain that

∂

∂z̄j

[
F (z)

]
=

∫
a+T [r]

F (u)
∂

∂z̄j

[
1

u− z

]
du = 0 .

This shows that F satisfies the Cauchy-Riemann equations over D and thus it is

analytic in there. This proves the theorem.

Theorem 4.9. (Identity theorem.) Suppose that D is connected and that F,G ∈

H(D). If the set {z ∈ D : F (z) = G(z)} has non-empty interior then F (z) = G(z),

for all z ∈ D.

Proof. Define H := (F − G) ∈ H(D) and consider the set Z := {z ∈ D : H(k)(z) =

0, for all k}. The hypotheses of the theorem imply that Z is non-empty. Moreover,

observe that Z is closed in D and, in addition, from theorem 4.6 it also follows that

Z is open. Since D is connected we can conclude that D = Z. In particular, for all

z ∈ D, H(z) = 0, and this proves the theorem.

In one-complex variable the weaker condition that the set {z ∈ D : F (z) = G(z)}

has an accumulation point in D is enough to ensure that F = G over D. However, in

several complex variables this assertion is not true. For example, consider the entire

functions F (z, w) := z and G(z, w) := w. Observe that the origin is an accumulation

point of the zero set of (F −G), however, there is no open set in C2 where (F −G) is

identically zero. Theorem 4.9 constitutes for us a first indication that in the theory of

several complex variables new phenomena occur which were not seen in one-complex

variable.
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Krantz (see [Kra92], section 0.3) said it well: “at a quick glance, one might

be tempted to think of the analysis of several complex variables (or several real

variables, for that matter) as being essentially one variable theory with the additional

complication of multi-indices. This perception turns out to be incorrect. Deep new

phenomena and profound (and yet unsolved) problems present themselves in the

theory of several complex variables.”

Another striking difference between the theories of analytic functions over C vs.

C
d is given by the following result. We recall that in C a function cannot have an

accumulation point of zeroes (see [Rud87], theorem 10.18) unless it is identically zero

in some neighborhood of the accumulation point.

Theorem 4.10. In Cd the zeroes of an analytic function are never isolated.

To prove the above theorem the following decomposition will be suitable. We will

think of Cd as the product space Cd−1×C. Given a vector z we will define z′ ∈ Cd−1

through the relation z = (z′, zd). Thus, for example, given a polyradius r we have

that ∆(z, r) = ∆(z′, r′)×∆(zd, rd).

Proof. Let D be a non-empty open subset of Cd. By contradiction suppose that

F ∈ H(D) and that there is a ∈ D and a polyradius r such that z = a is the only

solution of the equation: F (z) = 0, z ∈ ∆[a, r]. Consider a sequence (z′n) such that

|z′n − a′| > 0 however z′n → a′ as n → ∞. Then, for each n, the function 1
F (z′n,zd)

regarded solely as a function of zd is analytic over ∆[ad, rd]. Thus, from the maximum

modulus principle in complex-variable (see [Rud87]) we can conclude that∣∣∣∣ 1

F (z′n, ad)
− 1

F (z′m, ad)

∣∣∣∣ ≤ sup
|zd−ad|=rd

∣∣∣∣ 1

F (z′n, zd)
− 1

F (z′m, zd)

∣∣∣∣ .
93



Since F must be uniformly continuous over ∆[a, r] it follows that F (z′n, zd) →

F (a′, zd) uniformly for |zd−ad| = rd, as n→∞. Being the limiting function zero-free

for |zd − ad| = rd we conclude that 1
F (z′n,zd)

→ 1
F (a′,zd)

uniformly for |zd − ad| = rd, as

n→∞. The above inequality implies that the limit lim
n→∞

1
F (z′n,ad)

exists. This is only

possibly if F (a) 6= 0. This contradicts our original premise and therefore a cannot

be an isolated zero of F .

The remaining results we present in this section are very much the generalization

of established properties of analytic functions in one variable.

Theorem 4.11. (Open Mapping theorem.) If F is a nonconstant analytic func-

tion over D and A is an open subset of D then the set F (A) is also open.

Proof. It is enough to show that F (z) is in the interior of F (D), for all z ∈ D.

With z as before let r be a polyradius such that ∆[z, r] ⊂ D. Then the function

f(u1) := F (u1, z2, . . . , zd) is analytic for |u1 − z1| < r1 and, in particular, the open

mapping theorem of complex-variable (see [Rud87]), let us conclude that f{u1 :

|u1 − z1| < r1} is an open neighborhood of F (z). The statement follows by noticing

that f{u1 : |u1 − z1| < r1} ⊂ F (D).

Theorem 4.12. (Maximum modulus principle.) Suppose that D is connected. If

F ∈ H(D) and the |F | attains its maximum value at a point in D then F is constant

over D.

Proof. Suppose that z ∈ D is such that |F (z)| ≥ |F (w)|, for all w ∈ D. By con-

tradiction, if F were nonconstant over D then the Open mapping theorem would

imply that F (z) is in the interior F (D); in particular, there must be w ∈ D such that

|F (z)| < |F (w)|. This contradicts our premise and therefore F must be constant.
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4.5 Hartogs’ series.

Theorem 4.6 implies that any analytic function on an open set D can be repre-

sented locally as a power series. Our next result provides an alternative type of series

to represent an analytic function of several variables. The identification Cd = Cd−1×C

used to prove theorem 4.10 will be continued in here and in the remaining sections

of this chapter.

Theorem 4.13. Let a be a vector and suppose that D ⊂ Cd, U ′ ⊂ Cd−1 are open

sets and rd > 0 is such that a ∈ U ′ × ∆(ad, rd) ⊂ D. If F ∈ H(D) then there are

unique function fn ∈ H(U ′) such that

(4.17) F (z) =
∞∑
n=0

fn(z′) · (zd − ad)n ,

for all z ∈ U ′ × ∆(ad, rd). Moreover, the series in (4.17) is uniformly absolutely

convergent on any compact subset of U ′ ×∆(ad, rd).

We will refer to the series in (4.17) as the Hartogs series of F in the variable zd

at a.

Proof. We first show the uniqueness of the representation in (4.17). Thus, consider

z ∈ U ′ ×∆(ad, rd) and let γ be any circle centered at ad and contained in ∆(ad, rd).

Since, by assumption, the series in (4.17) is uniformly convergent toward F over the

set {z′} × γ, Cauchy’s integral formula in one-variable (see [Rud87]) implies that

1

2πi

∫
γ

F (z′, ξ)

(ξ − ad)k+1
dξ =

1

2πi

∞∑
n=0

fn(z′) ·
∫
γ

1

(ξ − ad)k−n+1
dξ ,

= fk(z
′) .

This proves the uniqueness of the coefficients in (4.17).
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To show the existence of a Hartogs series we first consider the simpler case in

which U ′ = ∆(a′, r′) for certain polyradius r := (r′, rd). First, we use theorem 4.6 to

represent

(4.18) F (z) =
∑

n

fn · (z− a)n ,

for all z ∈ ∆(a, r). Since the above series is uniformly absolutely convergent on any

compact subset of ∆(a, r), it follows, for each nonnegative integer k, that

(4.19)
∑

n:nd=k

fn · (z− a)n = (zd − ad)k ·
∑

n:nd=k

fn · (z′ − a′)n′ ,

and the series on the right-hand side is uniformly absolutely convergent as long as z′

remains within a compact subset of ∆(a′, r′). In particular, the Weierstrass theorem

4.8 implies that there is fk ∈ H
(
∆(a′, r′)

)
such that fk(z

′) =
∑

n:nd=k

fn · (z′ − a′)n′ .

Finally, the uniform absolute convergence of the series in (4.18) allows us to reorganize

the terms in the summation in any possible way without destroying the type of

convergence of the original series nor affecting its limiting value. This implies that

F (z) =
∞∑
k=0

{ ∑
n:nd=k

fn · (z− a)n

}
,

=
∞∑
k=0

fk(z
′) · (zd − ad)k ,

and the series is uniformly absolutely convergent on compact subsets of U ′×∆(ad, rd).

This proves the theorem for the particular case in which U ′ = ∆(a′, r′).

For the general case rewrite U ′ =
∞⋃
j=1

U ′j where each U ′j is an open polydisk in

C
d−1. The above discussion implies that

(4.20) F (z) =
∞∑
n=0

fj,n(z′) · (zd − ad)n ,
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for all z ∈ U ′j ×∆(zd, rd). Furthermore, each fj,n in (4.20) is analytic over U ′j. But,

the uniqueness of the Hartogs series representation of F forces that fj,n = fl,n over

U ′j ∩ U ′l . This let’s us define fn(z′) := fj,n(z′) if z′ ∈ U ′j. The Identity theorem 4.9

shows that fn is indeed analytic over U ′. Moreover, (4.20) implies that

F (z) =
∞∑
n=0

fn(z′) · (zd − ad)n ,

for all z ∈ U ′ ×∆(zd, rd). This proves (4.17).

To finalize the proof of the theorem, it only remains to show that the above series

is uniformly absolutely convergent over compact subsets of U ′ ×∆(ad, rd). For this,

observe that, without any loss of generality, we could have assumed that for all j ≥ 1

there is k > j such that Ū ′j ⊂ U ′k. Thus, since every compact subset of U ′×∆(zd, rd) is

finitely covered by sets of the form U ′j×∆[zd, ρ ·rd], for some ρ ∈ (0, 1), and the series

in (4.20) is uniformly absolutely convergent over Ū ′j×∆[zd, ρ·rd], we conclude that the

above series is uniformly absolutely convergent over compact subsets of U ′×∆(zd, rd).

This completes the proof of the theorem.

Hartogs series let us think of an analytic function of several complex variables

as a one complex-variable function indexed by (d − 1)-variables. To state our first

application of Hartogs series we require a definition. This definition will be also of

use to state the main results of this dissertation in chapters 5 and 6.

Suppose that F is analytic in some open neighborhood of a point a. F is said to

vanish to order k in zd at a provided that the function F (a′, zd) vanishes to degree

k at zd = ad. In other words, the Hartogs series of F in the variable zd at a is of the

form
∞∑
n=0

fn(z′) · (zd − ad)n with fn(a′) = 0 for all n < k, however, fk(a
′) 6= 0.
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Example 4.14. Consider the bivariate rational function

F (z, w) :=
w2 + w2z − w2z2 − w2z3 + w3 + w3z + w4

1 + z + w
.

The denominator of F vanishes at (0,−1), however, the numerator does not vanish

in there. This implies that the numerator of F is not in the ideal generated by the

polynomial (1+z+w) and, as a result, we can conclude that the domain of convergence

of F is the set {(z, w) ∈ C2 : |z|+ |w| < 1}.

For example, we see that (1, 0) is in the boundary of the domain of convergence of

F (z, w). But, since the denominator of F does not vanish in there, F (z, w) is analytic

in a neighborhood of this point. A simple calculation then reveals that F (1, w) = w3.

Thus, F vanishes to order 3 in w about (1, 0). Indeed, the Hartogs series of F in the

variable w about (1, 0) is of the form

F (z, w) = (1− z2)w2 + z w3 +
1− z
1 + z

w4 + ...

�

It is possible that a function F (z) vanishes to an infinite degree in zd at a point a.

However, as our next result shows, in a new local system of coordinates, it is always

possible to assume that this degree is finite.

Lemma 4.15. Suppose that F is analytic near a point a and it is not identically zero

in any neighborhood of it. Then, there are open neighborhoods U and V of a and a

biholomorphic function Φ : U → V such that F (Φ(z)) vanishes to a finite degree in

zd about a. 2

2For j = 1 or 2, suppose that dj ≥ 1 and that Dj ⊂ Cdj is an open set. A function G : D1 → D2

is said to be analytic provided that each Gj : D1 → C is analytic, where G =: (G1, . . . , Gd2) are
the coordinate functions of G. If d1 = d2, G is said to be biholomorphic provided that G and its
inverse function are analytic. The Cauchy-Riemann equations imply that the composition of analytic
functions is analytic. In particular, the composition of biholomorphic functions is biholomorphic.
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Proof. Without loss of generality we may assume that a = 0 and that F is analytic

over certain polydisk ∆(0, r). Given h′ ∈ Cd−1 where all coordinates satisfy |hj| < 1

consider the 1-to-1 transformation Φh′(z) := (z1 + h1 · zd, . . . , zd−1 + hd−1 · zd, zd)

defined for z ∈ ∆(0, (r′, δ)/2) with δ := min
j=1,...,d

rj. Observe that δ is defined so that

the range of Φh′ is contained in ∆(0, r).

We claim that there is h′ such that F (Φh′(z)) vanishes to finite order in zd at 0.

By contradiction if we suppose otherwise then F (h1 zd, . . . , hd−1 zd, zd) = 0, for all h′

and |zd| < δ. But the range of the transformation (h′, zd) → (h1 zd, . . . , hd−1 zd, zd)

defined for |hj| < 1 and |zd| < δ contains the open set{
w : |wj| <

δ

2
for all j = 1, . . . , (d− 1) and

δ

2
< |wd| < δ

}
.

Thus, F must vanish identically on the above set. The Identity theorem 4.9 lets us

conclude that F is identically zero over ∆(0, r). This contradicts our original premise

and the claim follows.

The relevance of the previous result can be appreciated in the following lemma.

In some sense, this is a refinement of theorem 4.10.

Lemma 4.16. Suppose that F is analytic near a point a where it vanishes to a finite

degree k in zd. Then for any sufficiently small polyradius s there is a polyradius r < s

such that, for each z′ ∈ ∆(a′, r′),

(4.21)

 F (z′, zd) has exactly k zeroes, counting multiplicity,

in the disk ∆(ad, rd) and no other zeroes on ∆[ad, rd].

Proof. Without loss of generality we may assume that a = 0 and that s > 0 is such

that F ∈ H(∆(0, s)). The case k = 0 is trivial. Thus, assume that F vanishes to
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degree k ≥ 1 in zd at 0; in particular, F (0′, 0) = 0. Furthermore, since k is finite,

the zeroes of the one-variable analytic function zd −→ F (0′, zd) must be isolated and

hence, we may find 0 < rd < sd such that zd = 0 is the only zero of F (0′, zd) in

∆[0, rd].

Define m := min{|F (0′, zd)| : |zd| = rd}. Since F is uniformly continuous on any

compact subset of its domain we may find 0 < r′ < s′ such that |F (z′, zd)−F (0′, zd)| <

m, for all z′ ∈ ∆[0′, r′] and |zd| = rd. Define r := (r′, rd). Observe that F (z′, zd) 6= 0,

for all z′ ∈ ∆[0′, r′] and |zd| = rd.

To obtain (4.21) it will be enough to show that, for each z′ ∈ ∆(0′, r′), F (z′, zd),

regarded as a function of zd, has k zeroes repeated according their multiplicity within

the disk ∆(0, rd). But, given any such z′, observe that

|F (z′, zd)− F (0′, zd)| < |F (0′, zd)| ,

for all |zd| = rd. Rouche’s theorem (see [Rud87]) then lets us conclude that F (z′, zd)

has the same number of zeroes (repeated according to their multiplicity) as F (0′, zd)

does in the disk |zd| < rd. The lemma follows by noticing that zd = 0 is a zero of

order k of the function F (0′, zd).

An interesting application of Hartogs series is the following result which will be

a key ingredient in the coming section. To state the theorem we require a definition.

Given an open set D in C or Cd, a set Z ⊂ D will be said to be thin if for

each z ∈ D there exists a neighborhood U of z and a function F ∈ H(U) such that

F = 0 over (Z ∩ U), however, F does not vanish identically on any neighborhood of

z. Observe that, if Z is a thin subset of an open set D then
(
D−Z

)
cannot have an

empty interior.
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For example, any finite set Z ⊂ C contained in a disk of the form ∆(z0, r) is a

thin subset of the disk: just consider the polynomial F (z) which vanishes at each

point in Z.

A well-known fact in one-complex variable which will be of use to prove our next

result is the following.

Lemma 4.17. In C, suppose that Z is a finite subset of ∆(z0, r). Then, every

function f(z) analytic and bounded in ∆(z0, r) \ Z admits an analytic extension to

the whole disk ∆(z0, r).

Proof. Without loss of generality we may assume that Z = z0. We need to show that

any function f(z) which is analytic and bounded in the punctured disk ∆(z0, r)−{z0}

extends to an analytic function in the whole disk. We will show that

(4.22) g(z) :=
1

2πi

∫
|ξ−z0|=r/2

f(ξ)

ξ − z
dξ

extends f analytically near z0. It should be clear that g is analytic over ∆(z0,
r
2
).

Moreover, if |z− z0| < r
2

and 0 < ε < |z− z0| then the residue theorem (see [Rud87])

implies that

g(z)− f(z) =
1

2πi

∫
γε

f(ξ)

ξ − z
dξ ,

where γε is the circle |ξ − z0| = ε. Thus, to conclude that g(z) = f(z), it will

be enough to show that the lim
ε→0+

∫
γε

f(ξ)
ξ−z dξ = 0. But, because f is bounded over

∆(z0, r)− {z0}, we can conclude that there is a constant c > 0 such that
∣∣∣f(ξ)
ξ−z

∣∣∣ ≤ c,

for all ξ sufficiently close to z0. This implies that for all sufficiently small ε the∣∣∣∫γε f(ξ)
ξ−z dξ

∣∣∣ ≤ 2πc · ε. Letting ε→ 0, it follows that g = f over ∆(z0,
r
2
)− {z0}. This

shows the lemma because g(z) is analytic over ∆(z0,
r
2
).
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The following result generalizes the previous discussion to an arbitrary number of

complex variables.

Theorem 4.18. (Removable singularity theorem.) Let D be an open set and

suppose that F is bounded and analytic over (D \Z), where Z is a thin subset of D.

Then F has a unique analytic extension to D.

Proof. To prove the theorem it will be enough to show that for all a ∈ D there is a

polyradius r such that ∆(a, r) ⊂ D and F admits an analytic extension to this whole

polydisk. For this, notice that the thinness of Z implies that there is a polyradius r

and a function H ∈ H(∆(a, r)) such that H = 0 identically over ∆(a, r)∩Z, however,

H is not identically zero over ∆(a, r).

Since the notion of thinness is invariant under biholomorphic transformations,

lemma 4.15 lets us assume without loss of any generality that H vanishes to degree

k ≥ 1 in the variable zd at a. Lemma 4.16 can be now quoted to conclude that there

is a polyradius s < r such that, for each z′ ∈ ∆(a′, s′), H(z′, zd) vanishes at k points

(repeated according to their multiplicity) within the disk ∆(ad, sd), however, there

are no other zeroes on ∆[ad, sd]. This lets us define

G(z) :=
1

2πi

∫
|ξ−ad|=sd

F (z′, ξ)

ξ − zd
dξ ,

for each z ∈ ∆(a, s). The function G is certainly analytic in z. Moreover, since F

is bounded over (D \ Z), an argument similar to the one used to prove lemma 4.17

implies, for each z′ ∈ ∆(a′, s′), that G(z′, zd) = F (z′, zd) wherever H(z) 6= 0. In

particular, G = F over ∆(a, s) \ Z and hence, G is an analytic extension of F . The

identity theorem 4.9 implies that this extension is unique because ∆(a, s) \ Z has

nonempty interior. This completes the proof of the theorem.
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4.6 Weierstrass preparation and division theorem

An important tool to study the local behavior of an analytic function defined near

a point is the so called Weierstrass preparation theorem and Weierstrass division the-

orem. The first of these is helpful in relating a function of several complex variables

to one whose Hartogs series is terminating, hence, can be thought of as a polyno-

mial. The Weierstrass division theorem is the analogue of the Division algorithm for

polynomials but in the context of functions of several complex variables.

Theorem 4.19. (Weierstrass preparation theorem.) Suppose that F vanishes

to degree k in zd about a point a. Then there is a polyradius r, a monic polynomial

P (z) ∈ H(∆(a′, r′))[zd − ad] of degree k and a function C(z) analytic and zero-free

in ∆(a, r) such that

(4.23) F (z) = P (z) · C(z) , for all z ∈ ∆(a, r) .

Moreover, for each z′ ∈ ∆(a′, r′), the polynomial P (z′, zd) has exactly k zeroes, count-

ing multiplicity, in the disk ∆(ad, rd).

The notation H(∆(a′, r′))[zd] in Weierstrass’ theorem refers to the polynomial ring

over H(∆(a′, r′)) in the indeterminate zd. Thus, a generic element in this ring is a

polynomial in the variable zd whose coefficients are analytic functions of z′ over the

polydisk ∆(a′, r′).

The factorization in (4.23) is certainly unique. Because of this, P (z) is called the

Weierstrass polynomial of F in zd at a.

To prove theorem 4.19 we require first some definitions.
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Given k complex-variables w1, . . . , wk a power sum function of them is any func-

tion of the form

sn = sn(w1, ..., wk) :=
k∑
j=1

wnj ,

with n ≥ 1 an integer. Accordingly, we define s0 = s0(w1, ..., wk) ≡ 1. On the other

hand, for 0 ≤ n ≤ k, the elementary symmetric functions φn := φn(w1, ..., wk) in the

variables w1, . . . , wk are implicitly defined thorough the relation

(4.24)
k∏
j=1

(λ− wj) = φ0 λ
k +

k∑
j=1

(−1)j φj λ
k−j .

Thus, we see that φ0 ≡ 1 and

φ1 =
k∑
j=1

wj ,

φ2 =
∑

1≤j<l≤k

wj wl ,

...

φk =
k∏
j=1

wj .

Lemma 4.20. For each 1 ≤ n ≤ k, φn ∈ C[s1, ..., sn]. 3

Proof. Given w1, . . . , wk consider the function ϕ(λ) :=
k∏
j=1

(1 − λ · wj) which is a

polynomial in λ. Observe that the (logϕ) is well-defined for all λ in a disk such that

|λ · wj| < 1, for j = 1, ..., d. In particular, for all such λ, we have that

−ϕ
′(λ)

ϕ(λ)
= − ∂

∂λ

[
logϕ(λ)

]
,(4.25)

=
k∑
j=1

wj
1− λ · wj

,

=
∞∑
j=0

sj+1 λ
j .

3The set C[s1, . . . , sn] denotes to the ring of polynomials in the variables s1, . . . , sn with constant
complex coefficients.
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On the other hand, using (4.24) it is almost immediate to see that

ϕ(λ) =
k∑

n=0

(−1)n φn λ
n .

As a result, if in (4.25) we multiply both sides by ϕ(λ) and identify the coefficient

of λn−1 in each side, we obtain the recursive formula

(4.26) φn = −(−1)n

n
·
n−1∑
j=0

(−1)j φj · sn−j ,

for all 1 ≤ n ≤ k.

Having established the above recursion, the proof of the lemma proceeds by

induction. The result is trivial for n = 1. Next, suppose 1 < n ≤ k and that

φj ∈ C[s1, . . . , sj], for all j = 1, . . . , (n− 1). Then, for all j in this range, φj · sn−j ∈

C[s1, . . . , sn] and (4.26) implies that φn ∈ C[s1, . . . , sn]. This completes the proof of

the lemma.

We are ready to prove theorem 4.19. There is no loss of generality in assuming

that a = 0. In other words, we will suppose that F is analytic in a neighborhood of

0 where it vanishes to finite degree k in the variable zd.

Due to lemma 4.16, for each z′ ∈ ∆(0′, r′), we can enumerate the zeroes of F (z′, zd)

according to their multiplicity as x1(z′), . . . , xk(z
′). Define

P (z) :=
k∏
j=1

(
zd − xj(z′)

)
.

We cannot ensure (and indeed, it is not true in general) that the functions xj(z
′)

depend analytically nor even continuously on z′. Despite this nuisance, we will show

that P is analytic. For this, we first quote (4.24) to rewrite

P (z) = zkd +
k∑
j=1

(−1)j φj(z
′) zk−jd ,
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where each φj(z
′) is an elementary symmetric function of x1(z′), . . . , xk(z

′). To show

that P (z) is analytic for z ∈ ∆(0, r) it is therefore enough to show that each φj(z
′)

is analytic over ∆(0′, r′). Lemma 4.20 reduces the problem to show that sn(z′) :=
k∑
j=1

{xj(z′)}n is analytic for all 1 ≤ n ≤ k. The key ingredient for this is the identity

(4.27) sn(z′) =
1

2πi

∫
|ξ|=rd

ξn
∂F
∂zd

(z′, ξ)

F (z′, ξ)
dξ ,

valid for all z′ ∈ ∆(0′, r′). To prove (4.27) observe that the integral on the right-

hand side above is convergent for all z′ ∈ ∆(0′, r′) because, according to (4.21), all

the zeroes of F (z′, zd) within ∆[0, rd] belong to the interior of this disk. Next, fix

z′ ∈ ∆(0′, r′). The theory of one-complex variable together with lemma 4.16 implies

that we can factor F (z′, ·) in the form

(4.28) F (z′, zd) = P (z′, zd) · C(z′, zd) ,

where C(z′, zd) — regarded solely as a function of zd — is certain analytic and zero-

free function in an open neighborhood of the disk ∆[0, rd]. A simple computation

then shows that
∂F
∂zd

(z′, ξ)

F (z′, ξ)
=

∂C
∂zd

(z′, ξ)

C(z′, ξ)
+

k∑
j=1

1

ξ − xj(z′)
.

As a result, the residue theorem (see [Rud87]) allows us obtain that

1

2πi

∫
|ξ|=rd

ξn
∂F
∂zd

(z′, ξ)

F (z′, ξ)
dξ =

∫
|ξ|=rd

ξn
∂C
∂zd

(z′, ξ)

C(z′, ξ)
dξ +

k∑
j=1

∫
|ξ|=rd

ξn

ξ − xj(z′)
dξ ,

= 0 +
k∑
j=1

{xj(z′)}n ,

= sn(z′) .

This proves (4.27). Since the right-hand side in (4.27) is certainly an analytic function
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of z′ in the polydisk ∆(0′, r′) we conclude that sn(z′) is analytic. Therefore, P ∈

H(∆(0′, r′))[zd].

Having established the analyticity of P (z), to finalize the proof of theorem 4.19 it

will be enough to show that the function C(z), implicitly defined in (4.28), is analytic

for z ∈ ∆(0, r). For this consider the set Z := {z ∈ ∆[0, r] : P (z) = 0}. Lemma

4.16 implies that Z ⊂ ∆(0, r); in particular, since C(z) = F (z)
P (z)

, for z /∈ Z, C must be

analytic over ∆(0, r)\Z and continuous over ∆[0′, r′]× [zd : |zd| = rd]. In addition to

this, the maximum modulus principle in one-complex variable (see [Rud87]) implies

that the

max
z∈∆(0,r)

|C(z)| = max
z∈∆(0′,r′)×[zd:|zd|=rd]

|C(z)| .

Since the set ∆[0′, r′] × [zd : |zd| = rd] is compact, we deduce that C is bounded

over ∆(0, r) \ Z. Finally, since Z is certainly a thin subset of ∆(0, r), the removable

singularity theorem 4.18 implies that C can be analytically extended to ∆(0, r). This

completes the proof of theorem 4.19 because the factorization in (4.28) also applies

to the analytic extension of C.

Some of the elements of the proof of the Weierstrass preparation theorem can now

used to show the following useful result.

Theorem 4.21. (Weierstrass division theorem.) Suppose that F is analytic near

a point a where it vanishes to a finite degree k in zd. Then, there is a polyradius r,

such that any function G analytic in an open neighborhood of ∆[a, r] admits a unique

decomposition of the form

(4.29) G = E · F +R ,

where E ∈ H(∆(a, r)) and R ∈ H(∆(a′, s′))[zd] is of degree less than k.
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Proof. We first consider the case in which F is a Weierstrass polynomial itself. Using

lemma 4.16, it follows that there is a polyradius r such that F is analytic in the

polydisk ∆[a, r] and for each z′ ∈ ∆(a′, r′), all the zeroes of F (z′, ·) belong to the

interior of ∆[ad, rd].

We claim that the decomposition in (4.29) applies for all G(z) analytic in an open

neighborhood of the closed polydisk ∆[a, r]. Indeed, under these circumstances we

may define

E(z) :=
1

2πi

∫
|ξ−ad|=rd

G(z′, ξ)

F (z′, ξ)

dξ

ξ − zd
,

R(z) := G(z)− E(z) · F (z) .

The function E is certainly analytic over ∆(a, r); in particular, also is R on the

same polydisk. To obtain (4.29), it only remains to show that R(z) ∈ H(∆(a′, r′))[zd]

and is of degree less than k. For this, we may represent G(z, ·) using Cauchy’s integral

formula (see [Rud87]) to obtain

R(z) =
1

2πi

∫
|ξ−ad|=rd

G(z′, ξ)

F (z′, ξ)

F (z′, ξ)− F (z′, zd)

ξ − zd
dξ .

For each fixed ξ, the ratio F (z′,ξ)−F (z′,zd)
ξ−zd

— thought of as a function of zd — belongs to

H(∆(a′, s′))[zd] and has degree less than k; in particular, the same can be concluded

for R(z). This shows (4.29) for the particular case in which F is a Weierstrass

polynomial.

For the general case, let P be the Weierstrass polynomial of F . The Weierstrass

preparation theorem 4.19 implies that there is a polyradius r > 0 and a function C

analytic and zero-free in ∆(a, r) such that F (z) = C(z) · P (z), for all z ∈ ∆(a, r).

Lemma 4.16 lets us assume without loss of generality that for all z′ ∈ ∆(a′, r′), all the
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zeroes of F (z′, zd) are in the interior of ∆[ad, rd]. As a result, the discussion on the

previous paragraph implies that there is a polyradius s < r such that any function

G which is analytic in a neighborhood of ∆[a, s] has a decomposition of the form

G = E · P + R, with E ∈ H(∆(a, s)) and R ∈ H(∆(a′, s′))[zd] of degree less than k.

Since C is zero-free in the smaller polydisk, we can conclude that

G =

(
E

C

)
· F +R .

This proves (4.29) for the general case.

To prove uniqueness suppose that G = E ·F +R = Ẽ ·F + R̃, where Ẽ is analytic

over ∆(a, s) and R̃ ∈ H(∆(a′, s′))[zd] is of degree less than k. Lemma 4.16 lets us

assume without loss of generality that, for each z′ ∈ ∆(a′, s′), the zeroes of R(z′, zd)

and R̃(z′, zd) are all contained in the interior of ∆[ad, sd].

For any fixed z′ ∈ ∆(a′, s′), it follows that

(R− R̃)(z′, zd) = (E − Ẽ)(z′, zd) · F (z′, zd) ,

for all zd ∈ ∆(ad, sd). But, observe that the right-hand side vanishes at k points

counting multiplicity. Since the left-hand side is a polynomial in zd of degree less

than k it must be identically zero. Therefore, R = R̃ over ∆(a, s). In particular,

(E−Ẽ)(z)·F (z) = 0, for all z ∈ ∆(a, s). Since lemma 4.16 implies that F (z), regarded

as function of zd, has a finite number of zeroes over ∆(ad, rd), the continuity of E

and Ẽ lets us conclude that Ẽ = E over ∆(a, s). This shows that the factorization

in (4.29) is unique and completes the proof of the theorem.
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4.7 Implicit and inverse mapping theorem

The well-known implicit and inverse mapping theorem in the context of smooth

functions in Rd have their analogue in the setting of analytic function of several

variables.

To state the next results, the following notation will be used. Suppose that

D ⊂ Cd is an open set and F : D → C
m is an analytic function with coordinate

functions F = (F1, . . . , Fm). The Jacobian matrix of F at a point a ∈ D is defined

to be the matrix in Cm×d with entries

∂F

∂z
(a) =

∂(F1 . . . Fm)

∂(z1 . . . zm)
(a) :=


∂F1

∂z1
(a) . . . ∂F1

∂zd
(a)

...
. . .

...

∂Fm
∂z1

(a) . . . ∂Fm
∂zd

(a)

 .

Theorem 4.22. (Implicit mapping theorem.) Let 1 ≤ m ≤ d and F : D ⊂

C
d → C

m, with D open, be analytic with coordinate functions F = (F1, . . . , Fm). If

a ∈ D is such that F (a) = (0, ..., 0) and the matrix ∂(F1,...,Fm)
∂(zd−m+1,...,zd)

(a) is non-singular

then there is a polyradius r and an analytic map

G : ∆
(
(a1, . . . , ad−m), (r1, . . . , rd−m)

)
→ ∆

(
(ad−m+1, . . . , ad), (rd−m+1, . . . , rd)

)
such that for all z ∈ ∆(a, r)

(4.30) F (z) = (0, . . . , 0) if and only if (zd−m+1, . . . , zd) = G(z1, . . . , zd−m) .

Proof. The proof proceeds by induction in m. For m = 1 the hypotheses of the

theorem imply that a is a zero of order 1 of F in the variable zd. As a result, the

Weierstrass preparation theorem 4.19 implies that there is a polyradius r such that

F (z) =
{
p0(z′) + p1(z′) · (zd − ad)

}
· C(z) and p1(z′) · C(z) 6= 0, for all z ∈ ∆(a, r).
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Thus, for z in this polydisk, we have that F (z) = 0 if and only if zd = ad − p0(z′)
p1(z′)

.

This shows (4.30) for the case m = 1.

Suppose that m ≥ 2 and that the theorem has already been proved for smaller

values of m. Using a 1-to-1 linear transformation is Cm there is no loss of generality

in assuming that F (a) = (0, . . . , 0) and ∂(F1,...,Fm)
∂(zd−m+1,...,zd)

(a) is an identity matrix. In par-

ticular, ∂Fm
∂zd

(a) = 1 and therefore using the inductive hypothesis it follows that there

is a polyradius r and an a map G : ∆(a′, r′)→ ∆(ad, rd) such that Fm(z) = 0 if and

only if zd = G(z′). Without loss of generality we may assume that F ∈ H(∆(a, r)).

Define H : ∆(a′, r′) → C
m−1 by H(z′) :=

(
F1(z′, G(z′)), . . . , Fm−1(z′, G(z′))

)
. Then,

for all z ∈ ∆(a, r) it follows that

(4.31) F (z) = (0, . . . , 0) if and only if H(z′) = (0, . . . , 0) and zd = G(z′) .

But, observe that H(a′) = (0, . . . , 0) and the last (m − 1) columns of the Jacobian

matrix of H at a′ form an identity matrix. Thus, from the inductive hypothesis,

we can conclude that there is a polyradius s′ < r′ and a holomorphic map E :

∆
(
(a1, . . . , ad−m−1), (s1, . . . , sd−m−1)

)
→ ∆

(
(ad−m, . . . , ad−1), (sd−m, . . . , sd−1)

)
such

that for all z′ ∈ ∆(a′, s′)

(4.32) H(z′) = (0, . . . , 0) if and only if (zd−m, . . . , zd−1) = E(z1, . . . , zd−m−1) .

From (4.31) and (4.32) it follows, for all z ∈ ∆(a′, s′)×∆(ad, rd), that

F (z) = 0 iff

 (zd−m, . . . , zd−1) = E(z1, . . . , zd−m−1), and

zd = G
(
z1, . . . , zd−m−1, E(z1, . . . , zd−m−1)

)
.

This completes the proof of the theorem.
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Theorem 4.23. (Inverse mapping theorem.) Let d ≥ 1 and D ⊂ C
d be an

open set. Suppose that F : D ⊂ Cd → C
d is analytic and a ∈ D is such that the

Jacobian matrix ∂F
∂z

(a) is non-singular. Then, there is a polyradius r such that F is

biholomorphic from ∆(a, r) to an open neighborhood of F (a).

Proof. Let s be a polyradius such that F ∈ H(∆(a, s)) and consider the mapping

G : ∆(a, s)×Cd → C
d defined as G(z,w) := F (w)− z. Observe that G(F (a), a) = 0

and ∂G
∂w

(F (a), a) = ∂F
∂z

(a) is non-singular. The implicit mapping theorem 4.22 lets

us conclude that there are polyradii r1 < s and r2 and a holomorphic mapping

H : ∆(F (a), r2) → ∆(a, r1) such that F (w) = z if and only if w = H(z). In

equivalent words, the restriction of H to the set F (∆(a, r1)) — which according

to the Open mapping theorem 4.11 is an open neighborhood of F (a), because the

hypotheses ensure that F cannot be constant on any neighborhood of a — is the

inverse function of F : ∆(a, r1) → F (∆(a, r1)). This completes the proof of the

theorem.

4.8 Polynomial canonical representations.

Our discussion will focus on analytic functions of several variables which are

analytic in a neighborhood of a particular point. Without loss of generality we will

assume that this point is the origin in Cd for some d ≥ 2 fixed.

A typical example of a canonical representation is the Weierstrass preparation

theorem 4.19. Suppose that F (z) is an analytic function near the origin in Cd such

that for certain k ≥ 0 the ∂kF
∂zkd

(0) is nonzero. If k is minimal with this property the

Weierstrass preparation theorem 4.19 provides the existence of a unique decomposi-
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tion of the form

(4.33) F (z) = G(z) · P (z) ,

where both factors on the right-hand side are analytic near the origin but in addition

G(0) 6= 0 and P is the Weierstrass polynomial of F at 0 in the variable zd (which

is of degree k in the variable zd). The decomposition in (4.33) implies that F near

z = 0 is practically a constant multiple of P . The question of whether F itself can

be represented as a polynomial dates back to the work of Chester, Friedman and

Ursell [CFU56] in 1956 who studied this problem for a special class of a two-complex

variable functions. For an overview of their work refer to section 9.2 in [BleHan86].

Later, in 1961, Levinson [Lev61] provided a way to represent an analytic function

(of several complex variables) near the origin canonically as a polynomial. In [Lev60b]

he even showed that, for the special case of d = 2, it is possible to represent F itself

as a polynomial in two-variables provided that the discriminant of the Weierstrass

polynomial is not identically zero near the origin. 4

The main result of Levinson in [Lev61] can be rephrased in our context as follows.

Theorem 4.24. (Levinson’s canonical representation.) Suppose that F is an-

alytic in a neighborhood of the origin in Cd and that it vanishes to degree k ≥ 1 in zd

about 0. Then, F admits a representation of the form

(4.34) F (z) =
k∑
j=0

aj(z
′) · xjd .

where xd := xd(z) is certain analytic function near the origin such that xd(z
′, 0) ≡ 0,

4If p(z) is a polynomial of degree k and z1, . . . , zk are its roots repeated according to their
multiplicity then its discriminant (which is well defined up to a sign) is defined to be the quantity
D :=

∏
j<l

(zl − zj).
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∂xd
∂zd

(z′, 0) ≡ 1, and the functions aj(z
′) are analytic near the origin and such that

aj(0
′) = 0, for all 0 ≤ j < k, however, ak(0

′) 6= 0.

Hörmander (see [Hör90], theorem 7.5.13) provides an analogue to theorem 4.24

but in the context of C∞-functions on Rd. The proof he provides can be easily adapted

to consider the analytic case. His canonical representation can be rephrased in our

context as follows.

Theorem 4.25. (Hörmander’s canonical representation.) Suppose that F is

analytic in a neighborhood of the origin in Cd and that it vanishes to degree k ≥ 1 in

zd about 0. Then, F admits near the origin a representation of the form

(4.35) F (z) =
xkd
k

+
k−2∑
j=0

aj(z
′) · xjd .

where xd := xd(z) is analytic and such that xd(0) = 0, ∂xd
∂zd

(0) 6= 0, and the coefficients

aj(z
′) are analytic and such that aj(0

′) = 0, for all 0 ≤ j < (k − 1).

The above representation is certainly not unique. After all by multiplying xd by

a kth-root of unity factor we may obtain k different representations. Furthermore,

in the category of C∞-functions on Rd it is unclear that the above representation

is unique. For instance, uniqueness does not apply for the Malagrange preparation

theorem which is the analogue of the Weierstrass preparation theorem but in the

class C∞-functions (see theorem 7.5.5 in [Hör90]). Uniqueness does not apply either

for the equivalent of the Weierstrass division theorem for C∞-functions (see theorem

7.5.6 in [Hör90]).

In this section we will prove that Levinson’s representation is unique and that

Hörmander’s representation is unique up to a kth-root of unity factor. Both results
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of uniqueness are part of the research work of this dissertation. However, we remark

that Dr. Jean-Pierre Rosay, from the Department of Mathematics of The University

of Wisconsin in Madison, provided in a personal communication a more direct proof

of the uniqueness of these representations using a version of the inverse mapping

theorem over Banach Spaces.

The approach we will follow to show the uniqueness of these representations relies

on two one-complex variable propositions which we state next.

Proposition 4.26. Suppose that P ∈ C[z] and Q ∈ C[y] are polynomials of the same

degree k ≥ 1. If R > 0 is such that all the roots of P (z) are contained in ∆(0, R) and

there is a 1-to-1 analytic function y : ∆(0, R)→ C such that for all |z| < R

P (z) = Q(y(z))

then all the roots of Q(y) are contained in the range of y(z). Moreover, if ξ1, . . . , ξk

lists the roots of P (z) repeated according to their multiplicity then the polynomial
k∏
j=1

{y − y(ξj)} divides Q(y).

Proposition 4.27. Let R > 0. In the space of analytic function over ∆(0, R) con-

sider the functional equation

(4.36)


k∏
j=1

(z − zj) =
k∏
j=1

{y(z)− y(zj)} ,

y(0) = 0 ,

with z1, . . . , zk ∈ ∆(0, R). For all ρ and r such that 0 < 2ρ < r < R there exists

a δ > 0 such that for all (z1, . . . , zk) ∈ Ck with max
j=1...k

|zj| ≤ ρ, y(z) = z is the only

solution of (4.36) satisfying sup
|z|≤r
|y(z)− z| ≤ δ.
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4.8.1 Proof of uniqueness for Levinson’s representation.

We will to show that the canonical representation in (4.34) is unique. Thus,

suppose that there are functions xd = xd(z), yd = yd(z) and aj = aj(z
′) and bj = bj(z

′)

analytic near the origin such that

(4.37)

F (z) :=
k∑
j=0

aj · xjd ,

=
k∑
j=0

bj · yjd ,

with xd(z
′, 0) ≡ yd(z

′, 0) ≡ 0, ∂xd
∂zd

(z′, 0) ≡ ∂yd
∂zd

(z′, 0) ≡ 1, and aj(0
′) = bj(0

′) = 0 for

all 0 ≤ j < k, however, ak(0
′) ·bk(0′) 6= 0. We want to show that xd = yd and aj = bj,

for all 0 ≤ j ≤ k.

Consider the map Φ(z) := (z′, xd(z)). Since ∂xd
∂zd

(0) = 1, the Jacobian matrix

∂Φ
∂z

(0) is lower-triangular with nonzero entries along the diagonal. The inverse map-

ping theorem 4.23 ensures that there is a polydisk ∆(0, r) on which Φ−1 is well

defined. Letting G(z) := F (Φ−1(z)) and wd = wd(z) := yd(Φ
−1(z)) it follows from

(4.37) that

(4.38)

G(z) =
k∑
j=0

aj · zjd ,

=
k∑
j=0

bj · wjd .

Observe that wd(z
′, 0) = 0 and ∂wd

∂zd
(z′, 0) = 1.

Since G vanishes to degree k about the origin in the variable zd, lemma 4.16 lets

us assume without loss of generality that, for each z′ ∈ ∆(0′, r′), the zeroes of the

transformation zd → G(z′, zd), with zd ∈ ∆(0, rd), can be listed (repeated according

to their multiplicity) in the form ξ1(z′), . . . , ξk(z
′). Furthermore, the inverse mapping

theorem 4.23 lets us also assume that the restriction wd(z
′, ·) : ∆(0, rd) → C is a
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1-to-1 transformation. As a result, proposition 4.26 lets us conclude using (4.38)

that

(4.39) ak(z
′) ·

k∏
j=1

{zd − ξj(z′)} = bk(z
′) ·

k∏
j=1

{
wd(z

′, zd)− wd(z′, ξj(z′))
}
.

In addition, back in (4.38), the conditions aj(0
′) = bj(0

′) = 0 valid for all 0 ≤

j < k imply that wd(0
′, zd) = zd ·

{
ak(0′)
bk(0′)

}1/k

, provided that the kth-root of unity is

appropriately selected. Therefore, if we define

vd(z) := wd(z) ·
{
ak(z

′)

bk(z′)

}−1/k

then we may rewrite (4.39) in the form

(4.40)
k∏
j=1

{zd − ξj(z′)} =
k∏
j=1

{
vd(z

′, zd)− vd(z′, ξj(z′))
}
.

Without loss of generality we may assume that vd(z) is analytic for all z ∈ ∆(0, r).

On the other hand, (4.38) implies that there is a polyradius s′ < r′ such that

ξj(z
′) ∈ ∆

(
0, rd

4

)
, for all 1 ≤ j ≤ k and z′ ∈ ∆(0′, s′). Thus, proposition 4.27 (with

ρ = rd/4, r = 3rd/4 and R = rd) let us conclude that there is δ > 0 such that, for

each z′ ∈ ∆(0′, s′), vd(z
′, zd) = zd is the only analytic function of zd ∈ ∆(0, rd) which

satisfies (4.40) subjected to the condition

(4.41) sup
|zd|<

3rd
4

|vd(z′, zd)− zd| ≤ δ .

But, observe that vd(0
′, zd) = zd. Therefore, due to the uniform continuity of

vd(z), we may ensure that (4.41) is satisfied for all z′ sufficiently close to 0′. This let

us conclude that vd(z
′, zd) = zd, for all z′ sufficiently close to 0′. The identity theorem

4.9 implies that vd(z) = zd, for all z ∈ ∆(0, r). In particular, wd(z) = zd ·
{
ak(z′)
bk(z′)

}1/k

.

Thus, since ∂wd
∂zd

(z′, 0) = 1, we conclude that wd(z) = zd. This finding in (4.38)

117



implies that aj = bj, for all 0 ≤ j ≤ k. Furthermore, since wd(z) := yd(Φ
−1(z)),

with Φ(z) := (z′, xd(z)), we obtain that xd = yd. This shows that the polynomial

canonical representation of Levinson is unique. �

4.8.2 There are k different Hörmander’s representations.

We prove next that the canonical representation in (4.35) is unique once ∂xd
∂zd

(0)

has been specified. Thus, suppose that there are functions xd = xd(z), yd = yd(z)

and aj = aj(z
′) and bj = bj(z

′) analytic near the origin such that

(4.42)

F (z) :=
xkd
k

+
k−2∑
j=0

aj(z
′) · xjd ,

=
ykd
k

+
k−2∑
j=0

bj(z
′) · yjd ,

with xd(0) = yd(0) = 0, ∂xd
∂zd

(0) = ∂yd
∂zd

(0) 6= 0 and aj(0
′) = bj(0

′) = 0, for all

0 ≤ j ≤ (k − 2). We want to show that xd = yd and aj = bj, for all 0 ≤ j ≤ (k − 2).

Consider the map Φ(z) := (z′, xd(z)). Since ∂xd
∂zd

(0) 6= 0, the same argument

used in proving the uniqueness of Levinson’s representation implies that there is

a polydisk ∆(0, r) on which Φ−1 is well defined. Letting G(z) := F (Φ−1(z)) and

wd = wd(z) := yd(Φ
−1(z)) we obtain from (4.42) that

(4.43)

G(z) =
zkd
k

+
k−2∑
j=0

aj(z
′) · zjd ,

=
wkd
k

+
k−2∑
j=0

bj(z
′) · wjd .

But, observe that wd(0) = 0 and ∂wd
∂zd

(0) = 1. Since aj(0
′) = bj(0

′) = 0, for all

0 ≤ j ≤ (k − 2), (4.43) implies that wd(0
′, zd) = zd. As a result, for all 0 < r < rd,

the

lim
z′→0′

sup
|zd|≤r

|wd(z′, zd)− zd| = 0 .
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Similarly as we argued to prove the uniqueness of Levinson’s representation,

propositions 4.26 and 4.27 together with the above condition imply that wd(z) = zd.

Hence, xd(z) = yd(z), for all z sufficiently close to the origin. Moreover, from (4.43)

we can also conclude that, in some open neighborhood of the origin, aj = bj, for

all 0 ≤ j ≤ (k − 2). The uniqueness of Hörmander’s canonical representation then

follows from the identity theorem 4.9. �

4.8.3 Proof of proposition 4.26.

All over this section it will be assumed that P ∈ C[z] andQ ∈ C[y] are polynomials

of the same degree k ≥ 1. We will let U := ∆(0, R), for some R > 0. Proposition

4.26 is the direct consequence of the following two lemmas.

Lemma 4.28. Suppose that y : U → C is a 1-to-1 analytic function such that

P (z) = Q(y(z)), for all z ∈ U . If all roots of P are contained within U then all roots

of Q are contained in the range of y(z).

Proof. Let ξ1, . . . , ξk be a list of the roots of P repeated according to their multiplicity.

Define yj := y(ξj). Certainly, y = yj is a root of Q(y). Let nj be the multiplicity

of z = ξj as a root of P (z); in particular, the lim
z→ξj

P (z)
(z−ξj)nj is finite and nonzero. It

follows that

lim
y→yj

Q(y)

(y − yj)nj
= lim

z→ξj

Q(y(z))

{y(z)− yj}nj
(4.44)

=

{
1

y′(ξj)

}nj
· lim
z→ξj

P (z)

(z − ξj)nj
.

For the first identity above, we have used that yj = y(ξj) is in the interior of the range

of y(z) as warranted by the Open mapping theorem (see [Rud87]). Since y′(ξj) 6= 0,
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(4.44) implies that y = yj is a root of multiplicity nj of Q(y). But, the injectivity

of y(z) implies that the multiplicity of yj in the list y1, . . . , yk is precisely nj. As a

result,
k∏
j=1

(y − yj) divides Q(y), and this proves the lemma.

In lemma 4.28, the single condition that all roots of P (z) are contained in U is not

sufficient to ensure that all roots of Q(y) are in the range of y(z). Injectivity plays

a fundamental role which is more than just technical. As a counterexample consider

R > 1 and let ρ be a nonnegative real number such that ρ2 > 4(R2 + 1). Define

P (z) := (z − 1) · (z + 1) and Q(y) := y · (y − ρ). Setting y(z) := ρ
2

+
√(

ρ
2

)2
+ z2 − 1

a simple computation reveals that P (z) = Q(y(z)), for all |z| < R. However, observe

that {y − y(1)} · {y − y(−1)} is either equal to (y − ρ)2 or y2. Therefore, no matter

which branch for the squared-root is chosen either y = 0 or y = ρ will not belong to

the range of y(z). This is not in contradiction with lemma 4.28 because y(z) is an

even function of z.

Lemma 4.29. Suppose that y : U → C is an analytic function such that P (z) =

Q(y(z)), for all z ∈ U , and all roots of Q are contained in the range of y(z). If

ξ1, . . . , ξk is a list of the roots of P repeated according to their multiplicity then y(ξj) =

y(ξl) if and only if ξj = ξl, and the polynomial
k∏
j=1

{y − y(ξj)} divides Q(y).

Proof. List the roots of Q(y) in the form y(ξ1), . . . , y(ξk) repeated according to their

multiplicity in such a way that y(ξj) = y(ξl) if and only if ξj = ξl. Define yj := y(ξj)

and observe that ξj is a root of P (z). To prove the lemma it will be enough to show

that ξ1, . . . , ξk lists the roots of P repeated according to its multiplicity.

Suppose that y = yj is a zero of order nj of Q(y); in particular, the lim
y→yj

Q(y)
(y−yj)nj

is finite. Then, a similar argument as the one used in (4.44) lets us obtain this time
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that

(4.45) lim
z→ξj

P (z)

(z − ξj)nj
= {y′(ξj)}nj · lim

y→yj

Q(y)

(y − yj)nj
.

Since the right-hand side above is finite we can conclude that ξj is a root of

multiplicity at least nj of P (z). As a result, for all j, the polynomial (z − ξj)
nj

divides P (z). In particular, since nj is precisely the multiplicity of ξj in the list

ξ1, . . . , ξk we can deduce that
k∏
j=1

(z− ξj) divides P (z). Thus, being P (z) of degree k,

it follows that ξ1, . . . , ξk lists the roots of P repeated according to their multiplicity.

This completes the proof of the lemma.

4.8.4 Proof of proposition 4.27.

To prove the proposition we first require three lemmas.

Lemma 4.30. Suppose that α0, α1, α2, . . . is a sequence of complex numbers such that

α0 = 1 and there is 0 < ρ ≤ 1 such that for all j ≥ 1 the |αj| ≤ ρj. Then there is a

sequence β0, β1, β2, . . . such that |βj| ≤ (2ρ)j, for all j ≥ 0, and

(4.46)
n∑
j=l

βn−j · αj−l =

 0 , n > l ,

1 , n = l .

Proof. Define A(z) :=
∞∑
j=0

αj · zj. The condition imposed on the coefficients αj’s

implies that A(z) is analytic for all |z| < 1
ρ
. Furthermore, 1

A(z)
is analytic near the

origin because A(0) = 1. As a result, if we let βj := [zj] 1
A(z)

then

(4.47)
n∑
j=0

βn−j · αj =

 0 , n > 0 ,

1 , n = 0 .
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(4.46) follows almost immediately from (4.47). To complete the proof of the lemma

we will show by induction that |βj| ≤ (2ρ)j, for all j ≥ 0. The case j = 0 is trivial

because β0 = 1. For the general case consider j ≥ 1 and assume that |βl| ≤ (2ρ)l, for

all 0 ≤ l < j. (4.47) then implies that

|βj| =

∣∣∣∣∣
j∑
l=1

βj−l · αl

∣∣∣∣∣ ≤ (2j − 1) · ρj ≤ (2ρ)j .

This completes the proof of the lemma.

Before stating our next result we will introduce some notation. We will let U to

denote the open disk ∆(0, R) with R > 0 and for all z ∈ U we will define id(z) := z.

The space of analytic functions over U will be denoted as H. For each compact set

K ⊂ U , we will consider the seminorm ‖ · ‖K on H defined as ‖f‖K := sup
z∈K
|f(z)|.

For the particular case in which K = ∆[0, r] for some 0 < r < R the notation ‖f‖r

will be used instead of ‖f‖∆[0,r].

We will embed H with the topology induced by the semi-norms ‖·‖K with K ⊂ U

compact. This is the so called topology of uniform convergence over compact subsets

of U . This topology is induced by a metric under which H is a Banach Space.

Moreover, a sequence (fj)j≥0 ⊂ H converges to f ∈ H provided that lim
j→∞
‖f−fj‖K =

0, for all compact set K ⊂ U . (For a general reference on these facts see [Tay02],

section 2.4.) With these remarks it should be clear that the vector subspace H0 :=

{f ∈ H : f(0) = 0} is closed and therefore embedded with the topology of uniform

convergence it is also a Banach Space.

We will let P to denote the vector space of polynomials in the variable z. P0 will

be the vector subspace of polynomials that vanish at the origin. Observe that P0 is

a dense subset of H0 whereas P is a dense subset of H.
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Lemma 4.31. Let L : H0 × Uk → H be the operator defined as

(4.48) L(f ; z1, . . . , zk)(z) :=
1

k

k∑
j=1

f(z)− f(zj)

z − zj
.

If the max
j=1...k

|zj| ≤ ρ < R
2

then the restriction L( · ; z1, . . . , zk) : H0 → H is a linear

isomorphism.

Proof. The removable singularity theorem 4.18 implies that the map L : H0 ×

Uk → H is well-defined, moreover, for each given (z1, . . . , zk) ∈ Uk, the restric-

tion L( · ; z1, . . . , zk) : H0 → H is certainly linear. To show that this transformation

is also continuous observe that

L(f ; z1, . . . , zk)(z) =
1

k

k∑
j=1

∫ 1

0

f ′(zj + t(z − zj)) dt .

If the max
j=1...k

|zj| < r1 < R then |L(f ; z1, . . . , zk)(z)| ≤ ‖f ′‖r1 , for all |z| = r1. On the

other hand, if r1 < r2 < R then the Cauchy’s estimates together with the maximum

modulus principle (see [Rud87]) imply that ‖f ′‖r1 ≤
‖f‖r2
r2−r1 . As a result, if f ∈ H0

then

‖L(f ; z1, . . . , zk)‖r1 ≤
‖f‖r2
r2 − r1

,

provided that the max
j=1...k

|zj| < r1 < r2 < R. The continuity of L( · ; z1, . . . , zk) is now

almost a direct consequence of the above inequality.

Define

(4.49) p(z; z1, . . . , zk) :=
k∏
j=1

(z − zj) .

To show that L( · ; z1, . . . , zk) is 1-to-1, suppose that L(f ; z1, . . . , zk) ≡ 0, with

f ∈ H0. We will show this implies that f ≡ 0. Indeed, if L(f ; z1, . . . , zk) ≡ 0 then a

simple calculation reveals that f(z) · u(z) = v(z), where u(z) := dp
dz

(z; z1, . . . , zk) and
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v(z) is certain polynomial of degree less or equal to (k − 1). The division algorithm

for polynomials implies that there is α ∈ C and a polynomial r(z) of degree less than

the degree of u(z) such that

(4.50) f(z) = α +
r(z)

u(z)
,

provided that z ∈ U and u(z) 6= 0.

Consider max
j=1...k

|zj| < r < R. It is a well-known fact that the roots of u(z) are all

a convex linear combination of z1, . . . , zk.
5 Hence, all the roots of u(z) are contained

in the disk ∆(0, r) and therefore, since the degree of r(z) is less than the degree of

u(z), r(z)
u(z)

cannot be bounded in this disk unless r(z) ≡ 0. Since the left-hand side

in (4.50) is bounded we conclude that r(z) ≡ 0. Thus, f(z) must be constant. The

condition f(0) = 0 finally implies that f ≡ 0. Consequently, L( · ; z1, . . . , zk) is 1-to-1

as claimed.

To conclude that L( · ; z1, . . . , zk) : H0 → H is an isomorphism we will use the

condition max
j=1...k

|zj| ≤ ρ < R
2

to show that there is a continuous linear operator

T0 : H → H0 such that L0(T0 f ; z1, . . . , zk) = f , for all f ∈ H.

Define α0 := 1 and for all n ≥ 1 let αn := 1
k

k∑
j=1

znj . A simple calculation reveals

that

L0(zn+1; z1, . . . , zk) =
n∑
j=0

αn−j z
j .

The above computation implies that the restriction L( · ; z1, . . . , zk) : P0 → P is

a well-defined linear operator. To invert this map, observe that |αn| ≤ ρn, for all

n ≥ 0. Thus, with (βj)j≥0 as prescribed in Lemma 4.30, consider the linear mapping

5Indeed if u(z) = 0 and z 6= zj , for all j, then

{
k∑
j=1

αj

}
z =

k∑
j=1

αj zj , with αj := 1
|z−zj |2
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T0 : P → P0 defined as

(4.51) T0f(z) := z ·
∞∑
j=0

{
∞∑
l=j

fl βl−j

}
zj , with fl := [zl]f .

A simple calculation reveals that

L0

(
n∑
j=0

βn−j · zj+1; z1, . . . , zk

)
= zn .

As a result, it is almost direct to verify that L0(T0 z
n; z1, . . . , zk) = zn, for all n ≥ 0.

Therefore,

(4.52) L0(T0 f ; z1, . . . , zk) = f ,

for all f ∈ P .

To conclude that L0 : H0 → H is an isomorphism it will be enough to show that

T0 : P → P0 can be extended continuously to a linear map from H to H0. Thus

consider f ∈ H and 2ρ < r0 < r1 < R. Cauchy’s estimates (see [Rud87]) imply that

|fn| ≤
‖f‖r1
rn1

, for all n ≥ 0. Since |βj| ≤ (2ρ)j, it follows that

(4.53)

∣∣∣∣∣
∞∑
l=j

fl · βl−j

∣∣∣∣∣ ≤ r1 ‖f‖r1
r1 − 2ρ

· r−j1 .

The above inequality implies that the power series in (4.51) defines an analytic

function for |z| < r1. Since this is the case for all 2ρ < r1 < R and T0f(0) = 0 we

can deduce that T0 : H → H0 is a well-defined linear operator. Furthermore, (4.53)

implies that

(4.54) ‖T0 f‖r0 ≤
r0 r1

(r1 − 2ρ) · (1− r0/r1)
· ‖f‖r1 ,

for all f ∈ H, provided that 2ρ < r0 < r1 < R. As a result, T0 : H → H0 is a

continuous linear operator and this completes the proof of the lemma.
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Lemma 4.32. Let L : H0 ×Uk → H and p(z; z1, . . . , zk) be as defined in (4.48) and

(4.49) respectively. If 0 ≤ 2ρ < r < R then there is a constant c = c(ρ, r, R) such

that for all f ∈ H0 and (z1, . . . , zk) such that the max
j=1...k

|zj| ≤ ρ the

(4.55) ‖p( · ; z1, . . . , zk) · L(f ; z1, . . . , zk)‖r ≥ c · ‖f‖r .

Proof. Consider the compact set

K :=
{

(z; z1, . . . , zk) : |z| = r and |zj| ≤ ρ, for all 1 ≤ j ≤ k
}
.

Since |p(z; z1, . . . , zk)| > 0, for all (z; z1, . . . , zk) ∈ K, the continuity of p implies

the existence of a constant constant c0 > 0 such that |p(z; z1, . . . , zk)| ≥ c0, for all

(z; z1, . . . , zk) ∈ K. The maximum modulus principle ( [Rud87]) then implies that

(4.56) ‖p( · ; z1, . . . , zk) · L(f ; z1, . . . , zk)‖r ≥ c0 · ‖L(f ; z1, . . . , zk)‖r .

To obtain a lower bound for ‖L(f ; z1, . . . , zk)‖r in terms of ‖f‖r we will refine

the estimate in (4.54). For this, reconsider T0 : H → H0 as given in (4.51). The

condition L(T0f ; z1, . . . , zk) = f , for all f ∈ H, implies that

(4.57)
dp

dz
(z; z1, . . . , zk) · T0f(z) = p(z; z1, . . . , zk) ·

{
k · f(z) +

k∑
j=1

T0f(zj)

z − zj

}
,

for all |z| < R.

On the other hand, all the zeroes of dp
dz

(z; z1, . . . , zk), regarded as a function of z,

are within the disk ∆[0, ρ]. Since 2ρ < r, it follows that there is a finite constant

c1 = c1(r, ρ, R) > 0 such that
∣∣∣ p(z;z1,...,zk)
dp
dz

(z;z1,...,zk)

∣∣∣ ≤ c1, for all (z; z1, . . . , zk) ∈ K. (4.57)

followed by the inequality in (4.54) with r1 = r implies for all 2ρ < r0 < r that

‖T0f‖r ≤ k · c1 ·
{
‖f‖r +

‖T0f‖ρ
r − ρ

}
,

≤ k · c1 ·
{

1 +
r0 · r

(r − ρ) · (r − 2ρ) · (1− r0/r)

}
· ‖f‖r .
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We conclude that for all 2ρ < r < R there is a constant c2 = c2(r, ρ, R) > 0 such

that

‖T0f‖r ≤ c2 · ‖f‖r ,

for all f ∈ H and (z1, . . . , zk) such that max
j=1...k

|zj| ≤ ρ. In particular, we can de-

duce that ‖f‖r = ‖T0(L0(f ; z1, . . . , zk))‖r ≤ c2 · ‖L0(f ; z1, . . . , zk)‖r. This in (4.56)

completes the proof of the lemma.

We now prove proposition 4.27. Motivated by (4.36) consider the map F : H0 ×

Uk → H defined as F(f ; z1, . . . , zk)(z) :=
k∏
j=1

{f(z)− f(zj)}.

A simple inductive argument then shows that

(4.58) F(f + id; z1, . . . , zk)(z) =
∑
J

{∏
j∈J

(z − zj)

}
·
∏
j /∈J

{f(z)− f(zj)} ,

where the index J in the summation includes all possible subsets of {1, . . . , k}.6 As

a result, by defining

L1(f ; z1, . . . , zk) :=
∑

J :|J |=(k−1)

{∏
j∈J

(z − zj)

}
·
∏
j /∈J

{f(z)− f(zj)} ,

E1(f ; z1, . . . , zk) :=
∑

J :|J |≤(k−2)

{∏
j∈J

(z − zj)

}
·
∏
j /∈J

{f(z)− f(zj)} ,

it follows that

(4.59) F(f + id; z1, . . . , zk)−F(id; z1, . . . , zk) = L1(f ; z1, . . . , zk) +E1(f ; z1, . . . , zk) .

Observe that L1(f ; z1, . . . , zk)(z) = k · p(z; z1, . . . , zk) · L(f ; z1, . . . , zk)(z), with

p(z; z1, . . . , zk) and L(f ; z1, . . . , zk) as given in lemma 4.32 respectively. In addition,

a straightforward computation reveals that for all 2ρ < r < R there is a finite constant

6Given complex number ξ1, . . . , ξk we will use the convention that
∏
j∈∅

ξj := 1 and
∑
j∈∅

ξj := 0.
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c1 = c1(r, ρ, R) > 0 such that for all f ∈ H0 and (z1, . . . , zk) such that max
j=1...k

|zj| ≤ ρ

the

(4.60) ‖E1(f ; z1, . . . , zk)‖r ≤ c1 ·
k∑
j=2

‖f‖jr .

To prove proposition 4.27 suppose that y ∈ H0 and consider f := (y − id) ∈ H0.

(4.59), (4.55), and (4.60) then let us obtain that

‖F(y; z1, . . . , zk)−F(id; z1, . . . , zk)‖r = ‖L1(f ; z1, . . . , zk) + E1(f ; z1, . . . , zk)‖r ,

≥ k · ‖p(·; z1, . . . , zk) · L(f ; z1, . . . , zk)‖r

−‖E1(f ; z1, . . . , zk)‖r ,

≥ ‖f‖r ·
{
k c− c1 ·

k−1∑
j=1

‖f‖jr
}
.

As a result, if we let δ := min
{

1, k c
c1(k−1)

}
then, for all (z1, . . . , zk) such that

max
j=1...k

|zj| ≤ ρ, and all y ∈ H0 such that 0 < ‖y − id‖r < δ, we obtain that

‖F(y; z1, . . . , zk)−F(id; z1, . . . , zk)‖ > 0. This shows (4.36) and completes the proof

of proposition 4.27. �
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CHAPTER 5

TWO GENERALIZED SADDLE POINT METHODS

5.1 Introduction

This chapter is concerned with the asymptotic analysis of Fourier-Laplace inte-

grals which depend upon a parameter. To start our introduction we will consider

first the parameter-free case which is the most studied and well-understood.

A parameter-free Fourier-Laplace integral is of the form
∫
γ

exp{−s · f(z)} a(z) dz

where s ≥ 0 and f(z) and a(z) are analytic functions in an open neighborhood of the

contour γ. The function f(z) in the exponential is usually referred to as phase term

whereas a(z) is the so called amplitude term. The term Laplace integral is preferred to

describe the case where the phase term is real-valued along the contour of integration.

However, if it takes only purely imaginary values the term Fourier integral is used

instead.

To study the asymptotic behavior for big values of s ≥ 0 of an integral of the

form
∫
γ

exp{−s ·f(z)} a(z) dz one may use Cauchy’s deformation theorem to reshape

the contour of integration into a variety of other contours. The value of the integral

will remain unchanged as long as the starting and ending points of the new contour

coincide with the original contour γ. The basic idea of the method of steepest descents
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or also called saddle point method (see [BleHan86], section 7) is to deform the contour

γ into a new contour which produces a Laplace integral.

The contour deformation as intended in the previous paragraph is not always

possible. Bleistein and Handelsman [BleHan86] said it well: “[this contour deforma-

tion] is not only the pivotal step in the analysis [of a Fourier-Laplace integral, but]

it is also often the most difficult to apply.” Indeed, in the best scenario, one can

only hope to replace the contour γ by an asymptotically equivalent contour which,

piecewise, decomposes into smaller contours where the phase term remains purely

real and/or purely imaginary. For clarification, two contours γ1 and γ2 are said to be

asymptotically equivalent if the quantity∣∣∣∣∫
γ1

exp{−s · f(z)} a(z) dz −
∫
γ2

exp{−s · f(z)} a(z) dz

∣∣∣∣
is a rapidly decreasing function of s.

The advantage of having to deal with Laplace integrals is that it is relatively

simple to study their asymptotic behavior. The Laplace method (see chapter 5 in

[BleHan86]) has been devised to handle precisely integrals of this form. It states

that the asymptotic behavior of
∫
γ

exp{−s · f(z)} a(z) dz is determined by the local

behavior of f(z) in a small neighborhood of the points which minimize the phase

term along the contour of integration.

On the other hand, the integration by parts method (see chapter 3 in [BleHan86])

and the stationary phase method (see chapter 6 in [BleHan86]) are very suitable to

deal with Fourier integrals. For Fourier integrals of the form
∫
γ

exp{−s ·f(z)} a(z) dz

there are two types of points to consider to determine their asymptotic behavior.

These are the boundary points of γ and the stationary points of the phase term
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lying over γ. A point z is said to be a stationary point or sometimes saddle point

of f(z) if f ′(z) = 0. The contribution to an integral produced by stationary points

can be obtained using the stationary phase method, however, the contribution of the

boundary points of the contour of integration may be obtained using the method of

integration by parts.

It is important to remark that the general theory of Fourier integrals is much

more intriguing than the theory for Laplace integrals. This is mainly because the

boundary points of the domain of integration of a Laplace integral do not contribute

significantly to the integral unless, the phase term is minimized at the boundary. In

contrast, for a general Fourier integral boundary points and stationary points may

contribute equally to the integral. However, there are settings where the boundary

points of Fourier integrals are of no relevance. This is the case when the amplitude

term is compactly supported (see chapter VIII in [Ste93]). More specifically these

are integrals of the form
∫
R exp{−i · s · φ(z)}ψ(z) dz where φ(z) and ψ(z) are real-

valued C∞-functions and ψ(z) is compactly supported on R. In this case, if φ′(z) is

zero-free over the support of ψ(z) then the
∫
R exp{−i · s · φ(z)}ψ(z) dz is a rapidly

decreasing function of s. However, if a stationary point of φ(z) belongs to the interior

of the support of ψ(z) then a full asymptotic expansion for the Fourier integral can

be obtained by only considering the local behavior of φ(z) and ψ(z) near this point.

The previous discussion pretty much accounts for all the known methods to deal

with parameter-free Fourier-Laplace integrals. However, in many situations of inter-

est one is forced to consider instead integrals of the form

I(t; s) :=

∫
γ

exp{−s · F (t, z)}A(t, z) dz ,
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where F (t, z) and A(t, z) are analytic functions of (t, z) for all z in an open neighbor-

hood of γ (which can be regarded as independent of t) for all t sufficiently close, say

to, t = 0. For convenience we will assume without loss of generality that z = 0 ∈ γ.

The first attempt to study the asymptotic behavior of integrals of this form seems

to have been done by Olver (see [Olv54a] and [Olv54b]). A systematization of his

ideas then was provided by Chester et al. whose method became to be known as

the coalescing saddle point method (see [CFU56] and/or chapter 9 in [BleHan86]).

It is designed to find an asymptotic expansion for an integral such as I(t; s) for a

phase term in special class and a parameter-free amplitude. More specifically, they

considered a phase term with a Hartogs series near the origin of the form

F (t, z) = u(t) · z2 + v(t) · z3 + . . .

where u(0) = 0, v(0) 6= 0, however, u(t) is not identically zero near t = 0. This

implies that for all t sufficiently small but nonzero, F (t, z), regarded as a function

of z, has two stationary points near the origin, namely z = 0 and another point

z = z(t) such that lim
t→0

z(t) = 0. (This is the motivation to refer to this method as the

coalescing saddle point method.) Assume that (i) the boundary points of the integral

do not contribute significantly, and (ii) at any other stationary point of F (t, z) the

real part of F (t, z) is greater than the real part of F (t, z) at z = 0 and z = z(t). Then,

Chester et al. [CFU56] conclude that I(t; s) has an asymptotic expansion in terms

of the Airy function which is uniform for all values of t sufficiently small, as s→∞.

The hypotheses required on the phase term are very common in most discussions

where the steepest descent method is used. Condition (i) is satisfied per se if the

contour of integration has an empty boundary. Condition (ii) is usually troublesome
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but likely to be tested in cases where F (t, z) is known explicitly and has a simple

algebraic description. However, these conditions, especially condition (ii), are very

limiting in situations where little quantitative information is available for the phase

term.

A vast level of generalization of the results of Chester et al. can be found in the

literature. Particularly interesting is the work of Ludwing [Lud67] who, in the context

of a compactly supported amplitude term, studied the problem of determining the

bandwidth for the parameter t so as to ensure that the stationary phase formula for

I(t; s) remains valid as if F (t, z) did not expose a change of degree as t→ 0.

The greatest generalization of the work of Chester et al. was provided after

the publication of the work of Levinson on canonical representations of functions of

several complex variables [Lev61] (see section 4.8). Under conditions similar to (i)

and (ii) just mentioned, Bleistein [Ble67] and latter Ursell [Urs72] generalized the

coalescing saddle point method to consider the case of many coalescing saddle points

and even a parameter varying amplitude term.

The main two results we present in this chapter are concerned with a parameter

varying Fourier-Laplace integral such as I(t; s) where the contour of integration has a

nonempty boundary. Two cases of interest are considered in here. A generalized ver-

sion of the stationary phase method is proposed to consider the asymptotic behavior

of a parameter varying amplitude term and a phase term which vanishes to constant

degree about its critical points for all sufficiently small t. Unlike the work of Bleistein

and Ursell, our approach to deal with a parameter varying amplitude does not use

the technique of integration by parts but rather Levinson’s canonical forms. This has

the advantage to provide a uniform asymptotic expansion for I(t; s) depending on
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coefficients which relate more explicitly to the amplitude term. Our second result, a

generalized version of the coalescing saddle point method, allows again the possibility

of a parameter varying amplitude, however, this time, a phase term like the one in

the discussion of Chester et al. is considered.

The demonstrations of our two main results in this chapter draw on the techniques

of Chester et. al, the result of Levinson on canonical forms, and the work of Peman-

tle and Wilson in [PemWil01]. The later adapted the stationary phase method for

a parameter-free Fourier-Laplace integral without requiring a compactly supported

amplitude term.

In relation to applications, we remark that the main hypotheses required to make

use of both main theorems are simple to verify. Furthermore, since they are of a “local

sort”, they are likely of verification in situations where little qualitative information

is known about the phase and amplitude term. Moreover, they fit without alteration

with the applications we have in mind to enumerative combinatorics.

The last section of this chapter before engaging in the proof of our main results,

section 5.5, is devoted to an application. Our discussion in there is two-folded. We

first motivate the appearance of parameter varying Fourier-Laplace integrals as natu-

ral objects to be encountered in the context of asymptotic enumeration. Our findings

are then applied to a concrete example related to the problem of counting the num-

ber of three-connected components of a non-separable rooted map. Our generalized

version of the coalescing saddle point method is then applied as an alternative ap-

proach to obtain a local limit of the map Airy-type as fist presented by Banderier et

al. in [BFSS00]. Several other applications of the main two results of this chapter

will be discussed in chapter 6 to consider the problem of determining the asymptotic
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behavior of the coefficients of meromorphic functions along directions specified by

smooth points in the zero set of their denominator.

5.2 A generalized stationary phase method

To state our main result in this and the following section the next definition will

be of use.

Definition 5.1. Given nonnegative integers n < m and a function H(t, z) analytic

in an open neighborhood of the origin we will say that H(t, z) has an n-to-m change

of degree at z = 0 as t → 0 provided that H(t, z) has a Hartogs series about the

origin of the form H(t, z) = hn(t) · zn + . . . + hm(t) · zm + . . . with hj(0) = 0, for all

n ≤ j ≤ (m−1), hm(0) 6= 0, however, hn(t) is not identically zero in any neighborhood

of t = 0.

On the contrary, if H(t, z) = hn(t) · zn + . . . with hn(0) 6= 0 we will say that

H(t, z) has an n-to-n change of degree about z = 0 as t → 0. Alternatively, we will

sometimes say that H(t, z) vanishes to constant degree n at z = 0 for all t nearby

t = 0.

Our main results in this section concern with Fourier-Laplace integrals of the form

I(t; s) :=

∫ 1

0

e−s·F (t,z)A(t, z) dz ,

J(t; s) :=

∫ 1

−1

e−s·F (t,z) A(t, z) dz ,

where s is a nonnegative real number which we later let to tend to infinity. F (t, z)

and A(t, z) are assumed to be analytic in a neighborhood of (0, 0) that contains points

of the form (t, z) with |z| ≤ 1 for all sufficiently small t.
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The following result generalizes theorem 5.2 in [PemWil01] to consider a Fourier-

Laplace integral with an amplitude term which does not necessarily vanish to constant

degree about its critical points.

Theorem 5.2. (Generalized stationary phase method.) Let I(t; s), etc. be as

defined before. In addition, suppose that

(a) <{F (0, z)} > <{F (0, 0)}, for all z ∈ [0, 1], but z = 0,

(b) there is an integer n ≥ 1 such that: F (t, z) − F (t, 0) = u(t) · zn + . . . with

u(0) 6= 0, and

(c) there are nonnegative integers p ≤ q such that A(t, z) has a p-to-q change of

degree about z = 0 as t→ 0.

Then there are functions Ak(t) such that Ak(0) = 0, for all p ≤ k ≤ (q − 1),

however, Aq(0) 6= 0, and functions Ik(t; s) analytic in t near t = 0 and a constant

c > 0 such that

(5.1) I(t; s) = e−s·F (t,0) ·

{
q∑

k=p

Ak(t) · Ik(t; s) +O(e−s·c)

}
,

uniformly for all t sufficiently close to 0 and all s ≥ 0. Moreover, for each p ≤ k ≤ q,

there is an asymptotic expansion of the form

(5.2) Ik(t; s) ≈
∞∑
j=k

ck(t; j)

n
· Γ
(
j + 1

n

)
· s−(j+1)/n ,

which is uniform for all t sufficiently close to 0, as s → ∞. The coefficients ck(t; j)

are analytic in t near t = 0 and

(5.3) ck(t; k) = {u(t)}−(k+1)/n .
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Remark 5.3. We remark that the multiplicative constant for the big-O in (5.1) is

independent of t and s, provided that t is sufficiently close to t = 0 and s ≥ 0. (See

section 3.1 for further reference on our terminology.) (5.1) might be of little use if s is

not sufficiently big. However, our interest is in providing an asymptotic description

for I(t; s) valid for rather big-values of s. Under this perspective, (5.1) is a very useful

identity.

Remark 5.4. It is cumbersome and in fact obfuscating to provide general formulae for

the coefficients Ak(t) and ck(t; s) appearing in (5.1) and (5.2) respectively. However,

the following characterizations of these coefficients will be more than enough in the

applications of theorem 5.2 we have in mind.

The coefficients Ak(t) together with an auxiliary function y = y(t, z) are uniquely

characterized through the relations

(5.4)



∫ z
0
A(t, ξ) dξ =

q∑
k=p

Ak(t)
k+1
· yk+1 ,

Ak(0) = 0, for all p ≤ k < q, Aq(0) 6= 0 ,

y = y(t, z) = z + . . .

We will define the transformations

(5.5)

 (t, y) = Ψ(t, z) := (t, y(t, z)) ,

x = φ(t, y) := y · {u(t)}1/n ·
{

1 + F (Ψ−1(t,y))−F (t,0)−u(t)·yn
u(t)·yn

}1/n

,

where the selection of the nth-root is in the principal sense. Observe that y = z+ . . .

and x = y · {u(t)}1/n + . . . The coefficients ck(t; j) are then characterized through the

relation

(5.6)
∞∑
j=k

ck(t; j) · xj = yk · ∂y
∂x

.
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Remark 5.5. The asymptotic notation used in (5.2) is in the standard sense where

the sequence (s−(j+1)/n)j≥k is the so called ”auxiliary asymptotic sequence.” (See

[BleHan86] section 1.5.) By this we mean that the difference between Ik(t; s) and the

partial sum on the right-hand side up to the term j = m is O(s−(m+2)/n) uniformly

for all t sufficiently small as s→∞.

Remark 5.6. It is remarkable that condition (a) in theorem 5.2 is as weaker as re-

questing that for the particular value of t = 0, z = 0 is the dominant critical point

of the Fourier-Laplace integral I(0; s) =
∫ 1

0
e−s·F (0,z)A(0, z) dz. Condition (a) does

not necessarily imply that for all t sufficiently small, z = 0 minimizes the <{F (t, z)}

over the interval [0, 1]. Indeed, if <{u(0)} = 0 then the Open Mapping theorem for

harmonic functions (see [Rud87]) lets us state that on any neighborhood of t = 0

there are infinitely many points where the <{u(t)} < 0. For such values of t there

will be z0 ∈ (0, 1) such that that <{F (t, z0) − F (t, 0)} = <{u(t)} · zn0 + . . . < 0 and

therefore the

min
z∈[0,1]

<{F (t, z)} < <{F (t, 0)} .

This is not in contradiction with (5.1) because points where this minimum is attained

will approach z = 0 as t → 0 and hence they are not stationary points of the phase

term (unless they coincide with z = 0). Thus, the impression that e
−s· min

z∈[0,1]
<{F (t,z)}

is

the right exponential order of I(t; s) is mistaken.

Remark 5.7. The condition that A(t, z) has a p-to-q change of degree about z = 0 as

t → 0 with q < ∞ can be weakened. Indeed, unless A(t, z) is identically zero near

the origin, there is a unique factorization of the form A(t, z) = tN · B(t, z), where

N is a nonnegative integer and B(t, z) has a p-to-q change of degree about z = 0 as
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t→ 0, with 0 ≤ p ≤ q <∞. In particular,

I(t; s) = tN ·
∫ 1

0

e−s·F (t,z) B(t, z) dz ,

and the integral on the right-hand side above can be studied using theorem 5.2. To

amplify, if
∞∑
k=0

ak(t) z
k is the Hartogs series of A(t, z) near the origin in powers of z

then N is the minimum among the degrees of vanishing (about t = 0) of the coefficient

functions ak(t) which are not identically zero (in any neighborhood of t = 0). One

then can show that

B(t, z) =
1

(N − 1)!

∫ 1

0

(1− τ)N−1 · ∂
NA

∂tN
(τ · t, z) dτ .

Remark 5.8. Before we engage in some applications of theorem 5.2 we pause to

comment on an interesting phenomena introduced by the presence of a parameter

in the amplitude term of a Fourier-Laplace integral. At a first glance, since these

integrals can be thought as linear operators in their amplitude term, it may seem

that the presence of a parameter, for example, that produces a change of degree in

the amplitude term, should be of little relevance. The aim of this remark is to show

that this view is not quite right. We will refer to this anomalous aspect as the issue

with linearity.

To fix ideas consider a Fourier-Laplace integral I(t; s) :=
∫ 1

0
e−s·z

2
A(t, z) dz where

A(t, z) is certain entire function of t and z whose Hartogs series about the origin is of

the form A(t, z) = t+zq+. . . with q > 0. This implies that A(t, z) has a 0-to-q change

of degree about z = 0 as t→ 0. Since the phase term of I(t; s) is parameter-free the

classical version of the stationary phase method implies that

(5.7) I(t; s) ≈ t

2
· Γ
(

1

2

)
· s−1/2 +

1

2
· Γ
(
q + 1

2

)
· s−(q+1)/2 + . . .
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uniformly for all t sufficiently small, as s → ∞. Furthermore, if cancellation of the

first two terms is ruled out, the leading order of I(t; s) should be found among them,

and we could conclude that

I(t; s) ∼ t

2
· Γ
(

1

2

)
· s−1/2 +

1

2
· Γ
(
q + 1

2

)
· s−(q+1)/2 ,

uniformly for all t sufficiently small, as s → ∞. Assume that t = t(s) → 0 as

s → ∞ at a sufficiently fast rate so that the second term above is the dominant

asymptotic order. What we have decided to describe as the issue with linearity is

concerned with the problem of determining the second leading order. Indeed, does

not take much of an effort to realize that the term of order t · s−1/2 above may have

nothing to do with the second dominant asymptotic order of I(t; s). For example, if

A(t, z) = t+ zq + zq+1 + . . . then

I(t; s) ≈ t

2
· Γ
(

1

2

)
· s−1/2 +

1

2
· Γ
(
q + 1

2

)
· s−(q+1)/2 +

1

2
· Γ
(
q + 2

2

)
· s−(q+2)/2 + . . .

uniformly for all t sufficiently small, as s→∞. In particular, if t = t(s) = o(s−(q+1)/2)

then

I(t(s); s) =
1

2
· Γ
(
q + 1

2

)
· s−(q+1)/2 +

1

2
· Γ
(
q + 2

2

)
· s−(q+2)/2 + o(s−(q+2)/2) ,

as s → ∞. As a result, the information that A(t, z) = t + zq + . . . may not be

sufficient to detect the second dominant asymptotic order of I(t; s) when t is allowed

to depend on s: some orders produced by the tail of the Hartogs series of A(t, z) may

“sneak-in” between the terms of order t · s−1/2 and s−(q+1)/2 in (5.7).

The example we have just discussed should serve as a model of much more com-

plicated situations. It shows that there is combinatorial problem behind the determi-

nation of the different bandwidths for the parameter t = t(s) which specify radically
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different behaviors for I(t(s); s). In this respect theorem 5.2 contributes with a qual-

itative understanding of I(t; s) stating that at most (q − 2) non-trivial asymptotic

terms could “sneak-in” between the two orders exposed in (5.7); this, no matter how

well or badly possed are the terms hidden in the Hartogs series of A(t, z).

The following example is an application of theorem 5.2 which, due to the small

change degree of the amplitude term, can be worked out almost explicitly. It is by

no means an interesting application of theorem 5.2, however, it illustrates well how

to apply this theorem to a concrete situation.

Example 5.9. (1-to-2 amplitude, 2-to-2 phase.)

Consider the integral

I(t; s) :=

∫ 1

0

e−s·z
2

tan(t · z + z2) dz .

In the notation of theorem 5.2 we have F (t, z) := z2 and A(t, z) := tan(t·z+z2) =

t ·z+z2 + . . . and therefore A(t, z) has a 1-to-2 change of degree about z = 0 as t→ 0.

Conditions (a), (b) and (c) of theorem 5.2 are easily verified and therefore there are

functions A1(t), A2(t), I1(t; s) and I2(t; s) analytic near t = 0 and a nonnegative

constant c > 0 such that

I(t; s) = A1(t) · I1(t; s) + A2(t) · I2(t; s) +O(e−s·c) ,

I1(t; s) ≈ 1

2s
+ . . .

I2(t; s) ≈
√
π

4s3/2
+ . . .

The coefficient functions A1(t) and A2(t) are uniquely determined via the relation

(5.8)

∫ z

0

tan(t · ξ + ξ2) dξ =
A1(t)

2
· y2 +

A2(t)

3
· y3 ,
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with A1(0) = 0, A2(0) 6= 0 and y(t, z) = z + . . . This last condition implies that

lim
z→0

y
z

= 1, for all t sufficiently small. As a result, if we divide both sides above by z2

and then let z → 0 it follows that

(5.9) A1(t) = lim
z→0

2

z2

∫ z

0

tan(t · ξ + ξ2)dξ = t .

In addition, if in (5.8) we evaluate both sides at t = 0, then divide by z3, and let

z → 0 we obtain that

A2(0) = lim
z→0

3

z3

∫ z

0

tan(t · ξ + ξ2)dξ = 1 .

The above computation will prove useful to determine A2(t). Indeed, as we will show,

A2(t) is the solution of a second-order polynomial equation. To obtain this relation

we first differentiate both sides in (5.8) with respect to z. We obtain

tan(t · z + z2) = y ·
(
t+ A2(t) · y

)
· ∂y
∂z

(t, z) .

The left-hand side above vanishes if t · z + z2 = 0. Indeed, if for all sufficiently small

t we think of the equation: tan(t · z + z2) = 0 as an equation in z near z = 0 then

the origin and z = −t are its only solutions. On the other hand, the right-hand side

above vanishes at y = 0 and y = −t
A2(t)

. Thus, since for all sufficiently small t the

transformation z −→ y(t, z) is 1-to-1 near the origin and y(t, 0) = 0, we must have

y(t,−t) = −t
A2(t)

. Plugging in these values of z and y in (5.8) let us conclude that

A2(t) =
1√

6
t3

∫ −t
0

tan(t · ξ + ξ2)dξ
,(5.10)

= 1− 1

140
t4 − 263

3880800
t8 + . . .(5.11)

where the principal branch of the square-root has to be chosen in order to be consis-
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tent with the condition A2(0) = 1. Thus, we finally obtain that

(5.12) I(t; s) = t·
(

1

2s
+ . . .

)
+

1√
6
t3

∫ −t
0

tan(t · ξ + ξ2)dξ
·
( √

π

4s3/2
+ . . .

)
+O(e−s·c) .

The small change of degree of the amplitude term made possible the exact deter-

mination of A1(t) and A2(t). However, it is clear that theorem 5.2 is highly complex

from the numerical point of view. In this regard, it might not be worth using when

the amplitude term undergoes a small change of degree.

An alternative asymptotic development for I(t; s) could have been obtained using

the Hartogs series of tan(t · z+ z2) about (t, z) = (0, 0) and in powers of z. Although

a general formula for the terms in this series is far to be trivial we may list some few

of them to obtain

(5.13) I(t; s) ≈ t

2s
+

√
π

4s3/2
+

t3

6s2
+

3
√
π

8s5/2
+

t

s3

(
1 +

2t4

15

)
+ . . .

uniformly for all t sufficiently small, as s→∞.

Observe that our findings in (5.12) and (5.13) are consistent. It is difficult to

judge which representation is better than the other in this case. If t is allowed to

tend to zero with s at slow rate namely so that s−1/2 = o(t) then both series are

equally good, for example, to conclude that I(t; s) ∼ t
2s

. Similarly, if the dependence

of t with respect to s is such that t = o(s−1/2) then using either expansion one

obtains that I(t; s) ∼
√
π

4s3/2
. On the other hand, if t is restricted to be away from the

negative real-axis, for example, requesting that for some very small value of ε > 0

the | arg t| ≤ (π − ε), then the leading orders of the each of the two terms on the

right-hand side of (5.12) cannot cancel each other and we may assert that

I(t; s) =

 t

2s
+

1√
6
t3

∫ −t
0

tan(t · ξ + ξ2)dξ
·
√
π

4s3/2

 · (1 + o(1)) ,
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uniformly for all t sufficiently small in the sector | arg t| < (π − ε), as s→∞. �

Theorem 5.2 can be used to provide the asymptotic expansion of a two-sided

integral. In some sense, the following result generalizes the statement and proof

of corollary 5.3 in [PemWil01] to consider a FL-integral with a parameter varying

amplitude term.

Corollary 5.10. Let J(t; s), etc. be as defined before and suppose that

(a) <{F (0, z)} > <{F (0, 0)}, for all z ∈ [−1, 1], but z = 0,

(b) there is an integer n ≥ 2 such that: F (t, z) − F (t, 0) = u(t) · zn + . . . with

u(0) 6= 0, and

(c) there are nonnegative integers p ≤ q such that A(t, z) has a p-to-q change of

degree about z = 0 as t→ 0.

If Ak(t) with k = p, . . . , q are as defined in (5.4) then there are coefficients Jk(t; s)

and a constant c > 0 such that

(5.14) J(t; s) = e−s·F (t,0) ·

{
q∑

k=p

Ak(t) · Jk(t; s) +O(e−s·c)

}
,

uniformly for all t sufficiently close to 0 and all s ≥ 0. Moreover, each term Jk(t; s)

in the above summation admits an asymptotic expansion involving the coefficients

ck(t; j) as defined in (5.6). More precisely,

(5.15) Jk(t; s) ≈
∞∑
j=k

ck(t; j) ·
{

1 + (−1)j ·D(j, n)
}
· 1

n
Γ

(
j + 1

n

)
· s−(j+1)/n ,

uniformly for all t sufficiently small, as s→∞, where we have defined

D(j, n) :=

 1 , n even ,

exp
(
− iπ(j+1)

n
· sgn

{
i · u(0)

})
, n odd .
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Proof. The two-sided integral J(t; s) is the sum of two one-sided integrals on the

interval [0, 1] and [−1, 0] respectively. The interval of integration of this last integral

can be transformed to be [0, 1] by means of a substitution which takes into account

the transformation z −→ (−z). This let us rewrite

J(t; s) =

∫ 1

0

e−s·F (t,z) A(t, z) dz +

∫ 1

0

e−s·F (t,−z) A(t,−z) dz .

Each integral on the right-hand side above admits an asymptotic expansion as

prescribed in theorem 5.2. More precisely, there is a constant c > 0 and functions

Ak(t), ck(t; j), Ãk(t) and c̃k(t; j) analytic near t = 0 such that∫ 1

0

e−s·F (t,z)A(t, z) dz = e−s·F (t,0) ·

{
q∑

k=p

Ak(t) · Ik(t; s) +O(e−s·c)

}
,(5.16)

Ik(t; s) ≈
∞∑
j=k

ck(t; j)

n
· Γ
(
j + 1

n

)
· s−(j+1)/n ,(5.17)

∫ 1

0

e−s·F (t,−z) A(t,−z) dz = e−s·F (t,0) ·

{
q∑

k=p

Ãk(t) · Ĩk(t; s) +O(e−s·c)

}
,(5.18)

Ĩk(t; s) ≈
∞∑
j=k

c̃k(t; j)

n
· Γ
(
j + 1

n

)
· s−(j+1)/n .(5.19)

The terms Ak(t) and Ãk(t) together with certain auxiliary functions y = y(t, z)

and ỹ = ỹ(t, z) are uniquely characterized through the relations
∫ z

0
A(t, ξ) dξ =

q∑
k=p

Ak(t)
k+1
· yk+1 , y = y(t, z) = z + . . .∫ z

0
A(t,−ξ) dξ =

q∑
k=p

Ãk(t)
k+1
· ỹk+1 , ỹ = ỹ(t, z) = z + . . .

with the additional restriction that Ak(0) = Ãk(0) = 0, for all p ≤ k < q, and

Aq(0) · Ãq(0) 6= 0. But, the identity on the second row above can be written in the

equivalent form ∫ z

0

A(t, η) dη =

q∑
k=p

(−1)k · Ãk(t)
k + 1

· {−ỹ(t,−z)}k+1 .
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The uniqueness then implies that Ãk(t) = (−1)k · Ak(t) and ỹ(t, z) = −y(t,−z).

In particular, if we define

Jk(t; s) := Ik(t; s) + (−1)k · Ĩk(t; s) ,

then using (5.16) and (5.18) we obtain that

(5.20) J(t; s) = e−s·F (t,0) ·

{
q∑

k=p

Ak(t) · Jk(t; s) +O(e−s·c)

}
.

Moreover, using (5.17) and (5.19) it follows that

(5.21) Jk(t; s) ≈
∞∑
j=k

{
ck(t; j) + (−1)k · c̃k(t; j)

}
· 1

n
Γ

(
j + 1

n

)
· s−(j+1)/n .

To complete the proof of the corollary all we are required to do is to specify a

(linear) relation between ck(t; j) and c̃k(t; j) which is consistent with (5.15). This

will be done using the remark in (5.6) according to which ck(t; j) = [xj] yk · ∂y
∂x

and

c̃k(t; j) = [x̃j] ỹk · ∂ỹ
∂x̃

. Here x and x̃ relate respectively to y and ỹ through the

transformations

x := ψ(t, z) := y · {u(t)}1/n ·
{

1 + F (t,z)−F (t,0)−u(t)·yn
u(t)·yn

}1/n

,

x̃ := ψ̃(t, z) := ỹ · {(−1)n · u(t)}1/n ·
{

1 + F (t,−z)−F (t,0)−(−1)n·u(t)·ỹn
(−1)n·u(t)·ỹn

}1/n

.

We first consider the case in which n is even. In this case, using the identity

ỹ(t, z) = −y(t,−z), it is almost immediate to see that ψ̃(t, z) = −ψ(t,−z). Further-

more, since c̃k(t; j) is the coefficient of x̃j in the series ỹk · ∂ỹ
∂x̃

we can rewrite

(−1)k · c̃k(t; j) =
(−1)k

2πi

∫
ỹk

x̃j+1

∂ỹ

∂x̃
dx̃ ,

=
(−1)j

2πi

∫
{y(t,−z)}k

{ψ(t,−z)}j+1

∂y

∂z
(t,−z) d(−z) ,

=
(−1)j

2πi

∫
yk

xj+1

∂y

∂x
dx ,

= (−1)j · ck(t; j) .
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The above identity in (5.21) shows (5.15) for the case in which n is even.

Consider now the case n odd. Then, condition (a) in the corollary implies that u(0)

is purely imaginary and, as a result, a simple calculation reveals that {−u(t)}1/n =

e
iπ·sgn{i·u(0)}

n ·{u(t)}1/n. This implies that ψ̃(t, z) = −e
iπ·sgn{iu(0)}

n ·ψ(t,−z). As a result,

pretty much by repeating the argument used for the case in which n is even, this time

we obtain

(−1)k · c̃k(t; j) = (−1)j · exp

{
−iπ · sgn{i · u(0)} · j + 1

n

}
· ck(t; j) .

(5.15) then follows using the above identity in (5.21). This completes the proof of

the corollary.

Example 5.11. (Two-sided integral, 1-to-2 amplitude, 3-to-3 phase.)

We will use corollary 5.10 to determine the leading asymptotic order of

J(t; s) :=

∫ 1

−1

e−s·(i·z
3+z4) tan(t · z + z2) dz ,

for values of t sufficiently close to 0 and of s ≥ 0 sufficiently big. Part of the work

done in example 5.9 can be reused in here. Indeed, using corollary 5.10, it follows

that there is a constant c > 0 and coefficients J1(t; s) and J2(t; s) such that

J(t; s) = t · J1(t; s) + A2(t) · J2(t; s) +O(e−s·c) ,

A2(t) :=
1√

6
t3

∫ −t
0

tan(t · ξ + ξ2) dξ
,

= 1− 1

140
t4 + . . .

We will show that

J1(t; s) ∼ −i
√

3

3
Γ

(
2

3

)
· s−2/3 ,

J2(t; s) ∼ 4
√

3

9
· Γ
(

4

3

)
· s−4/3 .
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The leading orders of J1(t; s) and J2(t; s) can be obtained from (5.15). They

depend on certain coefficients c1(t; 1) and c2(t; 3), however, using (5.3) it follows

immediately that c1(t; 1) = e−πi/3. Therefore, one finds that

J1(t; s) = −i
√

3

3
Γ

(
2

3

)
· s−2/3 +O(s−4/3) ,

J2(t; s) = c2(t; 3) · 3 + i
√

3

6
· Γ
(

4

3

)
· s−4/3 +O(s−5/3) .

The above shows the order claimed for J1(t; s).

In what remains of this example we will determine c2(t; 3) as explicitly as possible.

We start observing that the remark in (5.6) states that c2(t; 3) = [x3] y2 ∂y
∂x

. But, from

the remarks in (5.4) and (5.5) it follows that

y = y(t, z) = z + . . .

x = x(t, y) = i1/3 · y + . . .

This implies that c2(t; 3) = 4 i−2/3 [x2] y. To compute [x2] y we need to look more

closely the relation between the variables x, y and z as established in (5.4) and (5.5).

In our context these relations are described through the transformations

t

2
· y2 +

A2(t)

3
· y3 =

∫ z

0

tan(t · ξ + ξ2) dξ(5.22)

x = i1/3 · y ·
(

1 +
i · z3 + z4 − i · y3

i · y3

)1/3

(5.23)

To find [x2] y we use z as an intermediate variable between x and y. For this,

define α(t) := [y2] z, and write

z = y + α(t) · y2 + . . .
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Back in (5.22) if we make explicit the first few terms of the series on the right-hand

side and then write z as a series in y we obtain that

t

2
· y2 +

A2(t)

3
· y3 =

t

2
· z +

z3

3
+ . . .

=
t

2
· y2 +

{
t · α(t) +

1

3

}
· y3 + . . .

Therefore, we can conclude that

α(t) =
A2(t)− 1

3t
,

=
−1

420
· t3 +

−263

11642400
· t7 +

−817

2542700160
· t11 + . . .

With [y2] z available we seek for the term [x2] y. This is done using the identity

(1 + w)1/3 = 1 + w
3

+ . . . in (5.23). We obtain

x = i1/3 · y + i1/3 · 3α(t)− i
3

· y2 + . . .

This last series is easy to reverse. Its first few terms are recognized to be

y =
x

i1/3
+
i− 3α(t)

3i2/3
· x2 + . . .

implying that [x2] y = i−3α(t)

3i2/3
. Finally, using the relation determined between α(t)

and A2(t) we obtain that

c2(t; 3) = 4 · e−2πi/3 · 1 + i · t− A2(t)

3t
,

=
4 · e−πi/6

3
+
e−2πi/3

105
· t3 +

263 · e−2πi/3

2910600
· t7 + . . .

and from this the claim made on the leading order of J2(t; s) follows almost immedi-

ately. �
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5.3 A brief review of the Airy-function

In this section we briefly review of some basic properties of the Airy function that

will be of use in the coming sections. An Airy-function is any nontrivial solution of

the second-order linear differential equation

(5.24) a′′(x)− x · a(x) = 0 , x ∈ C .

If a(x) is a nontrivial solution of (5.24) then a(x) and a′(x) cannot have common

zeroes in the complex plane. Indeed, by repeated differentiation of (5.24), it follows

that a(n)(x) = (n− 2) · a(n−3)(x) +x · a(n−2)(x), for all n ≥ 3. In particular, if there is

x0 ∈ C such that a(x0) = a′(x0) = 0 then a(n)(x0) = 0, for all n ≥ 0. But, being a(x)

an entire analytic function, this implies that a(x) ≡ 0 and this proves the claim.

Bleistein and Handelsman (see [BleHan86], section 2.5) give a deductive approach

to find nontrivial solutions of (5.24). Instead, we claim that

(5.25) a(x) :=
1

2π

∫
γ

exp
{
i ·
(
x ζ + ζ3/3

)}
dζ ,

is a particular solution for the Airy-equation provided that γ is a contour going

through infinity (in the Riemann sphere) and eventually contained in a set of the

form
{
ξ ∈ C : Re{i · ζ3} ≤ −c · |ζ|3

}
, for some arbitrary constant c > 0. To verify

the assertion, observe that

x · a(x)− a′′(x) =
1

2π

∫
γ

ei·(x ζ+ζ
3/3) (x+ ζ2) dζ ,

=
1

2πi

∫
γ

d

dζ

{
ei·(x ζ+ζ

3/3)
}
dζ ,

= 0 .

For example, the contour γ in (5.25) could be taken to be any of the contours γ1,

γ2 or γ3 depicted in figure 5.1.
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9π/6arg{z}=

5π/6arg{z}= arg{z}=π/6

γ 1

γ 3

γ 2

Im{z}

Re{z}

Figure 5.1: Any function of the form a(x) := 1
2π

∫
γ

exp
{
i ·
(
x ζ + ζ3/3

)}
dζ, with

γ = γ1, γ2 or γ3 is a non-trivial solution of the Airy-equation. The Airy
function corresponds to the selection of γ = γ1.

A useful remark involving solutions of the Airy equation such as in (5.25) is that

(5.26) a(x) + ω · a(ω x) + ω2 · a(ω2 x) = 0 , x ∈ C ,

provided that ω is a nontrivial cube-root of unity. If a(x) is any solution of (5.24) then

it follows almost immediately that a(ω·x) is also a solution provided that ω3 = 1. As

a result, the above identity reveals explicitly the linear relation between a(x), a(ω x)

and a(ω2 x). To show (5.26), suppose that a(x) is of the particular form in (5.25).
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Substituting: ξ = ωn · ζ, one obtains that

ωn · a(ωn x) =
1

2π

∫
ωn·γ

ei(x ξ+ξ
3/3) dξ .

The claim in (5.26) follows using Cauchy’s theorem as shown in the following com-

putation

a(x) + ω · a(ω x) + ω2 · a(ω2 x) =
1

2π

{∫
γ

+

∫
ω·γ

+

∫
ω2·γ

}
ei·(x ζ+ζ

3/3) dζ ,

=
1

2π

∫
γ+ω·γ+ω2·γ

ei·(x ζ+ζ
3/3) dζ ,

= 0 .

The Airy function is defined as

(5.27) Ai(x) :=
1

2π

∫
γ1

exp
{
i ·
(
x ζ + ζ3/3

)}
dζ ,

where the contour γ1 is any contour as the one represented in figure 5.1. In particular,

the derivative of the Airy function can be represented also in an integral form, namely

(5.28) Ai′(x) :=
i

2π

∫
γ1

exp
{
i ·
(
x ζ + ζ3/3

)}
ζ dζ .

Selecting γ1 = (eiπ/6 · R+ − e5πi/6 · R+) one easily obtains the identities

Ai(0) =
3−1/6

2π
· Γ
(

1

3

)
,

Ai′(0) = −31/6

2π
· Γ
(

2

3

)
,

and these reaffirm that the Airy function is effectively a nontrivial solution of (5.24).

In general, for an arbitrary x ∈ C, it is not possible to deform the contour γ1

in (5.27) or (5.28) to the real ζ-axis. However, the contour γ1 is equivalent to any

contour of the form (R+ iη) provided that η > 0.
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Thus, we have the alternative representations

Ai(x) =
1

2π

∫
R+iη

exp
{
i ·
(
x ζ + ζ3/3

)}
dζ ,(5.29)

Ai′(x) =
i

2π

∫
R+iη

exp
{
i ·
(
x ζ + ζ3/3

)}
ζ dζ ,(5.30)

valid for all x ∈ C and η > 0.

These last representations will be of great use to relate the Airy function to

integrals of the form
∫∞
−∞ e

−λ·ξ2+i·ξ3/3 dξ and
∫∞
−∞ e

−λ·ξ2+i·ξ3/3 ξ dξ. The ideas that will

follow are inspired by the discussion of Hörmander in section 7.6 in [Hör90]. Given

λ > 0 consider x = λ2 in (5.29) and (5.30). Observe that d
dζ

[
x ζ + ζ3/3

]
= 0, if

ζ = i · λ. Thus, to eliminate the linear term in ζ in the exponential terms in (5.29)

and (5.30) it will be enough to integrate along the contour (R+iλ). If we parametrize

this contour in the form: ζ = ξ + iλ, with ξ ∈ R, a simple computation reveals that

2π ·Ai(λ2) = e−2λ3/3 ·
∫ ∞
−∞

exp
{
− λ ξ2 + i ξ3/3

}
dξ ,

−2πi ·Ai′(λ2) = e−2λ3/3 ·
∫ ∞
−∞

exp
{
− λ ξ2 + i ξ3/3

}(
ξ + iλ

)
dξ .

Each integral on the right-hand side above can be deformed back to the contour

γ1 originally used to define the Airy function. Over this new contour both integrals

define now an entire function of λ. Since the functions on the left-hand side are also

entire and equality holds for all λ > 0 then equality must hold for all λ ∈ C. A

simple algebra computation now leads to the identities∫
γ1

e−λ ξ
2+i ξ3/3 dξ = 2π · exp

(
2λ3/3

)
·Ai

(
λ2
)
,(5.31) ∫

γ1

e−λ ξ
2+i ξ3/3 ξ dξ = −2πi · exp

(
2λ3/3

)
·
(
λ ·Ai

(
λ2
)

+ Ai′
(
λ2
))
,(5.32)

for all λ ∈ C.
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To end this section we will use these identities to provide some few basic and well-

known properties of the Airy function. Letting λ =
√
x (the principal squared-root

of x) we obtain from (5.31) the identity

(5.33) Ai(x) =
e−

2
3
x3/2

2π

∫ ∞
−∞

exp
{
−
√
x ξ2 + i ξ3/3

}
dξ ,

provided of course that the | arg(x)| < π. The above identity is very helpful to obtain

asymptotics for the Airy function as x→∞ along directions away from the negative

real axis. This is can be done using the stationary phase method (see [BleHan86],

chapter 6) which implies that

(5.34) Ai(x) ≈ e−
2
3
x3/2

2π
· x−1/4 ·

∞∑
k=0

(−9)−k · Γ
(

3k +
1

2

)
· x
−3k/2

(2k)!
,

as x → ∞ over any sector of the form | arg(x)| ≤ (π − ε), with ε > 0 as small as

wanted. Moreover, as remarked by Hörmander, we see that Ai(x) is exponentially

decreasing when | arg(x)| < π/3, oscillatory when arg(x) = ±π/3, and exponentially

increasing when π/3 < | arg(x)| < π. We can not use (5.33) to obtain asymptotics

for π ≤ | arg(x)| ≤ (π − ε). However, (5.26) lets us rewrite

Ai(x) = eiπ/3 ·Ai
(
− eiπ/3x

)
+ e−iπ/3 ·Ai

(
− e−iπ/3x

)
,

and in this form a full asymptotic expansion for the two terms on the right-hand side

above can be obtained using (5.34).

Since Ai(x) is a nontrivial solution of (5.24), the remarks at the beginning of

this section imply that Ai(x) and Ai′(x) cannot have common zeroes in the complex

plane. Moreover, it can be shown that they are zero-free over the complex plane slit

along the negative real axis and indeed each has a countable number of zeros along

the negative real axis.
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Another nontrivial solutions of equation (5.24) are

a2(x) := e−2πi/3 ·Ai
(
e−2πi/3x

)
,

a3(x) := e2πi/3 ·Ai
(
e2πi/3x

)
.

Indeed, they are of the form given in (5.25) with the selection of γ = γ2 and γ =

γ3 respectively, with γ2 and γ3 as given in figure 5.1. The function Bi(x) := i ·

{a2(x)− a3(x)} is called the Airy function of the second kind. Using (5.26) a simple

computation reveals that Ai(x) and Bi(x) are linearly independent. Because of this,

in most applications, a general solution to the Airy equation is written as a linear

combination of Ai(x) and Bi(x).

5.4 A generalized coalescing saddle point method

In this section we continue our discussion on parameter varying Fourier-Laplace

integrals. We are interested in the asymptotic behavior of an integral of the form

J(t; s) :=

∫ 1

−1

e−s·F (t,z)A(t, z) dz ,

for sufficiently small values of t and big values of s ≥ 0. F (t, z) and A(t, z) are

assumed to be analytic in a neighborhood of (0, 0) which contains points of the form

(t, z) with z ∈ [−1, 1] for all t sufficiently small. The case covered by the following

result is the simplest one for which corollary 5.10 cannot be applied.

Theorem 5.12. (Generalized coalescing saddle point method.) Let J(t; s),

etc. be as defined before. Suppose that

(a) <{F (0, z)} > <{F (0, 0)}, for all z ∈ [−1, 1], but z = 0,
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(b) F (t, z)−F (t, 0) = tN ·u(t) · z2− i · v(t) · z3 + ... with N ≥ 1 an integer and u(t)

and v(t) analytic near t = 0 and such that u(0) 6= 0 and v(0) > 0, and

(c) there are nonnegative integers p ≤ q such that A(t, z) has a p-to-q change of

degree about z = 0 as t→ 0.

Then there are functions Ak(t) such that Ak(0) = 0, for all p ≤ k ≤ (q − 1),

however, Aq(0) 6= 0 and functions Jk(t; s) analytic in t near t = 0 and a constant

c > 0 such that

(5.35) J(t; s) = e−s·F (t,0) ·

{
q∑

k=p

Ak(t) · Jk(t; s) +O(e−s·c)

}
,

uniformly for all t sufficiently close to 0 and all s ≥ 0. Moreover, if for all ε > 0

sufficiently small it is defined

Tε :=
{
t : t = 0 or , t 6= 0 and | arg{tN · u(t)}| <

(π
2
− ε
)}

,

then, for each p ≤ k ≤ q, there is an asymptotic expansion of the form

(5.36) Jk(t; s) ≈

{
∞∑
l=0

Rk(t; 2l)

sl+1/3

}
· L0(t; s) +

{
∞∑
l=0

Rk(t; 2l + 1)

sl+2/3

}
· L1(t; s) ,

uniformly for all t ∈ Tε sufficiently small, as s→∞, where

L0(t; s) :=
2π

{3V (t)}1/3
· e2λ(t;s)3/3 ·Ai(λ(t; s)2) ,(5.37)

L1(t; s) :=
−2π i

{3V (t)}2/3
· e2λ(t;s)3/3 ·

{
λ(t; s) ·Ai(λ(t; s)2) + Ai′(λ(t; s)2)

}
,(5.38)

λ(t; s) :=
u(t) · tN

{3V (t)}2/3
· s1/3 ,(5.39)

and V (t) is certain analytic function of t near t = 0 such that V (0) = v(0).

Remark 5.13. (5.35) is possibly of little use if s is not sufficiently big; after all, the

big-O term may hide a very complicated function of t and s. However, recall that,
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our interest is in providing an asymptotic description for J(t; s) valid for big-values of

s. (See section 3.1 for further clarification on our terminology relating asymptotics.)

Remark 5.14. The coefficients Ak(t) together with certain auxiliary function y =

y(t, z) are uniquely characterized through the relations

(5.40)



∫ z
0
A(t, ξ) dξ =

q∑
k=p

Ak(t)
k+1
· yk+1 ,

Ak(0) = 0, for all p ≤ k < q, Aq(0) 6= 0 ,

y(t, z) = z + . . .

We will define the 1-to-1 transformation

(t, y) = Ψ(t, z) := (t, y(t, z)) .

The coefficient V (t) together with an auxiliary function x = x(t, y) are uniquely

characterized by the relations

(5.41)

 F (Ψ−1(t, y)) = tN · u(t) · x2 − i · V (t) · x3 ,

x = x(t, y) = y + . . .

Remark 5.15. The coefficients Rk(t; l) in (5.36) together with certain auxiliary func-

tions Bk(t, x; l), with l ≥ 0, analytic in t and x near t = 0 and x = 0 can be defined

recursively by means of the Weierstrass division theorem 4.21 as follows

(5.42)


Bk(t, x; 0) := yk · ∂y

∂x
(t, x) ,

Bk(t, x; l) =: Rk(t; 2l) +Rk(t; 2l + 1) · x

+Bk(t, x; l + 1) · ∂
∂x

{
tN · u(t) · x2 − i · V (t) · x3

}
.

In particular, if we let x(t) := −2 i u(t) tN/{3V (t)} then

Rk(t; 2l) = Bk(t, 0; l) ,

Rk(t; 2l + 1) =
Bk(t, x(t); l)−Bk(t, 0; l)

x(t)
.
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Remark 5.16. In (5.39), observe that λ(t; s) = λ(t) · s1/3, where λ(t) := tN ·u(t)

{3V (t)}2/3 .

Since F (Ψ−1(t, y)) has a 2-to-3 change of degree at y = 0 as t→ 0 then, near y = 0,

F (Ψ−1(t, y)) has only one nontrivial stationary point which will be denoted y(t). It

turns out that F (Ψ−1(t, y(t))) vanishes to degree 3N about t = 0, and therefore λ(t)

is uniquely characterized by the relations

(5.43)

 4 [λ(t)]3 + 3F (Ψ−1(t, y(t))) = 0 ,

λ(t) ∼ tN · u(0) · {3v(0)}−2/3 .

Remark 5.17. The asymptotic expansion in (5.36) is with respect to the asymptotic

sequence
(
|L0(t;s)|
sn+1/3 + |L1(t;s)|

sn+2/3

)
n≥0

. By this we mean that given any n ≥ 0 there is c1 > 0

such that the quantity∣∣∣∣∣Jk(t; s)−
{

n∑
l=0

Rk(t; 2l)

sl+1/3

}
· L0(t; s)−

{
n∑
l=0

Rk(t; 2l + 1)

sl+2/3

}
· L1(t; s)

∣∣∣∣∣
≤ c1

s
·
{
|L0(t; s)|
sn+1/3

+
|L1(t; s)|
sn+2/3

}
,

uniformly for all t ∈ Tε sufficiently small and all s ≥ 0 sufficiently big.

Theorem 5.12 provides a uniform asymptotic expansion for J(t; s) in terms of the

two special functions L0(t; s) and L1(t; s). These are, up to a multiplicative factor,

the evaluation of e−2λ3/3 ·Ai(λ2) and e−2λ3/3 ·
{
λ ·Ai(λ2) + Ai(λ2)

}
at λ = λ(t; s).

The following result provides a better understanding of the asymptotic behavior of

L0(t; s) and L1(t; s) for the cases in which |λ(t; s)| is either of a big or small size.

Corollary 5.18. (Bandwidth characterization.) Let L0(t; s), L1(t; s), etc. be as

defined in theorem 5.12. Then

L0(t; s) ≈
∞∑
n=0

α0(t;n) · (st3N)−(6n+1)/6 ,(5.44)

L1(t; s) ≈
∞∑
n=0

α1(t;n) · (st3N)−(6n+5)/6 ,(5.45)
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uniformly for all t ∈ Tε sufficiently small and all s ≥ 0, as |λ(t; s)| → ∞. Above it

has been defined

α0(t;n) :=
(−1)n · {3V (t)}2n

(2n)! · 9n · {u(t)}(6n+1)/2
· Γ
(

6n+ 1

2

)
,

α1(t;n) :=
(−1)n · i · {3V (t)}(18n+11)/6

3 · (2n+ 1)! · 9n · {u(t)}(6n+5)/2
· Γ
(

6n+ 1

2

)
.

On the contrary,

L0(t; s) ≈
∞∑
n=0

β0(t;n) · (st3N)n/3 ,(5.46)

L1(t; s) ≈
∞∑
n=0

β1(t;n) · (st3N)n/3 ,(5.47)

uniformly for all t ∈ Tε sufficiently small and all s ≥ 0, as |λ(t; s)| → 0. Above it has

been defined

β0(t;n) :=
(−1)n · 3(2n+1)/3 · {u(t)}n

n! · {3V (t)}(2n+1)/3
· e

(2n+1)πi/6 − e5(2n+1)πi/6

3
· Γ
(

2n+ 1

3

)
,

β1(t;n) :=
(−1)n · 32(n+1)/3 · {u(t)}n

n! · {3V (t)}2(n+1)/3
· e

(n+1)πi/3 − e5(n+1)πi/3

3
· Γ
(

2n+ 2

3

)
.

Remark 5.19. According to (5.39), |λ(t; s)| ∼ |t|N ·s1/3. Thus, the condition |λ(t; s)| →

∞ allows the possibility of t to depend on s so that t(s) → 0, as s → ∞, at a rate

not faster than s−1/3.

The leading orders of Ll(t; s) are easy recognized from (5.44) – (5.47). One finds

that

L0(t; s) ∼
√
π

{u(t)}1/2
· (st3N)−1/6 ·

(
1 +O(λ(t; s)−3)

)
,(5.48)

L1(t; s) ∼ i
√
π · {3V (t)}11/6

3{u(t)}5/2
· (st3N)−5/6 ·

(
1 +O(λ(t; s)−3)

)
,(5.49)

uniformly for all t ∈ Tε sufficiently small and all s ≥ 0, as |λ(t; s)| → ∞.
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On the other hand,

L0(t; s) ∼ 1

{3
√

3V (t)}1/3
Γ

(
1

3

)
·
(
1 +O(λ(t; s))

)
,(5.50)

L1(t; s) ∼ i√
3{V (t)}2/3

Γ

(
2

3

)
·
(
1 +O(λ(t; s))

)
,(5.51)

uniformly for all t ∈ Tε sufficiently small and all s ≥ 0, as |λ(t; s)| → 0.

Proof of corollary 5.18: Using the identities in (5.31) and (5.32) in (5.37) and

(5.38) respectively, we find that

(5.52) Ll(t; s) =
1

{3V (t)}(l+1)/3
·
∫
γ1

e−λ(t;s)·ξ2+i·ξ3/3 ξl dξ ,

for l = 0 and l = 1.

Fix ε > 0 sufficiently small. The remark in (5.41) implies that V (0) = v(0) > 0.

As a result, for all t sufficiently small, | arg{V (t)}| < ε. Therefore, the definition

of λ(t; s) in (5.39) implies, for all t ∈ Tε sufficiently small, that | arg{λ(t; s)}| ≤

| arg{tN · u(t)}|+ 2ε/3; in particular, for all such t, | arg{λ(t; s)}| ≤ θ := (π/2− ε/3).

Since cos(θ) > 0, we conclude that, for all t ∈ Tε sufficiently small, the <{λ(t; s)} ≥

|λ(t; s)| · cos(θ). This lets us replace the contour γ1 in the last representation for

Ll(t; s) by the real ξ-axis. Thus,

Ll(t; s) =
1

{3V (t)}(l+1)/3
·
∫ ∞
−∞

e−λ(t;s)·ξ2 · ei·ξ3/3 ξl dξ ,

=
1

{3V (t)}(l+1)/3
·
∫ √2

−
√

2

e−λ(t;s)·ξ2 · ei·ξ3/3 ξl dξ +O(e−λ(t;s)) ,

uniformly for all t ∈ Tε sufficiently small and all s ≥ 0, as |λ(t; s)| → ∞.

On the other hand, the stationary phase method (see [BleHan86], chapter 6)

implies that∫ √2

−
√

2

e−λ·ξ
2 · ei·ξ3/3 ξl dξ ≈

∞∑
n=0

1

n!

(
i

3

)n
· λ−(l+3n+1)/2 · 1 + (−1)l+3n

2
· Γ
(
l + 3n+ 1

2

)
,
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uniformly for all λ such that arg{λ} remains in a compact subset of (−π/2, π/2),

as |λ| → ∞. By this we mean that the difference between the integral and the

summation on the right-hand side truncated in the kth-term is O
(
<{λ1/2}−(l+3k+4)

)
,

as |λ| → ∞.

Since for all t ∈ Tε sufficiently small and all s ≥ 0 the | arg{λ(t; s)}| ≤ (π/2−ε/3),

the remarks on the previous paragraph imply that

L0(t; s) ≈ 1

{3V (t)}1/3
·
∞∑
n=0

(−1)n

(2n)! · 9n
· λ(t; s)−(6n+1)/2 · Γ

(
6n+ 1

2

)
,

L1(t; s) ≈ 1

{3V (t)}2/3
·
∞∑
n=0

(−1)n · i
3 · (2n+ 1)! · 9n

· λ(t; s)−(6n+5)/2 · Γ
(

6n+ 5

2

)
,

uniformly for all t ∈ Tε sufficiently small and all s ≥ 0, as |λ(t; s)| → ∞. Using the

definition of λ(t; s) given in (5.39), (5.44) and (5.45) follow almost immediately from

the above identities.

To study the case |λ(t; s)| → 0 we first quote the identity

e−a −
k∑

n=0

(−a)n

n!
= (−1)k+1 · e−a

∫ a

0

eτ · τ k

k!
dτ ,

which is a simple exercise of integration by parts. It implies that

∣∣∣∣e−a − k∑
n=0

(−a)n

n!

∣∣∣∣ ≤
|a|k+1·e|a|

k!
, for all a ∈ C and integer k ≥ 0. As a result, back in (5.52) and if we select

γ1 = (eπi/6 · R+)− (e5πi/6 · R+) we can conclude that∣∣∣∣∣Ll(t; s)− 1

{3V (t)}(l+1)/3
·

k∑
n=0

(−1)n

n!
· {λ(t; s)}n

∫
γ1

eiξ
3/3 ξl+2n dξ

∣∣∣∣∣
≤ |λ(t; s)|k+1

k! · |3V (t)|(l+1)/3
·
∫
γ1

e|λ(t;s)||ξ|2+<{iξ|3/3}|ξ|2(k+1)+l d|ξ| .

But, observe that for ξ ∈ γ1, the <{iξ3} = −|ξ|3. This implies that the integral term

on the right-hand side above is convergent. Moreover, it is bounded as long as the
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|λ(t; s)| remains bounded. Accordingly, if we define

γl(t;n) :=
(−1)n · 3(2n+l+1)/3

n! · {3V (t)}(l+1)/3
· e

(2n+l+1)πi/6 − e5(2n+l+1)πi/6

3
· Γ
(

2n+ l + 1

3

)
then the above inequality implies that

(5.53) Ll(t; s) ≈
∞∑
n=0

γl(t;n) · λ(t; s)n ,

uniformly for all t ∈ Tε sufficiently small and all s ≥ 0, provided that |λ(t; s)| remains

bounded. (5.46) and (5.47) follow almost directly from the above identity after some

few calculations. This completes the proof of the corollary. �

5.5 Applications to big powers of generating functions

In this section we outline a method that could be of use to study the asymptotic

behavior of the coefficient of zn of a power series of the form

f(z)n · g(z)m · h(z) ,

where f(z), g(z) and h(z) are analytic in some disk containing the origin.

Our goal is to provide a uniform asymptotic expansion valid for all n and m

sufficiently big but with m
n

restricted to a compact subset of [0,∞). The discussion

that will follow could be adapted to also consider the case in which n
m

is restricted

to a compact set of [0,∞), however, this case will not be covered.

The motivation to study this problem is the invitation to research of Banderier

et al. at the end of section 2 in [BFSS01].

The following definition is inspired by the work of Pemantle and Wilson in

[PemWil01].
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Definition 5.20. Suppose that f(z) and g(z) are nonzero analytic functions in a

disk of the form [z : |z| < R] with R > 0 and let d ≥ 0. We will say that a point z0

in this disk is a strictly minimal critical point associated to the direction d provided

that

(i) |f(z)| · |g(z)|d is solely maximized along the circle [z : |z| = |z0|] at z = z0, and

(ii) z = z0 is a solution to the equation: z·f ′(z)
f(z)

+ d · z·g
′(z)

g(z)
= 1.

Observe that, if z0 is a strictly minimal critical point then z0 6= 0. Moreover, the

hypothesis that neither f(z) nor g(z) are identically zero implies that f(z0)·g(z0) 6= 0.

We remark that the conditions in the above definition are somehow related. In-

deed condition (i) implies that: z·f ′(z)
f(z)

+ d · z·g
′(z)

g(z)
∈ R. This follows by noticing that

for all θ ∈ R sufficiently small,

|f(z0 e
iθ)| · |g(z0 e

iθ)|d

|f(z0)| · |g(z0)|d
= exp

(
−θ · =

{
z0 · f ′(z0)

f(z0)
+ d · z0 · g′(z0)

g(z0)

}
+O(θ2)

)
.

The occurrence of strictly minimal critical points is far to be uncommon. For

example, suppose that the series coefficients of f(z) and g(z) are nonnegative real

numbers. 1 Define d(z) :=
{

1− z·f ′(z)
f(z)

}
·
{
z·g′(z)
g(z)

}−1

. The restriction on the sign of

the coefficients of f(z) and g(z) implies that each z ∈ (0, R) such that d(z) ≥ 0 is a

strictly minimal critical point associated to the direction d(z).

Our next result demonstrates the natural occurrence of parameter varying Fourier-

Laplace integrals in relation to the problem of determining the asymptotic behavior

of [zn] f(z)n · g(z)m · h(z).

1This is a fairly typical situation if f(z) and g(z) are the power series associated to a combinatorial
problem, however, we emphasize that this is not the only context on which strictly minimal points
may be encountered.
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Proposition 5.21. Suppose that D ⊂ [0,∞) is a compact set and, for each d ∈ D,

zd is a strictly minimal critical point associated to the direction d which depends

continuously on d. If ε > 0 is sufficiently small then, for all d ∈ D, the functions

F (d, θ) := i · θ − ln

{
f(zd · eiθ)
f(zd)

}
− d · ln

{
g(zd · eiθ)
g(zd)

}
,

A(d, θ) := h(zd · eiθ) ,

are analytic on the disk [θ : |θ| ≤ ε]. Furthermore, F (d, 0) = ∂F
∂θ

(d, 0) = 0 and the

<{F (d, θ)} > 0 = <{F (d, 0)}, for all −ε ≤ θ ≤ ε, but θ = 0. In addition, there is a

constant c > 0 such that

[zn] f(z)n · g(z)m · h(z) =

{
f(zd)

zd

}n
· g(zd)

m

2π
(5.54)

·
{∫ ε

−ε
e−n·F (d,θ)A(d, θ) dθ +O(e−n·c)

}
,

uniformly for all integers n > 0 and m ≥ 0 such that m
n
∈ D.

Remark 5.22. Under additional hypothesis it is possible to rewrite the problem of

estimating the coefficient of [zn] f(z)n · g(z)m · h(z) as a problem of estimating the

diagonal coefficients of a parameter-dependent bivariate power series. For example,

if g(0) 6= 0 then

[zn] f(z)n · g(z)m · h(z) = [un vn]F
(
u, v,

m

n

)
,

F (u, v, w) :=
h(u)

1− v · f(u) · g(u)w
.

If z0 is a strictly minimal critical point associated to the direction d then (u0, v0) :=(
z0,

1
f(z0)·g(z0)d

)
is the only solution to the equation: 1 − v · f(u) · g(u)d = 0 on

the polydisk [u : |u| ≤ |u0|] × [v : |v| ≤ |v0|]. Furthermore, (u0, v0) turns out

to be a strictly minimal simple pole of F
(
u, v, m

n

)
(as defined in [PemWil01]) and
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dir(u0, v0) =
{

(r, s) : r = s
}

. As a result, if m
n

remains constant then the scheme

developed in [PemWil01] could be used to determine asymptotics for the coefficients

[un vn]F
(
u, v, m

n

)
, as n→∞.

Proof. For each d ∈ D consider the contours

γ1(d) := {z : |z| = |zd| and | arg{z/zd}| ≤ ε} ,

γ2(d) := {z : |z| = |zd| and | arg{z/zd}| ≥ ε} .

For each n > 0 and m ≥ 0 such that d = d(n,m) := m
n
∈ D we may use Cauchy’s

integral formula to obtain that

(5.55) [zn] f(z)n · g(z)m · h(z) = J1(d;n) + J2(d;n) ,

where

J1(d;n) :=
1

2π

∫
z∈γ1(d)

{
f(z)

z

}n
· g(z)n·d · h(z)

dz

i z
,

J2(d;n) :=
1

2π

∫
z∈γ2(d)

{
f(z)

z

}n
· g(z)n·d · h(z)

dz

i z
.

Define Λ2 :=
{
z : there exists d ∈ D such that z ∈ γ2(d)

}
. Observe that

|J2(d;n)| ≤ sup
z:z∈Λ2

|h(z)| · sup
z:z∈Λ2

∣∣∣∣f(z)

z

∣∣∣∣n · |g(z)|n·d ,

uniformly for all n > 0 and d ∈ D. The compactness of D and the continuous

dependence of zd on d implies that Λ2 is a compact set. As a result, since the

transformation

(d, z) ∈ D × Λ2 −→
{∣∣∣∣f(z)

z

∣∣∣∣ · |g(z)|d
}
·
{∣∣∣∣f(zd)

zd

∣∣∣∣ · |g(zd)|d
}−1

,
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continuous it follows that there is c2 > 0 and δ2 ∈ (0, 1) such that

(5.56) |J2(d;n)| ≤ c2 · (1− δ2)n ·
∣∣∣∣f(zd)

zd

∣∣∣∣n · |g(zd)|n·d ,

uniformly for all n > 0 such that d ∈ D.

To deal with J1(d;n) it is convenient to parametrize the integral using polar

coordinates. If we then normalize the integrand by
{
f(zd)
zd

}n
· g(zd)

n·d then we obtain

(5.57) J1(d;n) :=

{
f(zd)

zd

}n
· g(zd)

m

2π

∫ ε

−ε
e−n·F (d,θ) A(d, θ) dθ ,

with F (d, θ) and A(d, θ) as defined in the enunciate of the proposition. The compact-

ness of D and the continuity of zd as a function of d let us chose ε > 0 sufficiently

small so that for each d ∈ D, F (d, θ) and A(d, θ) are analytic functions of θ for |θ| ≤ ε.

(5.54) follows now immediately from (5.56) and (5.57) in (5.55).

Finally, observe that F (d, 0) = 0. Furthermore, the strict minimality of zd for

d ∈ D implies that ∂F
∂θ

(d, 0) = 0 and the <{F (d, θ)} > 0, for all |θ| ≤ ε but θ = 0.

This completes the proof of the proposition.

Example 5.23. (Rediscovering the Airy Phenomena.)

Let Mr be the number of non-separable rooted maps with (r + 1)-edges and Cs

be the number of three-connected non-separable rooted maps with (s + 1)-edges.

Tutte [Tut89] showed that the generating function associated to (Mr)r≥0 is La-

grangian and obtained that

Mr =
4 (3 r)!

r! (2 r + 2)!
,(5.58)

=

√
3

2
√
π

(
27

4

)r
r−5/2 ·

{
1 +O(r−1)

}
.
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On the other hand, Banderier et al. [BFSS00] used singularity analysis to show

that

(5.59) Cs =
8

243
√
π

4s s−5/2 ·
{

1 +O(s−1)
}
.

A quantity of interest is pr,s defined to be the probability that a NSR-map with

(r+ 1)-edges has a 3CNSR-submap with (s+ 1)-edges. Using Tutte’s work one finds

that

(5.60) pr,s =
s · Cs
r ·Mr

· [zr]φ(z)r · ψ(z)s · z ψ
′(z)

ψ(z)
,

where φ(z) := (1 + z)3 and ψ(z) := z · (1 − z). The coefficients pr,s were studied

by Banderier et al. in [BFSS00] for the difficult case in which s
r

is close to 1
3
. Their

starting point was to represent pr,s by an integral using Cauchy’s formula in (5.60),

namely

(5.61) pr,s =
s·Cs
r·Mr

· 1

2π

∫
γ

zs−r (1− z)s (1 + z)3r 1− 2z

1− z
dz

iz
.

Above, γ can be chosen to be any closed contour encircling the origin and contained

within the punctured disk [z : 0 < |z| < 1]. To determine the asymptotic order of

pr,s, Banderier et al. analyzed the asymptotic behavior of the above integral using

the coalescing saddle point method by choosing an appropriate contour γ which goes

through the double saddle z = 1
2
.

They obtain (see [BFSS00], theorem 3) that the coefficients pr,s satisfy a local limit

law of the map Airy-type. More precisely, they determine for all finite real numbers

a ≤ b that

lim
(r,s)→∞

sup

{∣∣∣∣r2/3 · pr,s −
16

81
· 34/3

4
·A
(

34/3

4
· s− r/3

r2/3

)∣∣∣∣ : a ≤ s− r/3
r2/3

≤ b

}
= 0 .
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The function A(λ) := 2 e−2λ3/3
(
x · Ai(λ2) − Ai′(λ2)

)
is the density function of a

standard Airy-map distribution. This is a zero-free function over the real line (see

lemma 5.26 ahead) and therefore pr,s is of order r−2/3 provided that: s
r

= 1
3

+O(r1/3).

An alternative approach to obtain this local limit law is to make use of the link

between pr,s and [zr]φ(z)r · ψ(z)s · z·ψ
′(z)

ψ(z)
in (5.60). These last coefficients can be

related to a parameter varying Fourier-Laplace integral by means of the following

result.

Proposition 5.24. For all d ≥ 0 sufficiently close to 1
3
, zd := min

{
1
2
, 1−d

1+d

}
is a

strictly minimal critical point associated to d.

Using (5.60), proposition 5.21 implies the existence of ε > 0 and a constant c > 0

such that

pr,s =
s · Cs
r ·Mr

·
{
φ(zd)

zd

}r
· ψ(zd)

s

2π
·
{∫ ε

−ε
e−r·F (d,θ)A(d, θ) dθ +O(e−r·c)

}
,(5.62)

where

F (d, θ) := i · θ − 3 · ln
{

1 + zd e
iθ

1 + zd

}
− d · ln

{
eiθ · 1− zd eiθ

1− zd

}
,(5.63)

A(d, θ) :=
1− 2 zd e

iθ

1− zd eiθ
,(5.64)

uniformly for all r, s > 0 provided that d := s
r

is sufficiently close to 1
3
.

The integral term on the right-hand side in (5.62) can be studied using theorem

5.12. Indeed, as we shall see promptly, F (d, θ) has a 2-to-3 change of degree about

θ = 0 as d → 1
3
, however, A(d, θ) has a 0-to-1 change of degree at θ = 0 as d → 1

3
.

Although both of these functions do not depend analytically in d they do depend

analytically on (zd, θ). The generalized coalescing-saddle points method let us obtain

the following result.
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Corollary 5.25. For each (r, s) such that s
r

is sufficiently close to 1
3

define Θ =

Θ(r, s) :=
∣∣ s
r
− 1

3

∣∣. The asymptotic behavior of pr,s for s
r

nearby 1
3

is determined by

the quantity ∆ = ∆(r, s) := r ·
∣∣ s
r
− 1

3

∣∣3 as follows.

There is α > 0 such that

pr,s =
42+r+s

√
2π · 27r+1

·
{
φ(zd)

zd

}r
· ψ(zd)

s · r−1/2 · (3d− 1)1/2(5.65)

·
{

1 +O
(

max
{

∆−1/6,Θ, r−1
})}

,

uniformly for all (r, s) such that Θ is sufficiently small and ∆(r, s) ≥ α, as (r, s)→

∞.

On the contrary, for all β ≥ 0,

(5.66) pr,s = r−2/3 · 16

81
· 33/4

4
·A
(

33/4

4
· s− r/3

r2/3

)
·
{

1 +O(r−1/3)
}
,

uniformly for all (r, s) such that Θ is sufficiently small and ∆(r, s) ≤ β, as (r, s) →

∞.

Proof of proposition 5.24: A simple calculation reveals that z = 1
2

and z = 1−d
1+d

are solutions to the equation: z·φ′(z)
φ(z)

+ d · z·ψ
′(z)

ψ(z)
= 1. Thus, it only remains to show

that, for all d sufficiently close to 1
3
, the function M(d, θ) := |f(zd · eiθ)| · |g(zd · eiθ)|d

is solely maximized at θ = 0 over the interval −π ≤ θ ≤ π. This assertion is trivial

if d = 1
3

because

∂ log(M)

∂θ

(
1

3
, θ

)
= −80 sin(θ) · {1− cos(θ)}

3 · {25− 16 cos2(θ)}
.

To show that M(d, θ) is maximized at θ = 0, it will be enough to show there

is δ > 0 (independent of d) such that θ = 0 maximizes M(d, θ) over the interval

−δ ≤ θ ≤ δ. But, observe that

(5.67)
M(d, θ)

M(d, 0)
= exp

(
<{P (d, θ)}

)
,
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where P (d, θ) := ln
{
φ(zd·eiθ)
φ(zd)

}
+ d · ln

{
ψ(zd·eiθ)
ψ(zd)

}
is continuous in d, for all d nearby

d = 1/3, and analytic in θ, for all |θ| ≤ ε provided that ε > 0 is selected small enough.

It is now matter of routine to verify that there are continuous functions u(d) and v(d)

such that u(1
3
) < 0, v(1

3
) < 0, and

<{P (d, θ)} =


(
d− 1

3

)
· θ2 + u(d) · θ4 +O(θ6) , d ≤ 1

3

3(d2−1)
8d

(
d− 1

3

)
· θ2 + v(d) · θ4 +O(θ6) , d ≥ 1

3

uniformly for all d nearby d = 1
3

and θ in an interval of the form θ ∈ (−δ, δ), with

0 < δ < ε. If necessary by reducing the size of δ > 0, the above identities imply that

the <{P (d, θ)} < 0, for all d sufficiently close to d = 1
3

and nonzero θ ∈ (−δ, δ). This

in (5.67) implies the desired conclusion and completes the proof of the proposition.�

Proof of corollary 5.25: Only the case d ≥ 1
3

will be considered for a similar (yet

simpler) argument will show the remaining case. If d ≥ 1
3

then zd = 1−d
1+d

and, without

loss of generality, we may assume the identity holds for all d ∈ C sufficiently close to

d = 1
3
. (5.62) together with the definitions in (5.63) and (5.64) imply that

(5.68) pr,s =
s · Cs
r ·Mr

·
{
φ(zd)

zd

}r
· ψ(zd)

s

2π
·
{
J(d; r) +O(e−r·c)

}
,

uniformly for all (r, s) such that d = d(r, s) := s
r

is sufficiently close and less or equal

to d = 1
3

where, accordingly, one determines that

J(d; r) :=

∫ ε

−ε
e−s·F (d,θ) A(d, θ) dθ ,

F (d, θ) = (3d− 1) · u(d) · θ2 − i · v(d) · θ3 + . . .

A(d, θ) =
3d− 1

2d
+
i(d2 − 1)

4d2
· θ + . . .

with u(d) := 1−d2

8d
and v(d) := (3d3−1)·(d2−1)

24d2 ; in particular, u(1
3
) = 1

8
and v(1

3
) = 8

27
> 0.

F (d, θ) and A(d, θ) therefore have a 2-to-3 and 0-to-1 change of degree about θ = 0
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as d → 1
3
. Furthermore, observe that arg{(3d − 1) · u(d)} = 0, for all d ≥ 1

3
. As a

result, theorem 5.12 can be used to analyze the asymptotic behavior of J(d; r), for

all d ≥ 1
3

sufficiently close to d = 1
3
. Using the statement of the theorem and the

remarks that follow one obtains that

J(d; r) = A0(d) · J0(d; r) + A1(d) · J1(d; r) +O(e−r·c) ,

A0(d) =
(3d− 1)

2d
,

A1(d) ∼ −2i , as d→ 1
3
,

J0(d; r) =
L0(d; r)

r1/3
+
R0(d; 1)

r2/3
· L1(d; r) +O

(
|L0(d; r)|
r1+1/3

+
|L1(d; r)|
r1+2/3

)
,

J1(d; r) =
R1(d; 1)

r2/3
· L1(d; r) +O

(
|L0(d; r)|
r1+1/3

+
|L1(d; r)|
r1+2/3

)
,

R0(d; 1) ∼ i

6
, as d→ 1

3
,

R1(d; 1) ∼ 1 , as d→ 1
3
,

L0(d; r) =
2π

{3V (d)}1/3
· e2λ(d;r)3/3 ·Ai(λ(d; r)2) ,

L1(d; r) =
−2πi

{3V (d)}2/3
· e2λ(d;r)3/3 ·

{
λ(d; r) ·Ai(λ(d; r)2) + Ai′(λ(d; r)2)

}
,

λ(d; r) =
1− d2

8d{3V (d)}2/3
· (3d− 1) r1/3 ,

V (d) ∼ 8

27
, as d→ 1

3
.

Let ε > 0 be such that the all big-O terms above are uniform for all d such that

0 ≤
(
d− 1

3

)
≤ ε, as r → ∞. If necessary, by reducing the size of ε > 0, we can

assume that all terms above are analytic functions of d in the disk [d : |d − 1
3
| ≤ ε].

The above identities then imply that

J(d; r) =
A0(d)

r1/3
· L0(d; r) +

A1(d) ·R1(d; 1)

r2/3
· L1(d; r)(5.69)

+O

(
3d− 1

r2/3
· L1(d; r) +

|L0(d; r)|
r1+1/3

+
|L1(d; r)|
r1+2/3

)
+O(e−r·c) ,
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uniformly for all 0 ≤
(
d− 1

3

)
≤ ε, as r →∞.

Next we show that the asymptotic behavior of J(d; r) for 0 ≤
(
d− 1

3

)
≤ ε and for

big values of r is determine by the quantity ∆(d; r) := r ·
(
d− 1

3

)3
. For this, observe

that ∆(d; r) is of the same order as |λ(d; r)|3, this provided that ε > 0 is sufficiently

small.

We first consider the case in which ∆(d; r) is of a big size. This forces the |λ(d; r)|

to also be large and the remarks in (5.48) and (5.49) imply that L0(d; r) is of order

|λ(d; r)|−1/2 whereas L1(d; r) is of order |λ(d; r)|−5/2. In particular,

L1(d; r)

r2/3
=
A0(d)

r1/3
· L0(d; r) ·O

(
|λ(d; r)|−3

)
,

uniformly for all |λ(d; r)| sufficiently big. These findings in (5.69) together with the

remark in (5.48) imply that there is α > 0 such that

J(d; r) =
A0(d)

r1/3
· L0(d; r) ·

{
1 +O(|λ(d; r)|−1/2)

}
,

=

√
π

u(d)
· A0(d) · r−1/2 · (3d− 1)−1/2 ·

{
1 +O(|λ(d; r)|−1/2)

}
,

= 3
√

2π · r−1/2 · (3d− 1)1/2 ·
{

1 +O(|λ(d; r)|−1/2)
}
·
{

1 +O|3d− 1|
}
,

uniformly for all 0 ≤
(
d− 1

3

)
≤ ε and r > 0 sufficiently big such that ∆(d; r) ≥

α. We see that J(d; r) is of order r−1/2 · (3d − 1)−1/2. This in (5.68) implies that

e−r·c = J(d; r) ·O(|λ(d; r)|−1/2) uniformly for all 0 ≤
(
d− 1

3

)
≤ ε and r > 0 such that

∆(d; r) ≥ α, as r → ∞. As a result, using (5.68) and the asymptotic formulas in

(5.58) and (5.59), we obtain that

pr,s = 3 · s · Cs
r ·Mr

·
{
φ(zd)

zd

}r
· ψ(zd)

s

√
2π
· r−1/2 · (3d− 1)1/2

·
{

1 +O(|λ(d; r)|−1/2)
}
·
{

1 +O|3d− 1|
}
,
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=
42+r+s

√
2π · 27r+1

·
{
φ(zd)

zd

}r
· ψ(zd)

s · r−1/2 · (3d− 1)1/2

·
{

1 +O(∆(r, s)|−1/6)
}
·
{

1 +O|3d− 1|
}
·
{

1 +O(r−1)
}
,

uniformly for all 0 ≤
(
d− 1

3

)
≤ ε and r > 0 such that ∆(d; r) ≥ α, as r →∞. This

implies (5.65).

To complete the proof of the corollary it remains to determine the asymptotic

order of J(d; r) for 0 ≤
(
d− 1

3

)
≤ ε and r > 0 sufficiently large such that ∆(d; r) ≤ β,

where β > 0 is a fixed constant. This implies that (3d− 1) = O(r−1/3), hence λ(d; r)

is bounded and therefore L0(d; r) and L1(d; r) are uniformly bounded. These findings

in (5.69) imply, after some few calculations, that

J(d; r) =
A0(d)

r1/3
· L0(d; r) +

A1(d) ·R1(d; 1)

r2/3
· L1(d; r) +O(r−1) ,

=
3(3d− 1)

2r1/3
· L0(d; r)− 2i

r2/3
· L1(d; r) +O(r−1) ,

=
34/3 · π
2 · r2/3

· e4λ(d;r)3/3 ·A
(
λ(d; r)

)
+O(r−1) ,

uniformly for all 0 ≤
(
d− 1

3

)
≤ ε and all r > 0 sufficiently big such that ∆(d; r) ≤ β.

To conclude that J(d; r) is of order r−2/3 we require the following result.

Lemma 5.26. A(λ) is zero-free for λ ∈ R.

Proof. The proof follows by contradiction. Thus, suppose that there is λ ∈ R such

that A(λ) = 0. Since A(λ) is a probability distribution over the real-line (see section

1.1 in [BFSS00]) then it must be the case that A′(λ) = 0. But, the conditions

A(λ) = 0 and A′(λ) = 0 are equivalent to say that Ai′(λ2) = λ ·Ai(λ2) ,

Ai(λ2) = 2λ ·
(
Ai′′(λ2)− λ ·Ai′(λ2)

)
.
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(5.24) now implies that Ai′′(λ2) = λ2 ·Ai(λ2). The above identities let us conclude

Ai(λ2) = 0 and this is not possible because Ai(x) is zero-free for all x ≥ 0 (see end

of section 5.3). This shows the lemma.

Since the argument of λ(d; r) can be made as small as wanted by reducing the size

of ε > 0, the lemma implies that, for a sufficiently small choice of ε > 0, A(λ(d; r)) is

zero-free for 0 ≤
(
d− 1

3

)
≤ ε and r such that ∆(d; r) ≤ β. This shows that J(d; r) is

effectively of order r−2/3 in the stated range for (d; r). (5.68) lets us then to conclude

that

pr,s =
34/3

2
· s · Cs
r ·Mr

·
{
φ(zd)

zd

}r
· ψ(zd)

s · r−2/3 · e4λ(d;r)3/3A(λ(d; s)) ·
{

1 +O(r−1/3)
}
,

uniformly for all 0 ≤
(
d− 1

3

)
≤ ε and all sufficiently large r such that ∆(d; r) ≤ β.

To deduce (5.66) all what remains is to make more explicit the order of the factor{
φ(zd)
zd

}r
· ψ(zd)

s above. Indeed, a simple calculation reveals that{
φ(zd)

zd

}r
· ψ(zd)

s = 4−s ·
(

27

4

)r
· e−r(3d−1)3/16+O(r(3d−1)4) ,

= 4−s ·
(

27

4

)r
· e−4·λ(d;r)3/3 ·

{
1 +O(r−1/3)

}
.

The asymptotic formulas in (5.58) and (5.59) then imply that

pr,s = 4 · d−3/2 · 3−25/6 · r−2/3 ·A(λ(d; r)) ·
{

1 +O(r−1/3)
}
,

=
16

81
· 33/4

4
· r−2/3 ·A(λ(d; r)) ·

{
1 +O(r−1/3)

}
,

uniformly for all 0 ≤
(
d− 1

3

)
≤ ε and ∆(d; r) ≤ β, as r → ∞. (5.66) follows from

the fact that λ(d; r) ∼ 34/3

4
· s−r/3

r2/3 uniformly for all (r, s) such that ∆(r, s) ≤ β, as

(r, s)→∞. This completes the proof of corollary 5.25. �
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5.6 Preliminary results

The following two results concern with analytic functions of several complex vari-

ables. They will be used for the particular case of two-complex variables to prove

theorems 5.2 and 5.12. The notation used in chapter 4 will be continued in here.

The following result gives more precise information about Levinson’s canonical

representation (see theorem 4.24) for analytic functions that expose a p-to-q change

of degree.

Lemma 5.27. Let d ≥ 1 be an integer and suppose that F (z) is analytic in a neigh-

borhood of the origin in Cd. Moreover, suppose that F (z) has a p-to-q change of degree

about zd = 0 as z′ → 0′. Then, F admits near the origin a unique representation of

the form

(5.70) F (z) =

q∑
k=p

Fk(z
′) · xkd ,

where Fk(0
′) = 0, for p ≤ k ≤ (q − 1), Fq(0

′) 6= 0 and xd = xd(z) is such that

xd(z
′, 0) ≡ 0 and ∂xd

∂zd
(z′, 0) ≡ 1. Indeed, this implies that

(5.71) Fp(z
′) =

1

p!

∂pF

∂zpd
(z′, 0) .

Proof. Using Levinson’s canonical representation theorem 4.24 and our result in

section 4.8.1, it follows that there is a unique representation of the form F (z) =
q∑

k=0

Fk(z
′) · xkd , where Fk(0

′) = 0, for 0 ≤ k ≤ (q − 1), Fq(0
′) 6= 0 and xd = xd(z) is

such that xd(z
′, 0) ≡ 0 and ∂xd

∂zd
(z′, 0) ≡ 1. Suppose that this representation applies

for all z in an open neighborhood of a polydisk ∆[0, r].

Since F (z) has a p-to-q change of degree about zd = 0 as z′ → 0′, its Hartogs
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series in powers of zd near the 0 must be of the form
∞∑
k=p

fk(z
′) zkd , with fp(z

′) not

identically zero in any neighborhood of 0′.

Consider the map Φ(z) = (z′, xd(z)). The conditions imposed over xd(z) imply

that the Jacobian matric ∂Φ
∂z

(0) is lower-triangular with all entries equal to 1 along

the diagonal. Since Φ(0) = 0, the Inverse mapping theorem 4.23 lets us assume,

without loss of generality, that Φ is holomorphic and 1-to-1 over ∆[0, r].

Fix z′ ∈ ∆[0′, r′]. Since xd(z
′, 0) = 0, there is ρ1 > 0 such that [xd : |xd| ≤ ρ1] ⊂

xd(z
′, [zd : |zd| < rd]). Moreover, since xd(z

′, ·) is 1-to-1 we may find ρ2 > 0 such that

[zd : |zd| ≤ ρ2] is contained the pre-image of [xd : |xd| < ρ1]. Using Cauchy’s theorem,

then substituting: xd = xd(z
′, zd), and finally using that the Hartogs series of F is

uniformly convergent toward F over compact sets (see theorem 4.13) it follows, for

all 0 ≤ j ≤ q, that

Fj(z
′) =

1

2πi

∫
|xd|=ρ1

1

xj+1
d

q∑
k=0

Fk(z
′) · xkd dxd ,

=
1

2πi

∫
|zd|=ρ2

F (z′, zd)

{xd(z′, zd)}j+1

∂xd
∂zd

(z′, zd) dzd ,

=
1

2πi

∞∑
k=p

fk(z
′) ·
∫
|zd|=ρ2

zkd
{xd(z′, zd)}j+1

∂xd
∂zd

(z′, zd) dzd .

Observe that xd(z
′, zd) = zd ·h(z′, zd) where, for each fixed z′ ∈ ∆(0′, r′), h(z′, 0) ≡

1 and h(z′, ·) is analytic and zero-free in an open neighborhood of [zd : |zd| ≤ ρ2].

This implies that, for all j < p ≤ k, the function
zkd

{xd(z′,zd)}j+1
∂xd
∂zd

(z′, zd) is analytic in

zd in an open neighborhood of [zd : |zd| ≤ ρ2]. Consequently, in the above summation,

each integral term vanishes and therefore Fj(z
′) ≡ 0, for all j < p. This proves (5.70).

On the other hand, for the same reasons, if j = p then the integral terms in the
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above summation all vanish for k > p. This implies that

Fp(z
′) =

fp(z
′)

2πi
·
∫
|zd|=ρ2

zpd
{xd(z′, zd)}p+1

∂xd
∂zd

(z′, zd) dzd .

Observe that the integrand above has a simple pole at zd = 0 and the residue there

is equal to the

lim
zd→0

zp+1
d

{xd(z′, zd)}p+1

∂xd
∂zd

(z′, zd) = {h(z′, 0)}−(p+1) = 1 .

As a result, Fp(z
′) = fp(z

′) and this shows (5.71). This completes the proof of the

lemma.

The next result could be proved using Differential equations (see proof of theorem

2 in [CFU56], theorem I in [Ble67], or theorem 9.2.2 in [BleHan86].) They all proceed

to show a result somehow reminiscent of ours arguing that the derivatives up to

order (p − 1) of a non-trivial solution of a linear homogeneous ordinary differential

equation of order p cannot all vanish simultaneously. (This argument was used for

the particular case of the Airy function in section 5.3.) However, here we present

with an alternative and, to the best of our knowledge, also original proof which uses

rather more elementary and well-known techniques.

Lemma 5.28. (Functions with no common zeroes.) Let d ≥ 1 be an integer

and γ ⊂ C be an infinite contour such that for an appropriate constant c > 0 the

<{xd+1} ≥ c · |x|d+1, for all x ∈ γ sufficiently big. For each k ≥ 0 let Fk : Cd → C be

the entire analytic function defined as

(5.72) Fk(z) :=

∫
γ

exp

{
−xd+1 −

d∑
j=1

zj · xj
}
xk dx .
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If the

(5.73)

∫
γ

exp
{
−xd+1

}
dx 6= 0

then the
d−1∑
k=0

|Fk(z)| > 0 for all z ∈ Cd; in other words, the functions Fk with k =

0, . . . , (d− 1) do not share a common zero in Cd.

Remark 5.29. Observe that the conditions in the lemma apply in particular for any

contour γ of the form
(
u · R+ − v · R+

)
with u 6= v and ud+1 = vd+1 = 1. More

generally, for all nonzero u and v situated in different connected components of the

set
{
x ∈ C : <{xd+1} > 0

}
.

Proof. The proof proceeds by contradiction. Therefore, suppose that there is a ∈ Cd

such that Fk(a) = 0, for all 0 ≤ k ≤ (d − 1). This is equivalent to say that, for all

0 ≤ k ≤ (d− 1), the

(5.74)

∫
γ

e−p(x) xk dx = 0 ,

where for convenience we have defined p(x) := xd+1 +
d∑
j=1

aj · xj.

We will use the above condition to show that for all q ∈ C[x] the

(5.75)

∫
γ

e−p(x) q(x) dx = 0 .

To show this, define q0 := q. Then, using the Division algorithm for polynomials, we

may recursively define rk, ek, qk ∈ C[x], for all k ≥ 1, to satisfy: qk−1 = rk+p′ ·ek with

the deg[rk] < deg[p′] = d and qk = e′k; in particular, the
∫
γ
e−p(x) rk(x) dx = 0, for all

k ≥ 1. With qk defined in this way, a simple inductive argument, using integration

by parts, shows that ∫
γ

e−p(x) qk(x) dx =

∫
γ

e−p(x) qk+1(x) dx .
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Observe that unless ek+1 ≡ 0 the deg[qk] > deg[qk+1]. Otherwise, if ek+1 ≡ 0

then the deg[qk] < d. This shows that for a sufficiently large k the deg[qk] < d.

Thus, for any such k and since q0 = q, we can deduce that the
∫
γ
e−p(x) q(x) dx =∫

γ
e−p(x) qk(x) dx = 0. This proves (5.75).

Observe that each function Fk : Cd → C, as defined in (5.72), is an entire analytic

function. Moreover, for all multi-index n, a simple inductive argument shows that

∂nFk
∂zn

(a) = (−1)〈n〉 ·
∫
γ

e−p(x) x
k+

dP
j=1

j·nj
dx .

(5.75) then implies that Fk ≡ 0, for all k. In particular, F0(0) =
∫
γ

exp
{
−xd+1

}
dx =

0, but this is in contradiction with condition (5.73). As a result, there cannot be

a ∈ Cd such that Fk(a) = 0, for all 0 ≤ k ≤ (d− 1). This completes the proof of the

lemma.

5.7 Proof of the generalized stationary phase method

In this section we prove theorem 5.2. Our interest is to provide a uniform asymp-

totic expansion for an integral of the form

I(t; s) =

∫ 1

0

e−s·F (t,z) A(t, z) dz ,

uniformly valid for all t sufficiently small and all s ≥ 0 sufficiently large. The phase

and amplitude term of I(t; s) are assumed to be analytic in an open polydisk centered

at the origin containing points of the form (t, z), with |z| ≤ 1, for all t sufficiently

small. It is also assumed that there are integers n ≥ 1 and q ≥ p ≥ 0 such that

{F (t, z) − F (t, 0)} and A(t, z) have respectively an n-to-n and p-to-q change of de-

gree about z = 0 as t → 0. Furthermore, we will work with the assumption that
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<{F (0, z)− F (0, 0)} > 0, for all z ∈ [0, 1], but z = 0, and write

F (t, z)− F (t, 0) = u(t) · zn + . . .

with u(0) 6= 0.

Observe that the hypotheses on F (t, z) imply that the <{u(0)} ≥ 0.

To prove theorem 5.2 it will be crucial to localize I(t; s) in an interval of the form

[0, r], for all r ∈ (0, 1) sufficiently small. This is required in order to exploit the local

behavior of the phase and amplitude term of I(t; s) for (t, z) near the origin. For this,

fix r ∈ (0, 1). Observe that <{F (t, z) − F (t, 0)} → <{F (0, z) − F (0, 0)} uniformly

for all z ∈ [r, 1], as t → 0. As a result, since the <{F (0, z) − F (0, 0)} > 0, for all

z ∈ [r, 1], then there is a constant c0 > 0 such that the <{F (t, z)− F (t, 0)} ≥ c0, for

all t sufficiently small and all z ∈ [r, 1].

With r and c0 as in the previous paragraph, we obtain that

(5.76) I(t; s) = e−s·F (t,0) ·
{∫ r

0

e−s·{F (t,z)−F (t,0)}A(t, z) dz +O
(
e−s·c0

)}
,

uniformly for all t sufficiently small and all s ≥ 0. Motivated by the above identity

we will define

(5.77) I(t, r; s) :=

∫ r

0

e−s·{F (t,z)−F (t,0)}A(t, z) dz .

Our next goal is to transform I(t, r; s) to a Fourier-Laplace integral with a mono-

mial phase term and a polynomial like amplitude term. This will be done through

a change of coordinates which will take t into account. It will be of the form

(t, x) = Φ(t, z) where Φ is a biholomorphic map defined on a neighborhood of

(t, z) = (0, 0) and taking values in a neighborhood of (t, x) = (0, 0). The map Φ

will be the result of the composition of two maps of the form (t, y) = Ψ1(t, z) and
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(t, x) = Ψ2(t, y). The first of these maps will be used to put the amplitude term in

the desired form whereas Ψ2 will produce a monomial phase term.

Lemma 5.27 states that there is a unique representation of the form∫ z

0

A(t, ξ) dξ =

q∑
k=p

Ak(t)

k + 1
· yk+1 ,

where Ak(0) = 0, for all p ≤ k ≤ (q − 1), Aq(0) 6= 0, and y = y(t, z) = z + . . . In

particular, by differentiating both sides with respect to z we obtain that

(5.78) A(t, z) =

{
q∑

k=p

Ak(t) · yk
}
· ∂y
∂z

(t, z) .

The motivation we had for the above representation is the following. If for each

fixed t sufficiently small, we let y = y(t, z), then: A(t, z) dz =

{
q∑

k=p

Ak(t) · yk
}
dy.

As a result, in the new variable y, I(t, r; s) has a polynomial amplitude term. This

insight motivates to consider the mapping

(t, y) = Ψ1(t, z)

:= (t, y(t, z)) = (t, z + . . .) .

Ψ1 can be thought of as a local change of coordinates. Indeed, observe that

the conditions given on y(t, z) imply that the Jacobian matrix ∂Ψ1

∂(t,z)
(0, 0) is lower-

triangular with nonzero entries along the diagonal. Thus, using the Inverse mapping

theorem 4.23, we may conclude that Ψ1 is a biholomorphic map between an open

neighborhood of (t, z) = (0, 0) and an open neighborhood of (t, y) = (0, 0).

Based on remarks in the previous paragraph it follows that F (Ψ−1
1 (t, y)) is analytic

in some open neighborhood of (t, y) = (0, 0). Moreover, its Hartogs series about

(t, y) = (0, 0) in powers of y can be easily shown to be of the form

F (Ψ−1
1 (t, y)) = F (t, 0) + u(t) · yn + . . .
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Consider the map

φ(t, y) := y · {u(t)}1/n ·
{

1 +
F (Ψ−1

1 (t, y))− F (t, 0)− u(t) · yn

u(t) · yn

}1/n

.

Above, the principal branch of the nth-root has been selected. This is possible

because the hypotheses of theorem 5.2 imply that u(0) 6= 0 and the <{u(0)} ≥ 0.

Furthermore, it follows that φ(t, y) is analytic near (t, y) = (0, 0) and, from the way

it was defined, we see that: F (Ψ−1
1 (t, y)) − F (t, 0) = {φ(t, y)}n. This motivates to

define the map

(t, x) = Ψ2(t, y)

:= (t, φ(t, y)) = (t, y · {u(t)}1/n + . . .) .

Ψ2 like Ψ1 can be shown to be a biholomorphic map between an open neighbor-

hood of (t, y) = (0, 0) and an open neighborhood of (t, x) = (0, 0). Moreover, in the

coordinate system (t, x), we may rewrite

(5.79) F (Ψ−1
1 (t, y))− F (t, 0) = xn .

As we anticipated we will define

(t, x) = Φ(t, z)

:= (Ψ2 ◦Ψ1)(t, z) = (t, z · {u(t)}1/n + . . .) .

We will write Φ = (Φ1,Φ2) to refer to the coordinates functions of Φ, and thus,

we have that Φ1(t, z) = t and Φ2(t, z) = z · {u(t)}1/n + . . . Since Φ is biholomorphic

we may find r ∈ (0, 1) such that points of the form (t, z), with t sufficiently small

and |z| ≤ 2r, are contained in the domain of definition of Φ(t, z), F (t, z) and A(t, z).
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For each such t we may then perform the substitution: x = Φ2(t, z), in I(t, r; s). In

particular, z and x relate to each other trough an auxiliary variable y specified by

the relations (t, x) = Ψ2(t, y) and (t, y) = Ψ1(t, z). Back in (5.77) and using (5.79)

then (5.78), the substitution: x = Φ2(t, z), in I(t, r; s), produces

I(t, r; s) =

∫
Φ2(t,[0,r])

e−s·x
n · A

(
Φ−1(t, x)

)
· ∂z
∂x

(t, x) dx ,

=

q∑
k=p

Ak(t) ·
∫

Φ2(t,[0,r])

e−s·x
n ·
{
yk · ∂y

∂x
(t, x)

}
dx .

As a result, if we define

(5.80) Ik(t, r; s) :=

∫
Φ2(t,[0,r])

e−s·x
n ·
{
yk · ∂y

∂x
(t, x)

}
dx ,

then back in (5.76) we obtain that

(5.81) I(t; s) = e−s·F (t,0) ·

{
q∑

k=p

Ak(t) · Ik(t, r; s) +O(e−s·c0)

}
,

uniformly for all t sufficiently close to 0 and all s ≥ 0. This shows (5.1) in theorem

5.2.

A uniform asymptotic expansion for I(t; s) will follow provided that we can de-

termine an asymptotic expansion for each term Ik(t, r; s) in (5.81). For this we will

show that the contour of integration of Ik(t, r; s) can be replaced by an interval of

the form [0, δ], for some δ > 0, by incurring in a negligible error.

Since F (t, z)−F (t, 0) = xn, the hypotheses of theorem 5.2 imply that <{xn} > 0

if x = Φ2(0, r). But, recall that Φ2(0, r) = r ·{u(0)}1/n+O(r2), with the <{u(0)} ≥ 0.

Since the selection of the nth-root was in the principal sense, this implies that the

(5.82) | arg Φ2(0, r)| < π

2n
.
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Observe that Φ2(0, r) is the end-point of Φ2(0, [0, r]). On the other hand, as t → 0,

the end-point of Φ2(t, [0, r]) converges to the end-point of Φ2(0, [0, r]). Thus, due

to (5.82), we can replace the contour Φ2(t, [0, r]), used first to define Ik(t, r; s) in

(5.80), by the interval [0, δ], with δ := <{Φ2(0, r)} > 0. The error incurred by this

contour replacement is a O(e−s·c1), for an appropriate constant c1 > 0, uniformly for

all t sufficiently small. Hence, back in (5.81), we may assume without any loss of

generality that

(5.83) Ik(t, r; s) =

∫ δ

0

e−s·x
n ·
{
yk · ∂y

∂x
(t, x)

}
dx ,

provided that the constant c0 in the big-O term is replaced with the min{c0, c1} > 0.

In the above form an asymptotic expansion for Ik(t, r; s) can be easily obtained using

the standard stationary phase method (see [BleHan86], chapter 6). Indeed, since the

amplitude term of Ik(t, r; s) has at (t, x) = (0, 0) a Hartogs series in powers of x of

the form

yk · ∂y
∂x

(t, x) =:
∞∑
j=k

ck(t; j) · xj

= {u(t)}−(k+1)/n · xk + . . .

then it follows that ck(t; k) = {u(t)}−(k+1)/n and

Ik(t, r; s) ≈
∞∑
j=k

ck(t; j)

n
· Γ
(
j + 1

n

)
· s−(j+1)/n ,

uniformly for all t sufficiently close to 0, as s → ∞. This shows (5.2) and (5.3) and

completes the proof of theorem 5.2. �
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5.8 Proof of the generalized coalescing saddle point method

In this section we prove theorem 5.12. Our interest is in providing a uniform

asymptotic expansion for integrals of the form

J(t; s) =

∫ 1

−1

e−s·F (t,z) A(t, z) dz ,

valid for all t ∈ Tε sufficiently small and s ≥ 0 sufficiently large. The hypothesis

on the amplitude term are the same as in the previous section. However, this time,

{F (t, z)−F (t, 0)} is assumed to have a 2-to-3 change of degree about z = 0 as t→ 0

and the <{F (0, z) − F (0, 0)} > 0, for all z ∈ [−1, 1], but z = 0. Furthermore, we

assume that

F (t, z)− F (t, 0) = tN · u(t) · x2 − i · v(t) · x3 + . . .

where N ≥ 1 is an integer, u(0) 6= 0 and v(0) > 0.

The localization of J(t; s) to an interval of the form [−r, r], for all r ∈ (0, 1),

proceeds by an argument similar to the one used to localize I(t; s) to an interval of

the form [0, r]. (See the argument that led to (5.76).) Accordingly, if we define

(5.84) J(t, r; s) :=

∫ r

−r
e−s·{F (t,z)−F (t,0)}A(t, z) dz ,

it follows, for all r ∈ (0, 1), that there is a constant c0 > 0 such that

(5.85) J(t; s) = e−s·F (t,0) ·
{
J(t, r; s) +O(e−s·c0)

}
,

uniformly for all t sufficiently small and all s ≥ 0.

As in (5.78) we may represent A(t, z) near the origin in the form

A(t, z) =

{
q∑

k=p

Ak(t) · yk
}
· ∂y
∂z

(t, z) ,
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where Ak(0) = 0, for all p ≤ k < q, however, Aq(0) 6= 0, and y = y(t, z) = z + . . .

is analytic near the origin. This motivates to consider again the biholomorphic map

(t, y) = Ψ1(t, z) = (t, z + . . .). We observe that F (Ψ−1
1 (t, y)) also exposes a 2-to-3

change of degree about y = 0 as t → 0. Thus, using lemma 5.27, we conclude that

there is a unique representation of the form

F (Ψ−1
1 (t, y)) =

3∑
j=2

Fj(t) · xj ,

where F2(0) = 0, F3(0) 6= 0, and x = x(t, y) = y + . . . In particular, we see that the

transformation (t, x) = Ψ2(t, y) := (t, x(t, y)) = (t, y + . . .) is biholomorphic between

an open neighborhood of (t, y) = (0, 0) and an open neighborhood of (t, x) = (0, 0).

We will define Φ := Ψ2 ◦Ψ1. Observe that Φ is of the form

Φ(t, z) = (t, φ(t, z)) = (t, z + . . .) .

Since Φ is biholomorphic, we may find r ∈ (0, 1) such that points of the form

(t, z) with t sufficiently small and |z| ≤ 2r are contained in the domain of definition

of Φ, F and A. If for each such t we substitute: x = φ(t, z), in J(t, r; s), we obtain

that

J(t, r; s) =

∫
φ(t,[−r,r])

e
−s·

3P
j=2

Fj(t)·xj
· A
(

Φ−1(t, x)
)
· ∂z
∂x

(t, x) dx ,

=

q∑
k=p

Ak(t) ·
∫
φ(t,[−r,r])

e
−s·

3P
j=2

Fj(t)·xj
·
{
yk · ∂y

∂x
(t, x)

}
dx .

Accordingly, if we define

(5.86) Jk(t, r; s) :=

∫
φ(t,[−r,r])

e
−s·

3P
j=2

Fj(t)·xj
·
{
yk · ∂y

∂x
(t, x)

}
dx ,

we may rewrite (5.85) in the form

(5.87) J(t; s) = e−s·F (t,0) ·

{
q∑

k=p

Ak(t) · Jk(t, r; s) +O(e−s·c0)

}
,
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uniformly for all t sufficiently small and all s ≥ 0. The above identity shows (5.35)

in theorem 5.12.

To obtain an expansion for each term Jk(t, r; s) appearing in (5.87) it will show

important to relate the coefficient functions F2(t) and F3(t) with the former coefficient

terms u(t) and v(t). For this, observe that the relation (t, z) = Φ−1(t, x) = (t, x+ ...)

implies that

F (t, z)− F (t, 0) = tN · u(t) · z2 − i · v(t) · z3 + . . .

= tN · u(t) · x2 − i
{
v(t) + i · tN · u(t) · ∂

2z

∂x2
(t, 0)

}
· x3 + . . .

= F2(t) · x2 + F3(t) · x3 .

The last two identities above imply that F2(t) = tN ·U(t) and F3(t) = −i ·V (t) where

U(t) ≡ u(t) and V (0) = v(0) > 0.

To complete the proof of theorem 5.12 we require the following lemma which we

plan to use to obtain an asymptotic expansion for each term Jk(t, r; s) in (5.87).

Lemma 5.30. Suppose that F (t, z) is analytic in an open neighborhood of (0, 0)

which contains points of the form (t, z), with |z| ≤ r, for all t is sufficiently small.

Furthermore, suppose that

(a) <{F (0, z)− F (0, 0)} > 0, for all z ∈ [−r, r], but z = 0, and

(b) there is a biholomorphic map Φ, defined on the domain of F (t, z) and of the

form Φ(t, z) = (t, φ(t, z)) = (t, z + . . .), such that in the new coordinate system

(t, x) = Φ(t, z) it applies that

F (t, z)− F (t, 0) = tN · U(t) · x2 − i · V (t) · x3 ,

where U(0) 6= 0 and V (0) > 0.
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If for an arbitrary function B(t, x) analytic in the range of Φ it is defined

(5.88) J(t, r; s) :=

∫
φ(t,[−r,r])

exp
{
− s · (tN · U(t) · x2 − i · V (t) · x3)

}
B(t, x) dx ,

then there is a constant c0 > 0 such that

(5.89) J(t, r; s) =
R0(t)

s1/3
· L0(t; s) +

R1(t)

s2/3
· L1(t; s) +

1

s
· J̃(t, r; s) +O

(
e−s·c0

)
,

uniformly for all t sufficiently close to 0 and all s ≥ 0. Above, the terms R0(t) and

R1(t) together with an auxiliary function B̃(t, x) analytic for t and x near t = 0 and

x = 0 are uniquely characterized by the relation

B(t, x) = R0(t) +R1(t) · x+ B̃(t, x) · ∂
∂x

{
tN · U(t) · x2 − i · V (t) · x3

}
.

Furthermore,

L0(t; s) :=
2π

{3V (t)}1/3
· e2λ(t;s)3/3 ·Ai(λ(t; s)2) ,(5.90)

L1(t; s) :=
−2π i

{3V (t)}2/3
· e2λ(t;s)3/3 ·

{
λ(t; s) ·Ai(λ(t; s)2) + Ai′(λ(t; s)2)

}
,(5.91)

λ(t; s) :=
U(t)

{3V (t)}2/3
· (st3P )1/3 ,(5.92)

J̃(t, r; s) :=

∫
φ(t,[−r,r])

exp
{
−s · (tN · U(t) · x2 − i · V (t) · x3)

} ∂B̃

∂x
(t, x) dx .(5.93)

In addition, for all nonnegative integer n, all c1 ≥ 0 and c2 ≥ 0, and all ε > 0

sufficiently small there is a constant c3 > 0 such that

(5.94) |J̃(t, r; s)|+ sn+1 · c1 e
−s·c2 ≤ c3 ·

{
|L0(t; s)|
s1/3

+
|L1(t; s)|
s2/3

}
,

uniformly for all t ∈ Sε sufficiently small and all s ≥ 0 sufficiently big, where it has

been defined

Sε :=
{
t : t = 0 or, t 6= 0 and | arg{tN · U(t)}| < (π/2− ε)

}
.
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We will use lemma 5.30 to obtain a full asymptotic expansion for the coefficients

Jk(t, r; s) as defined in (5.86). Recall that we seek for expansions which are uniformly

valid for all t ∈ Tε sufficiently small and all s ≥ 0, where

Tε :=
{
t : | arg{u(t) · tN}| <

(π
2
− ε
)}

.

We will define recursively, for each nonnegative integer l, functions Bk(t, x; l) and

Rk(t; l) analytic in t and x near t = 0 and x = 0. This is done using the Weierstrass

division theorem 4.21 which, without loss of generality, lets us assert that there are

unique functions Bk(t, x; l) and Rk(t; l), analytic for all t sufficiently small and all

x ∈ φ(t, [|z| ≤ r]), such that

Bk(t, x; 0) := yk · ∂y
∂x

(t, x) ,

Bk(t, x; l) =: Rk(t; 2l) +Rk(t; 2l + 1) · x

+Bk(t, x; l + 1) · ∂
∂x

{
tP · U(t) · x2 − i · V (t) · x3

}
.

For each l ≥ 0 consider the integral

J̃k(t, r; l; s) :=

∫
φ(t,[−r,r])

exp
{
− s · (tP · U(t) · x2 − i · V (t) · x3)

}
Bk(t, x; l) dx .

Each of the preceding integrals is in the context of lemma 5.30. Therefore, by

its repeated use, we obtain that there is a constant c > 0 such that the following

equalities hold

J̃k(t, r; 0; s) =
Rk(t; 0)

s1/3
· L0(t; s) +

Rk(t; 1)

s2/3
· L1(t; s) +

J̃k(t, r; 1; s)

s
+O(e−s·c) ,

J̃k(t, r; 1; s) =
Rk(t; 2)

s1/3
· L0(t; s) +

Rk(t; 3)

s2/3
· L1(t; s) +

J̃k(t, r; 2; s)

s
+O(e−s·c) ,

...
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J̃k(t, r;n; s) =
Rk(t; 2n)

s1/3
· L0(t; s) +

Rk(t; 2n+ 1)

s2/3
· L1(t; s)

+
J̃k(t, r;n+ 1; s)

s
+O(e−s·c) ,

uniformly for all t sufficiently small and all s ≥ 0. Above, L0(t; s) and L1(t; s) are

as defined in (5.90) and (5.91) respectively. Back tracking the above identities and

noticing that Jk(t, r; s) = J̃k(t, r; 0; s) we obtain that

Jk(t, r; s) =

{
n∑
l=0

Rk(t; 2l)

sl+1/3

}
· L0(t; s) +

{
n∑
l=0

Rk(t; 2l + 1)

sl+2/3

}
· L1(t; s)

+
J̃k(t, r;n+ 1; s)

sn+1
+O(e−s·c) .

Finally, the inequality in (5.94) implies that there is a constant c1 > 0 such that

|J̃k(t, r;n+ 1; s)|
sn+1

+O(e−s·c) = O

(
|L0(t; s)|
s(n+1)+1/3

+
|L1(t; s)|
s(n+1)+2/3

)
,

uniformly for all t ∈ Tε sufficiently small and all s ≥ 0 sufficiently big. This implies

that

Jk(t, r; s) ≈

{
∞∑
l=0

Rk(t; 2l)

sl+1/3

}
· L0(t; s) +

{
∞∑
l=0

Rk(t; 2l + 1)

sl+2/3

}
· L1(t; s) ,

uniformly for all t ∈ Tε sufficiently small, as s→∞. Furthermore, the above expan-

sion is with respect to the auxiliary asymptotic sequence
(
|L0(t;s)|
sn+1/3 + |L1(t;s)|

sn+2/3

)
n≥0

and

this completes the proof of theorem 5.12. �

Proof of lemma 5.30: For simplicity we will write

J(t, r; s) =

∫
γ(t,r)

exp {−s · P (t, x)} B(t, x) dx ,

where γ(t, r) := φ(t, [−r, r]) and P (t, x) := tN · U(t) · x2 − i · V (t) · x3.
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Our first observation is that to obtain a uniform asymptotic expansion for J(t, r; s)

valid for all t sufficiently close to 0 we may replace the contour γ(t, r) with γ(0, r) by

only incurring in an exponentially small error. To amplify on this observe that the

end-points of γ(t, r) converge to the end-points of γ(0, r), as t → 0. On the other

hand, Cauchy’s theorem (see [Rud87]) states that J(t, r; s) is determined by the end-

points of the contour of integration. Therefore, since P (t, x) converges uniformly (on

compact sets) to P (0, x), as t→ 0, to show the claim it will be enough to prove that

on some open neighborhood of ∂γ(0, r), P (t, x) has positive real part. This is almost

a direct consequence of hypothesis (a) in the lemma. Indeed, observe that, for all

x ∈ γ(0, r), but x = 0, we have

(5.95) <{P (0, x)} = <{F (Φ−1(0, x))− F (0, 0)} > 0 .

The above inequality applies in particular for x ∈ ∂γ(0, r) and from this the claim

follows.

The discussion in the preceding paragraph implies that there is a constant c0 > 0

such that

(5.96) J(t, r; s) =

∫
γ(0,r)

exp {−s · P (t, x)} B(t, x) dx+O(e−s·c0) ,

uniformly for all t sufficiently small and all s ≥ 0.

On the other hand, since ∂P
∂x

(t, x) vanishes to degree 2 in the variable x about the

origin, the Weierstrass division theorem 4.21 implies that there are functions R0(t),

R1(t) and B̃(t, x), analytic in t and x near t = 0 and x = 0, such that

(5.97) B(t, x) = R0(t) +R1(t) · x+ B̃(t, x) · ∂P
∂x

(t, x) .

By selecting r > 0 sufficiently small in (5.96) we may assume that (5.97) applies for
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all t sufficiently small and all x in an open disk containing γ(0, r). This is useful to

integrate by parts in (5.96) and leads us to the identity

J(t, r; s) =
1∑
l=0

Rl(t) ·
∫
γ(0,r)

exp {−s · P (t, x)} xl dx

+
1

s
·
∫
γ(0,r)

exp {−s · P (t, x)} ∂B̃
∂x

(t, x; 1) dx

− 1

s
· exp {−s · P (t, x)} B̃(t, x)

∣∣∣∣
x∈∂γ(0,r)

+O(e−s·c0) .

The boundary term produced by the integration by parts above is also O(e−s·c0)

uniformly for all s ≥ 0. Therefore, by defining

Ll(t, r; s) := s(l+1)/3 ·
∫
γ(0,r)

exp {−s · P (t, x)} xl dx ,(5.98)

J̃(t, r; s) :=

∫
γ(0,r)

exp {−s · P (t, x)} ∂B̃
∂x

(t, x) dx ,(5.99)

we may rewrite the last expression for J(t, r; s) in the form

(5.100) J(t, r; s) =
1∑
l=0

Rl(t)

sl+1/3
· Ll(t, r; s) +

1

s
· J̃(t, r; s) +O

(
e−s·c0

)
,

uniformly for all t sufficiently small and all s ≥ 0.

The proof of (5.89) will be established from (5.100) once a relation between the

terms Ll(t, r; s) and the Airy function is shown to be as stated in (5.90) and (5.91).

This will be done by identifying the location of the end-points of γ(0, r). For this, we

reuse (5.95) which lets us conclude that the <{−i · V (0) · x3} > 0, for x ∈ ∂γ(0, r).

Since V (0) > 0, this implies that

∂γ(0, r) ⊂
{
x ∈ C : <{−i · x3} > 0

}
.
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Let P and Q be respectively the starting and ending point of γ(0, r). Since

this contour is the conformal image of the interval [−r, r] under a map of the form

x = φ(0, z) = z + . . . it follows that

P ∈
{
x : <{−i · x3} > 0,<{x} < 0 and ={x} > 0

}
,(5.101)

Q ∈
{
x : <{−i · x3} > 0,<{x} > 0 and ={x} > 0

}
.(5.102)

This let us replace the contour γ(0, r) by any contour γ going through infinity

(in the Riemann sphere) and eventually contained in a the set
{
x : <{−i · x3} ≥

c|x|3 and ={x} > 0
}

, for certain constant c > 0. The error produced by this contour

replacement is exponentially decreasing in s. We will define

(5.103) Ll(t; s) := s(l+1)/3 ·
∫
γ

exp {−s · P (t, x)} xl dx .

Back in (5.100), we may thus replace the terms Ll(t, r; s) with Ll(t; s) and the

identity will still hold possibly with a new constant in c0 in the big-O; however,

without loss of generality we will assume this constant remains unchanged. Moreover,

with the selection made over γ it is now easy to relate the term Ll(t; s) to the Airy

function. Indeed, if one substitutes: x = {3V (t) · s}−1/3 · ξ, in (5.103), then one

obtains that

(5.104) Ll(t; s) =
1

{3V (t)}(l+1)/3

∫
γ

e−λ(t;s)·ξ2+iξ3/3 ξl dξ ,

where accordingly it has been defined

(5.105) λ(t; s) :=
U(t)

{3V (t)}2/3
· (st3P )1/3 .
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The identities in (5.31) and (5.32) let us conclude that

L0(t; s) =
2π

{3V (t)}1/3
· e2λ(t;s)3/3 ·Ai(λ(t; s)2) ,

L1(t; s) =
−2π i

{3V (t)}2/3
· e2λ(t;s)3/3 ·

{
λ(t; s) ·Ai(λ(t; s)2) + Ai′(λ(t; s)2)

}
.

This shows the relations in (5.90), (5.91) and (5.92) completing the proof of (5.89).

To end the proof of the lemma it remains to show the inequality in (5.94) which

is sought for t sufficiently small in a sector of the form

Sε :=
{
t : t = 0 or, t 6= 0 and | arg{tN · U(t)}| < (π/2− ε)

}
.

First, a contour replacement will be performed to deal better with J̃(t, r; s). Ob-

serve that the starting point of γ(0, r) may be replaced by any point P̃ in the same

component as P in (5.101), provided that P̃ is of a small size. Similarly, Q may be

replaced by any point Q̃ of a sufficiently small size in set in (5.102). The requirement

of both P̃ and Q̃ to be small in size is to ensure that the amplitude term of J̃(t, r; s)

is well defined on the contour [P̃ , 0] + [0, Q̃]. Moreover, we can select these points so

that 0 < arg{P̃ 2} < ε/2 and 0 < arg{Q̃2} < ε/2. In this way, we can ensure that

(5.106) max
{∣∣∣ arg{tN · U(t) · P̃ 2}

∣∣∣, ∣∣∣ arg{tN · U(t) · Q̃2}
∣∣∣} ≤ π − ε

2
,

provided that t 6= 0 and | arg{tN · U(t)}| < (π/2− ε).

On the other hand, observe that the | arg{−i·P̃ 3}| < π/2 and | arg{−i·Q̃3}| < π/2

for the <{−i · P̃ 3} > 0 and <{−i · Q̃3} > 0. As a result, since the V (0) > 0, we can

also ensure that the

(5.107) max
{∣∣∣ arg{−i · V (t) · P̃ 3}

∣∣∣, ∣∣∣ arg{−i · V (t) · Q̃3}
∣∣∣} ≤ π − ε

2
,
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provided that t 6= 0 is sufficiently small. Inequalities (5.106) and (5.107) together let

us conclude that there is a constant c1 > 0 such that the

<{P (t, x)} ≥ c1 · {|t|N · |x|2 + |x|3} ,

for all t ∈ Sε sufficiently small and x ∈ (R+ · Q̃) ∪ (R+ · P̃ ). In particular, if c2 is

a bound for the amplitude term of J̃(t, r; s), valid for all sufficiently small t and all

|x| ≤ max{|P̃ |, |Q̃|}, then

|J̃(t, r; s)| ≤ 2 c2 ·max{|P̃ |, |Q̃|} ·
∫ ∞

0

e−s·c1(|t|N ·x2+x3) dx ,

uniformly for all t ∈ Sε sufficiently small and all s ≥ 0. To show (5.94) is therefore

enough to show that, for all c > 0, there is a constant c3 > 0 such that∣∣∣∣∫ ∞
0

e−s·(|t|
N ·x2+x3) dx

∣∣∣∣ ≤ c3 ·
{
|L0(t; s)|
s1/3

+
|L1(t; s)|
s2/3

}
,(5.108)

e−s·c ≤ c3 ·
{
|L0(t; s)|
s1/3

+
|L1(t; s)|
s2/3

}
,(5.109)

for all t ∈ Sε sufficiently small and all s ≥ 0 sufficiently big. This is certainly possible

if t = 0, therefore, without loss of generality, we may assume that t 6= 0. Under

this last assumption, if on the integral on the left-hand side in (5.108) we substitute:

x = |t|N · ξ, then we obtain that∫ ∞
0

e−s·(|t|
N ·x2+x3) dx = |t|N ·

∫ ∞
0

e−(s·|t|3N )·(ξ2+ξ3) dξ .

The Laplace method (see [BleHan86], section 5.1) let us conclude that the integral

on the right-hand side above is of order (s · |t|3N)−1/2, if s · |t|3N is sufficiently large.

In particular, there is δ1 > 0 and c3 > 0 such that∣∣∣∣∫ ∞
0

e−s·(|t|
N ·x2+x3) dx

∣∣∣∣ ≤ c3 · |t|N · (s · |t|3N)−1/2 ,
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for all s and t such that s · |t|3N ≥ δ1. On the other hand, corollary 5.18 can be used

to conclude that L0(t; s) is of order (s · |t|3N)−1/6, if s · |t|3N is sufficiently big. In

particular, there are δ2 > 0 and c4 > 0 such that c4 · (s · |t|3N)−1/6 ≤ |L0(t; s)|, for

all nonzero t ∈ Sε sufficiently small and all s ≥ 0 such that s · |t|3N ≥ δ2. Using this

lower bound for |L0(t; s)|, it follows that∣∣∣∣∫ ∞
0

e−s·(|t|
N ·x2+x3) dx

∣∣∣∣ ≤ c3

c4

· |t|
N · (s · |t|3N)−1/2

(s · |t|3N)−1/6
· |L0(t; s)| ,

≤ c3

c4

·
{
|L0(t; s)|
s1/3

+
|L1(t; s)|
s2/3

}
,

for all nonzero t ∈ Sε sufficiently small and all s ≥ 0 such that s · |t|3N ≥ δ :=

max{δ1, δ2}. This proves (5.108) for the case s · |t|3N ≥ δ. Furthermore, the lower

bound obtained for |L0(t; s)| also implies that

e−s·c ≤ |t|
N/2 · s1/2e−s·c

c4

· |L0(t; s)|
s1/3

,

for all nonzero t ∈ Sε sufficiently small and all s ≥ 0 such that s · |t|3N ≥ δ. This

shows (5.109) for the case s · |t|3N ≥ δ

To finalize the proof of the lemma we will show that (5.108) and (5.109) apply

for s · |t|3N ≤ δ. To deal with this case, we substitute: x = s−1/3 · ξ in the integral on

the left-hand side in (5.108), to obtain∫ ∞
0

e−s·(|t|
N ·x2+x3) dx = s−1/3 ·

∫ ∞
0

e−(s·|t|3N )1/3ξ2−ξ3

dξ .

As a result, there is a constant c5 > 0 such that

(5.110)

∣∣∣∣∫ ∞
0

e−s·(|t|
N ·x2+x3) dx

∣∣∣∣ ≤ c5 · s−1/3 ,

for all t ∈ Sε sufficiently small and all s ≥ 0 such that s · |t|3N ≤ δ. On the other
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hand, using (5.104), we see that there is a constant c6 > 0 such that

(5.111) |Ll(t; s)| ≥ c6 ·
∣∣∣∣∫
γ

e−λ(t;s)·ξ2+iξ3/3 ξl dξ

∣∣∣∣ ,
for all t ∈ Sε sufficiently small and all s ≥ 0. But, observe that lemma 5.28 implies,

for all fixed s and t, that the min
l=0,1

∣∣∣∫γ e−λ(t;s)·ξ2+iξ3/3 ξl dξ
∣∣∣ > 0. On the other hand,

the condition s · |t|3N ≤ δ is equivalent to request that λ(t; s), as defined in (5.105),

remains in a compact set of the complex plane. As a result, we can conclude that

there is a constant c7 > 0 such that the

min
l=0,1

∣∣∣∣∫
γ

e−λ(t;s)·ξ2+iξ3/3 ξl dξ

∣∣∣∣ > c7 ,

for all t ∈ Sε sufficiently small and all s ≥ 0 such that s · |t|3N ≤ δ. Thus, using

(5.111), we obtain that

(5.112)
|L0(t; s)|
s1/3

+
|L1(t; s)|
s2/3

≥ c6 · c7 ·
{

1

s1/3
+

1

s2/3

}
,

for all t ∈ Sε sufficiently small and all s > 0 such that s · |t|3N ≤ δ. Back in (5.110),

the above inequality implies that∣∣∣∣∫ ∞
0

e−s·(|t|
N ·x2+x3) dx

∣∣∣∣ ≤ c5

c6 · c7

·
{
|L0(t; s)|
s1/3

+
|L1(t; s)|
s2/3

}
,

for all t ∈ Sε sufficiently small and all s > 0 such that s · |t|3N ≤ δ. This proves

(5.108) for the case s · |t|3N ≤ δ. Furthermore, the inequality in (5.112) also implies

that

e−s·c ≤ s1/3e−s·c

c6 · c7

·
{
|L0(t; s)|
s1/3

+
|L1(t; s)|
s2/3

}
,

for all t ∈ Sε sufficiently small and all s > 0 such that s · |t|3N ≤ δ. This proves

(5.109) for the case s · |t|3N ≤ δ and completes the proof of lemma 5.30. �
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CHAPTER 6

ASYMPTOTICS FOR THE COEFFICIENTS OF

BIVARIATE MEROMORPHIC FUNCTIONS

6.1 Introduction

Suppose that G(z, w) and H(z, w) are analytic functions of z and w in a polydisk

containing a particular point (z0, w0). Furthermore, assume that H(0, 0) 6= 0. Then,

the meromorphic function

F (z, w) :=
G(z, w)

H(z, w)

is analytic in a neighborhood of the origin in C2; in particular, it has a power series

representation of the form
∑
r,s≥0

fr,s z
r ws.

We will say that (z0, w0) is a simple zero of H provided that H(z0, w0) = 0,

however, the complex gradient ∇H(z0, w0) 6= 0. On the other hand, we will say that

(z0, w0) is a strictly minimal zero of H provided that z0 · w0 6= 0 and (z0, w0) is the

only zero of H(z, w) in the polydisk [|z| ≤ |z0|]× [|w| ≤ |w0|].

The work of Pemantle and Wilson [PemWil01] implies that, associated to each

strictly minimal simple zero of H, it is possible to determine an asymptotic expansion

for the coefficients of F along certain direction in the (r, s)-lattice: fr,s admits an
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asymptotic expansion for (r, s) ∈ dir(z0, w0), as (r, s)→∞, where it is defined

(6.1) dir(z0, w0) :=
{

(r, s) ∈ R2 : r · w0 Hw(z0, w0) = s · z0 Hz(z0, w0)
}
.

This set is a line in the (r, s)-lattice. Furthermore if, for example, Hw(z0, w0) 6= 0

then (r, s) ∈ dir(z0, w0) if and only if r = d(z0, w0) · s, with d(z0, w0) := z0·Hz(z0,w0)
w0·Hw(z0,w0)

.

The strict minimality of (z0, w0) implies that d(z0, w0) ≥ 0. (See lemma 2.1 in

[PemWil01].)

In the remaining of our discussion we will assume that (z0, w0) is a strictly minimal

simple zero of H such that Hw(z0, w0) 6= 0. Under these conditions, Pemantle and

Wilson show that there are integers n = n(z0, w0) ≥ 2 and p = p(z0, w0) ≥ 0 and

coefficients cj = cj(z0, w0), with j ≥ p and cp 6= 0, such that

(6.2) fr,s ≈
z−r0 · w−s0

2π

∞∑
j=p

cj · s−(j+1)/n ,

for all (r, s) ∈ dir(z0, w0), as (r, s) → ∞. The quantities n and p are found to

be respectively the degrees of vanishing, about θ = 0, of certain analytic functions

f(θ; z0, w0) and a(θ; z0, w0). Loosely speaking we will refer to these functions as

the associated phase and amplitude term respectively. We will provide an explicit

formulation for them in the section ahead, however, for the moment, we shall just

say they are determined, in almost an explicit manner, taking into account the local

behavior of H(z, w) and G(z, w) near the point (z0, w0).

The technique used to obtain (6.2) proceeds by relating the asymptotic behavior of

the coefficients fr,s along the direction dir(z0, w0) to a Fourier-Laplace integral whose

phase and amplitude term correspond to f(θ; z0, w0) and a(θ; z0, w0) respectively. The

main steps in this process can be summarized as follows. To start, the coefficients
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of F are represented as an integral over over a 2-dimensional torus in C2. The strict

minimality of (z0, w0) allows to expand the torus across the point (z0, w0) collecting

a residual term. This lets to approximate fr,s by a 1-dimensional integral. The

error incurred in the approximation can be shown to be negligible due to the fact

that (z0, w0) is a simple zero. The asymptotic behavior of the resulting Fourier-

Laplace integral is then obtained via an adapted version of the stationary phase

method, namely theorem 5.2 in [PemWil01]. The asymptotic series in (6.2), up

to the exponential factor
z−r0 ·w

−s
0

2π
, corresponds to the asymptotic expansion of the

integral ∫
exp{−s · f(θ; z0, w0)} a(θ; z0, w0) dθ ,

as s→∞. The expansion in (6.2) is in powers of s−1/n because the phase term of the

above integral vanishes to degree n about θ = 0, which happens to be the dominant

critical point of the integral. For the same reasons, since the amplitude term vanishes

to degree p about θ = 0, the leading order of this integral is s−(p+1)/n.

It is therefore expected that the asymptotic expansion in (6.2) is uniform as

(z0, w0) varies over a compact set of strictly minimal simple zeroes of H and the

quantities n and p remain constant. Indeed, it is shown in [PemWil01] that if K

is a compact set of points of this form and the associated functions f(θ; z, w) and

a(θ; z, w) vanish to constant degree n and p respectively about θ = 0, independently

of (z, w) ∈ K, then

(6.3) fr,s ≈
z−r · w−s

2π

∞∑
j=p

cj(z, w) · s−(j+1)/n ,

uniformly for all (r, s) ∈ dir(z, w) and (z, w) ∈ K, as (r, s) → ∞. In particular,

since cp(z, w) can be shown to depend continuously on (z, w), the compactness of K
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implies that

(6.4) fr,s ∼ cp(z, w) · z
−r · w−s

2π
· s−(p+1)/n ,

uniformly for all (r, s) ∈ dir(z, w) and (z, w) ∈ K, as (r, s)→∞.

The asymptotic expansions in (6.3) and (6.4) fully describe the asymptotic be-

havior of the coefficients of F for (r, s) in the cone

Λ :=
{

(r, s) : there exists (z, w) ∈ K such that
r

s
= d(z, w)

}
.

However, the restriction to have the quantities n and p to remain constant, as (z, w)

varies over K, is primarily technical. Indeed, there are examples of interest where

these restrictions are violated.

Two pathological cases are of interest. One is when, at a particular point in K,

say (z0, w0), the amplitude term vanishes to degree q yet, for all (z, w) ∈ K nearby,

the associated amplitude vanishes to some degree p < q. With these premises, (6.2)

implies that

fr,s is of order

 s−(q+1)/n , if r
s

= d(z0, w0)

s−(p+1)/n , if r
s
6= d(z0, w0)

as (r, s) ∈ Λ → ∞, provided that r
s

remains constant. A problem of interest is to

determine the order of fr,s for big values of r and s, as r
s
→ d(z0, w0). This is required

to have a full asymptotic description of the coefficients of F along the cone Λ.

A worse scenario is when both the associated amplitude and phase term do not

vanish to constant degree about θ = 0 as (z, w) varies over K. In this situation, the

easiest case of study is when for all (z, w) ∈ K nearby (z0, w0), the associated phase

term vanishes to degree 2, however, at (z0, w0), this degree is instead 3. Under these
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assumptions, the work of Pemantle and Wilson implies that

(6.5) fr,s is of order

 s−(q+1)/3 , if r
s

= d(z0, w0)

s−(p+1)/2 , if r
s
6= d(z0, w0)

as (r, s) ∈ Λ→∞, provided that r
s

remains constant. In this regard, to complete the

asymptotic description of the coefficients of F (z, w) in the cone Λ, we are required

to answer questions of the sort:

Is it possible to provide an asymptotic expansion for the coefficients fr,s uni-

formly valid for all (r, s) ∈ Λ, as (r, s)→∞?

What is the fastest rate at which r
s

may approach d(z0, w0), with (r, s) ∈ Λ, so

that fr,s remains of order s−(p+1)/2?

Questions like above could not be treated in [PemWil01] due to the limitation of

the stationary phase method to handle the asymptotic behavior of parameter varying

Fourier-Laplace integrals where either the phase or amplitude term does not vanish

to constant degree at the critical points of the integral. However, the methods we

developed in chapter 5 were designed precisely to handle questions like these in as

much generality as possible.

We will provide a fairly general and affirmative answer to the first question. The

second question cannot be answered in its generality. Indeed, the uniform expansions

we will provide show that the answer to the second question is too sensitive of the

local behavior of G(z, w) and H(z, w) near the point (z0, w0). Yet, in the examples we

will see, it will be relatively simple to determine the bandwidths on the cone Λ along

which fr,s reflects an asymptotic behavior as if r
s

= d(z0, w0) versus r
s

was bounded

away from d(z0, w0).
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6.2 Statement of results, with examples

All over this section it will be assumed that F (z, w) = G(z, w)/H(z, w), with

G(z, w) and H(z, w) analytic in a polydisk D centered at (0, 0) and H(0, 0) 6= 0.

The coefficient of zr ws in the power series expansion of F (z, w) about the origin

will be denoted as fr,s.

We will assume as given a compact set K ⊂ D of strictly minimal simple zeroes

of H containing a particular point (z0, w0) such that Hw(z0, w0) 6= 0.

The above condition, on the partial derivative of H at (z0, w0), lets us use the

implicit mapping theorem 4.22 to parametrize the zero set of H near (z0, w0) in the

form w = g(z), where g(z) is certain analytic function of z near z = z0. In particular,

for all θ sufficiently small and for all z sufficiently close to z0, we can define the

functions

a(z, θ) :=
−G(z · eiθ, g(z · eiθ))

g(z · eiθ) ·Hw(z · eiθ, g(z · eiθ))
,(6.6)

f(z, θ) := ln

{
g(z · eiθ)
g(z)

}
− i · θ · z · g

′(z)

g(z)
.(6.7)

Theorem 6.1. Let F (z, w) = G(z, w)/H(z, w), (z0, w0), K, etc. be as defined before.

Suppose that there are nonnegative integers p ≤ q such that a(z, θ) has a p-to-q change

of degree about θ = 0 as z → z0, however, f(z, θ) vanishes to constant degree n about

θ = 0 for all z nearby z0. Then there is a constant c > 0 and functions Ak(z) and

Bk(z; s), with p ≤ k ≤ q and s ≥ 0, analytic in z near z = z0 such that Ak(z0) = 0,

for all p ≤ k ≤ (q − 1), Aq(z0) 6= 0, and

(6.8) fr,s =
z−rw−s

2π
·

{
q∑

k=p

Ak(z) ·Bk(z; s) +O(e−s·c)

}
,
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uniformly for all (r, s) ∈ dir(z, w) and (z, w) ∈ K sufficiently close to (z0, w0). Fur-

thermore, each coefficient Bk(z; s) above admits an asymptotic expansion in powers

of s−1/n depending one certain coefficients of the form ck(z; j), with j ≥ k, which are

analytic in z near z = z0 and such that

ck(z; k) =
{

[θn] f(z, θ)
}−(k+1)/n

.

More precisely,

(6.9) Bk(z; s) ≈
∞∑
j=k

ck(z; j) ·
{

1 + (−1)j ·D(j, n)
}
· 1

n
Γ

(
j + 1

n

)
· s−(j+1)/n ,

uniformly for all (z, w) ∈ K sufficiently close to (z0, w0), as s → ∞, where we have

defined

D(j, n) :=

 1 , n even ,

exp
(
− iπ(j+1)

n
· sgn

{
i · [θn]f(z0, θ)

})
, n odd .

Remark 6.2. The coefficients Ak(z) in (6.8) together with an auxiliary function y =

y(z, θ) are the unique analytic solutions (near θ = 0 and z = z0) to the following

system

(6.10)



∫ θ
0
a(z, ξ) dξ =

q∑
k=p

Ak(z)
k+1

yk+1 ,

Ak(z0) = 0, for p ≤ k ≤ (q − 1), Aq(z0) 6= 0 ,

y = y(z, θ) = θ + . . .

The above relations imply that

Ap(z) = [θp] a(z, θ) ,(6.11)

Aq(z0) = [θq] a(z0, θ) .(6.12)
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Furthermore, the uniqueness of the above system implies that Ak(z) = [θk] a(z, θ)

and y(z, θ) = θ whenever a(z, θ) is a polynomial in θ with analytic functions of z as

coefficients.

Remark 6.3. Write f(z, θ) = u(z) · θn + . . . where u(z) is analytic in z near z = z0.

The coefficients ck(z; j) are characterized by the identity ck(z; j) = [xj] yk ∂y
∂x

where,

for all z sufficiently close to z = z0, the variables y and x are related to each other

through the original variable θ according to the relations

(6.13)

 y = y(z, θ) ,

x = y · {u(z)}1/n ·
{

1 + f(z,θ)−u(z)·yn
u(z)·yn

}1/n

.

Remark 6.4. The asymptotic notation used in (6.9) is in the standard sense. It

means that the difference between Bk(z; s) and the partial sum up to the term j = l

is O(s−(l+2)/n), uniformly for all (z, w) ∈ K sufficiently close to (z0, w0), as s→∞.

Example 6.5. (Lattice paths.)

Consider the generating function

F (z, w) :=
z − w

1− z − w − zw
.

It is related to the Delannoy numbers (dr,s)r,s≥0 (see [Sta99], pp. 185) whose

generating function is precisely
∑
r,s≥0

dr,s z
r ws = 1

1−z−w−zw . The coefficient dr,s counts

the number of paths in the lattice Z × Z going from (0, 0) to the position (r, s) but

moving only North, East and Northeast.

If fr,s denotes the coefficient of zr ws of F (z, w) then a simple calculation reveals

that: fr,s = dr−1,s−dr,s−1, for all r, s ≥ 1. Thus, fr,s counts the difference between the

number of paths from (0, 0) to (r, s) which arrived to this last point from the West
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and those that arrived from the South. The symmetry implies that fr,s = −fs,r; in

particular,

(6.14) fr,s = 0 whenever r = s .

We are interested in the asymptotic behavior of the coefficients fr,s near the

diagonal direction r = s, as (r, s) → ∞. For this purpose, we observe that points

of the form (z, w), with z ∈ (0, 1) and w = g(z) := 1−z
1+z

, are strictly minimal simple

poles of F . Using the definitions in (6.6) and (6.7) we obtain that

a(z, θ) =
1− 2zeiθ − z2e2iθ

z2e2iθ − 1

=
1− 2z − z2

z2 − 1
+

2iz(1 + z2)

(z2 − 1)2
θ + . . .

f(z, θ) = ln

{
(1− zeiθ) · (1 + z)

(1 + zeiθ) · (1− z)

}
− 2iz

z2 − 1
θ

=
z(1 + z2)

(z2 − 1)2
θ2 − iz(1 + 6z2 + z4)

(z2 − 1)3
θ3 + . . .

Thus, a(z, θ) vanishes to degree 0 at θ = 0 at all strictly minimal simple poles

(z, w) but (z, w) = (
√

2 − 1,
√

2 − 1) where this degree is instead 1. Expectedly,

dir(
√

2−1,
√

2−1) = (1, 1). By contrast, f(z, θ) vanishes to constant degree 2 about

θ = 0.

More generally, we have that

dir(z, w) =
{

(r, s) ∈ R2 : r = s · d(z)
}
,

d(z) :=
2z

1− z2

Hence, as z varies over the interval (0, 1), dir(z, w), with w = g(z), covers all possible

directions in RP1. Indeed, as remarked in example 3.2 in [PemWil01], the minimal
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point that solves (r, s) ∈ dir(z, w) is given by z =
√
r2+s2−s

r
and w =

√
r2+s2−r

s
. Using

theorems 3.1 and 3.3 in [PemWil01] we obtain respectively that

(6.15) ar,s ∼

(√
r2 + s2 − s

r

)−r
·

(√
r2 + s2 − r

s

)−s
· r − s√

2π r s ·
√
r2 + s2

uniformly as (r, s)→∞ with r
s
6= 1 and s

r
6= 1 bounded.

Equivalently, if d = d(r, s) := r
s

then we may rewrite the above expression in the

form

ar,s ∼

(√
d2 + 1− 1

d

)−r
·
(√

d2 + 1− d
)−s ·{ (d− 1)√

2π d
√
d2 + 1

· s−1/2 +O
(
s−3/2

)}
,

uniformly as (r, s) → ∞ with 0 < d 6= 1 bounded. The O
(
s−3/2

)
term is not a

o

(
(d−1)√

2π d
√
d2+1
· s−1/2

)
if d is allowed to depend on s in such a way that d → 1. As

a result, the leading order of fr,s is not necessarily (d−1)√
2π d
√
d2+1
· s−1/2, as r

s
→ 1 and

(r, s)→∞.

For each (r, s), with r
s

sufficiently close to 1, we will let ζ = ζ(r, s) :=
√
r2+s2−s

r
.

Observe that, ζ is the only solution of the equation: d(ζ) = r
s
, ζ ∈ (0, 1). Theorem

6.1 implies that there is a constant c > 0 such that

fr,s :=
ζr · [g(ζ)]s

2π
·
{
A0(ζ) ·B0(ζ; s) + A1(ζ) ·B1(ζ; s) +O(e−s·c)

}
,

uniformly for all (r, s) such that r
s

is sufficiently close to 1, where one can determine

that

A0(z) :=
1− 2z − z2

z2 − 1
,

B0(z; s) ∼
√
π

{
z(1 + z2)

(z2 − 1)2

}−1/2

· s−1/2 ,

A1(z) ∼ i
√

2 ,

B1(z; s) = O(s−5/2) ,
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There are strong reasons to believe that B1(z; s) is rapidly decreasing in s (uniformly

for z sufficiently close to
√

2− 1), however, for now this remains as a conjecture. �

Theorem 6.6. Let F (z, w) = G(z, w)/H(z, w), (z0, w0), K, etc. be as defined before.

Suppose that there are nonnegative integers p ≤ q such that a(z, θ) has a p-to-q change

of degree about θ = 0 as z → z0, however, f(z, θ) has a 2-to-3 change of degree about

θ = 0 as z → z0. Write

f(z, θ) = (z − z0)N · u(z) · θ2 − i · v(z) · θ3 + . . .

where N ≥ 1 is a nonnegative integer and u(z) and v(z) are analytic in z near z = z0

and such that u(z0) 6= 0 and v(z0) > 0. If there is ε > 0 such that

K ⊂
{

(z, w) : z = z0 or , z 6= z0 and arg{(z − z0)N · u(z)} < π−ε
2

}
then there is a constant c > 0 and functions Ak(z) and Bk(z; s), with p ≤ k ≤ q,

analytic in z near z = z0 such that Ak(z0) = 0, for all p ≤ k ≤ (q − 1), Aq(z0) 6= 0,

and

fr,s =
z−rw−s

2π
·

{
q∑

k=p

Ak(z) ·Bk(z; s) +O(e−s·c)

}
,

uniformly for all (r, s) ∈ dir(z, w) and (z, w) ∈ K sufficiently close to (z0, w0). Fur-

thermore, each coefficient Bk(z; s) admits an asymptotic expansion depending on cer-

tain coefficients Rk(z; l), with l ≥ 0, analytic in z near z = z0, of the form

(6.16) Bk(z; s) ≈

{
∞∑
l=0

Rk(z; 2l)

sl+1/3

}
· L0(z; s) +

{
∞∑
l=0

Rk(z; 2l + 1)

sl+2/3

}
· L1(z; s) ,

valid for all (z, w) ∈ K sufficiently close to (z0, w0), as s → ∞. Above it has been

defined

L0(z; s) :=
2π

{3V (z)}1/3
· e2λ(z;s)3/3 ·Ai(λ(z; s)2) ,(6.17)
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L1(z; s) :=
−2πi

{3V (z)}2/3
· e2λ(z;s)3/3 ·

{
λ(z; s) ·Ai(λ(z; s)2) + Ai′(λ(z; s)2)

}
,(6.18)

λ(z; s) :=
(z − z0)N · u(z)

{3V (z)}2/3
· s1/3 ,(6.19)

where V (z) is certain analytic function of z near z = z0 and such that V (z0) = v(z0).

Remark 6.7. The coefficients Ak(z) together with an auxiliary function y = y(z, θ)

are uniquely characterized by the relations in (6.10). We will define the 1-to-1 trans-

formation

(z, y) = Ψ(z, θ) := (z, y(z, θ)) .

The function V (z) in (6.17)–(6.19) together with an auxiliary function x = x(z, y)

are uniquely characterized by the relations

(6.20)

 F (Ψ−1(z, y)) = (z − z0)N · u(z) · x2 − i · V (z) · x3 ,

x = x(z, y) = y + . . .

Remark 6.8. The coefficients Rk(z; l) in (6.16) together with certain auxiliary func-

tions Ck(z, x; l), with l ≥ 0, analytic in z and x near z = z0 and x = 0, can be defined

recursively by means of the Weierstrass division theorem 4.21 as follows

(6.21)


Ck(z, x; 0) = yk · ∂y

∂x
(z, x) ,

Ck(z, x; l) = Rk(z; 2l) +Rk(z; 2l + 1) · x+ Ck(z, x; l + 1)

· ∂
∂x

{
(z − z0)N · u(z) · x2 − i · V (z) · x3

}
.

In particular, if we let x(z) := −2 i (z − z0)N u(z)/{3V (z)} then

Rk(z; 2l) = Ck(z, 0; l) ,

Rk(z; 2l + 1) =
Ck(z, x(z); l)− Ck(t, 0; l)

x(z)
.
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Remark 6.9. The asymptotic notation used in (6.16) means that for all n ≥ 0 there

is a constant c1 > 0 such that∣∣∣∣∣Bk(z; s)−

{
n∑
l=0

Rk(z; 2l)

sl+1/3

}
· L0(z; s)−

{
n∑
l=0

Rk(z; 2l + 1)

sl+2/3

}
· L1(z; s)

∣∣∣∣∣
≤ c1

s

{
|L0(z; s)|
sn+1/3

+
|L1(z; s)|
sn+2/3

}
,

uniformly for all (z, w) ∈ K sufficiently close to (z0, w0) and all s ≥ 0 sufficiently

large.

Remark 6.10. The special functions L0(z; s) and L1(z; s) have two distinguishable

asymptotic regimes according the size of λ = λ(z; s), which is of the same order as

|z − z0|N · s1/3. Their leading orders in each regime are as follows.

There is α > 0 such that

L0(z; s) =

√
π

u(z)
· {(z − z0)3N · s}−1/6 ·

(
1 +O(λ−3)

)
,(6.22)

L1(z; s) =
i
√
π · {3V (z)}11/6

3{u(z)}5/2
· {(z − z0)3N · s}−5/6 ·

(
1 +O(λ−3)

)
,(6.23)

uniformly for all (z, w) ∈ K sufficiently close to (z0, w0) and s ≥ 0 such that |λ| ≥ α.

On the contrary, for all β > 0,

L0(z; s) =
1

{3
√

3V (z)}1/3
· Γ
(

1

3

)
·
(
1 +O(λ)

)
,(6.24)

L1(z; s) =
i√

3{V (z)}2/3
· Γ
(

2

3

)
·
(
1 +O(λ)

)
,(6.25)

uniformly for all (z, w) ∈ K sufficiently close to (z0, w0) and s ≥ 0 such that |λ| ≤ β.

Example 6.11. (Cube root asymptotics.)

Consider the rational generating function

F (z, w) :=
1

z2 − 3z − w + 3
,
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and let fr,s be the coefficient of zr ws in its Taylor expansion about (z, w) = (0, 0).

These coefficients were partially studied by Pemantle and Wilson (see example 3.4

in [PemWil01]). For t ∈ (0, 1], they state that points of the form (t, g(t)), with

g(t) := t2 − 3t + 3, are strictly minimal simple poles of F . Moreover, they compute

that

dir(t, g(t)) = {(r, s) : r = s · d(t)} ,

d(t) :=
t(3− 2t)

t2 − 3t+ 3
.

Observe that d(t) is a strictly increasing function of t ∈ [0, 1], with d(0) = 0 and

d(1) = 1. This implies that dir(t, g(t)) covers all possible directions contained within

the cone
{

(r, s) : 0 < r ≤ s
}

in the (r, s)-lattice as t varies from t = 0 to t = 1.

Further, for each (r, s) in this cone, the equation: d(t) = r
s
, with unknown t ∈ (0, 1],

has only one solution which will be denoted τ = τ(r, s).

Using theorem 3.3 in [PemWil01] it follows that

(6.26) fr,s ∼
τ−r · (τ 2 − 3τ + 3)−s√

6πτ(3− τ)
· [s·(1− τ)]−1/2 ,

as (r, s)→∞ provided that r
s

remains in a compact subset of (0, 1). However,

(6.27) fs,s ∼
1

π
√

12
· Γ
(

1

3

)
· s−1/3 .

Pemantle and Wilson leave as an open problem to complete the asymptotic de-

scription of fr,s as (r, s)→∞ in such a way that r
s
↑ 1. Intuitively, if r

s
↑ 1 at a slow

rate then (6.26) should remain valid. However, if r
s
↑ 1 at a sufficiently fast rate then

(6.27) should be the correct asymptotic description.

The following result determines the bandwidth to discriminate between the be-

havior of fr,s as prescribed in (6.26) from the one in (6.27).
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Corollary 6.12. For each (r, s), with 0 < r ≤ s, define Θ = Θ(r, s) :=
(
1− r

s

)1/2

and let τ = τ(r, s) be the only solution of the equation: r
s

= d(τ), τ ∈ [0, 1]. The

asymptotic behavior of fr,s nearby the line r = s in cone
{

(r, s) : 0 ≤ r ≤ s
}

is

determined by the quantity ∆ = ∆(r, s) := s ·
(
1− r

s

)3/2
as follows.

There is α > 0 such that

(6.28) fr,s =
τ−r · (τ 2 − 3τ + 3)−s√

12π
· [s · (1− τ)]−1/2 ·

(
1 +O

(
max

{
∆−1,Θ, s−1/3

}))
,

uniformly for all (r, s) such that Θ is sufficiently small and ∆ ≥ α, as (r, s)→∞.

On the contrary, for all β ≥ 0,

(6.29) fr,s = 3−1/3 ·Ai

(
3−1/3 · s− r

s1/3

)
· s−1/3 ·

(
1 +O

(
max

{
Θ, s−1/3

}))
,

uniformly for all (r, s) such that Θ is sufficiently small and ∆ ≤ β, as (r, s)→∞.

Remark 6.13. The corollary implies that for a given sequence (r, s) such that r
s
↑ 1, as

(r, s)→∞, the asymptotic behavior of fr,s is described by the limit l := lim
(r,s)→∞

s−r
s1/3

.

If r
s
↑ 1 at a rate such that l =∞ then the asymptotic description of fr,s in (6.28) is

equivalent to the one provided by Pemantle and Wilson in (6.26). However, if r
s
↑ 1

at a relatively fast rate so that l = 0 then (6.29) implies that fr,s ∼ 1
π
√

12
·Γ
(

1
3

)
·s−1/3,

which corresponds to the asymptotic description in (6.27).

Observe that the case 0 < l < ∞ is equivalent to the existence of a constant

0 < C < ∞ such that: r
s

= 1 − C · s−2/3 + o(s−2/3). Therefore, a bandwidth of size

s−2/3 in the (r, s)-lattice is what separates the behavior of fr,s as prescribed in (6.26)

from the one in (6.27).

Remark 6.14. The expansion in (6.29) can be interpreted as a local limit theorem

where the standard normal distribution has been replaced by the probability measure
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3 Ai(x) dx on x ≥ 0, and the more traditional scale of s1/2 is replaced by the new

scale s1/3.

Proof of corollary 6.12: The terms in (6.6) and (6.7) are easily found to be

a(t, θ) =
1

t2 − 3t+ 3
+ . . .

f(t, θ) = (1− t) · u(t) · θ2 − i · v(t) · θ3 + . . .

with u(t) := 3t(3−t)
2(t2−3t+3)2 and v(t) = t(t2−5t+3)(t2−3)

2(t2−3t+3)3 ; in particular, u(1) = 3 and v(1) =

1 > 0. Thus a(t, θ) and f(t, θ) have a respectively a 0-to-0 and a 2-to-3 change of

degree about θ = 0 as t→ 1. Furthermore, the arg{(1−t)·u(t)} = 0, for all t ∈ (0, 1).

As a result, theorem 6.6 implies that, for all ε ∈ (0, 1) sufficiently small, there is c > 0

such that

(6.30) fr,s =
τ−r · (τ 2 − 3τ + 3)−s

2π
·
{
A0(τ) ·B0(τ ; s) +O(e−s·c)

}
,

uniformly for all (r, s) such that (1 − ε) ≤ τ ≤ 1. The terms above are found to

satisfy the conditions

A0(1) = 1 ,(6.31)

B0(t; s) =
L0(t; s)

s1/3
+O

(
|L1(t; s)|
s2/3

)
+O

(
|L0(t; s)|
s1+1/3

)
,(6.32)

L0(t; s) =
2π

{3V (t)}1/3
· e2λ(t;s)3/3 ·Ai(λ(t; s)2)(6.33)

L1(t; s) =
−2πi

{3V (t)}2/3
· e2λ(t;s)3/3 ·

{
λ(t; s) ·Ai(λ(t; s)2) + Ai′(λ(t; s)2)

}
,(6.34)

V (1) = 1 ,(6.35)

λ(t; s) =
3t(3− t)

2(t2 − 3t+ 3)2 · {3V (t)}2/3
· (1− t) · s1/3 ,(6.36)

uniformly for all t such that (1− ε) ≤ t ≤ 1, as s→∞. Without loss of generality we

may chose ε > 0 sufficiently small so that all terms above are analytic functions of t
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for |1− t| ≤ ε. Furthermore, by possibly reducing the size of ε > 0, we may assume

also that |λ(t; s)| is of the same order as |1− t| · s1/3 and that the <{λ(t; s)} ≥ 0, for

all (1− ε) ≤ t ≤ 1 and all s ≥ 0.

We claim that, possibly by reducing further the size of ε > 0, there is a constant

c′ > 0 such that

B0(t; s) =
L0(t; s)

s1/3
·
(

1 +O(s−1/3)
)
,(6.37)

e−s·c = B0(t; s) ·O(e−s·c
′
) ,(6.38)

uniformly for all (1 − ε) ≤ t ≤ 1, as s → ∞. Indeed, for |λ(t; s)| sufficiently big

the remarks in (6.22) and (6.23) imply that L0(t; s) is of order |λ(t, s)|−1/2 whereas

L1(t; s) is of order |λ(t, s)|−5/2. These findings can be used in (6.32) to conclude

that (6.37) applies for all |λ(t; s)| sufficiently large. In particular, for large values of

|λ(t; s)|, B0(t; s) is of order s−1/3 · |λ(t; s)|−1/2 and (6.38) follows using that |λ(t; s)|

is of a size comparable to |1 − t| · s−1/3. On the other hand, if |λ(t; s)| remains

bounded then L0(t; s) and L1(t; s) remain bounded. But, recall that, from the choice

on ε > 0, the <{λ(t; s)} ≥ 0. As a result, since the Airy function is zero-free in the

first and forth quadrant of the complex plane, L0(t; s) is indeed bounded away from

zero. These findings in (6.32) imply (6.37) for the case in which |λ(t; s)| is bounded.

In particular, when |λ(t; s)| remains bounded, B0(t; s) is of order s−1/3 and from this

(6.38) follows immediately. This completes the proof of (6.37) and (6.38).

Identities (6.37) and (6.38) in (6.30) imply that

(6.39) fr,s =
τ−r · (τ 2 − 3τ + 3)−s

2π
· A0(τ) · L0(τ ; s)

s1/3
·
{

1 +O(s−1/3)
}
,

uniformly for all (r, s) such that (1− ε) ≤ τ ≤ 1, as (r, s)→∞.
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The above expansion will be exploited to describe the asymptotic behavior of fr,s

in terms of the size ∆(r, s). For this, we first observe that

(6.40)
1− r

s
= 1− d(τ) ,

= 3(1− τ)2 ·
{

1 +O|1− τ |
}
,

uniformly for all (r, s) such that (1 − ε) ≤ τ ≤ 1, provided that ε > 0 is sufficiently

small. As a result, |1 − τ | is of the same order as Θ(r, s). Moreover, it also follows

that ∆(r, s) is of the same order as λ(τ ; s)3, for all (r, s) such that (1− ε) ≤ τ ≤ 1.

The remark in (6.22) together with the insights on the previous paragraph let us

conclude, using (6.39), that there is α > 0 such that

fr,s =
τ−r · (τ 2 − 3τ + 3)−s

2
√
π

· A0(τ)√
u(τ)

· [s · (1− τ)3]−1/6

s1/3

·
{

1 +O(λ(τ ; s)−3)
}
·
{

1 +O(s−1/3)
}
,

=
τ−r · (τ 2 − 3τ + 3)−s√

12π
· [s · (1− τ)]−1/2

·
{

1 +O(∆(r, s)−1)
}
·
{

1 +O(s−1/3)
}
·
{

1 +O(Θ(r, s))
}
,

uniformly for all (r, s) such that (1− ε) ≤ τ ≤ 1 and ∆(r, s) ≥ α. This shows (6.28).

It remains to consider the case in which |∆(r, s)| ≤ β, for some fixed β > 0.

This is equivalent to request that λ(τ ; s) remains bounded. (6.39) together with the

definition of L0(t; s) in (6.33) implies that

fr,s =
τ−r · (τ 2 − 3τ + 3)−s

s1/3
· A0(τ)

{3V (τ)}1/3
· e2λ(τ ;s)3/3 ·Ai(λ(τ ; s)2) ·

{
1 +O(s−1/3)

}
,

=
τ−r · (τ 2 − 3τ + 3)−s

31/3 · s1/3
· e2λ(τ ;s)3/3 ·Ai(λ(τ ; s)2) ·

{
1 +O(s−1/3)

}
·
{

1 +O|1− τ |
}
,

=
e−2s(1−τ)3+2λ(τ ;s)3/3+O(s(1−τ)4)

31/3 · s1/3
·Ai(λ(τ ; s)2) ·

{
1 +O(s−1/3)

}
·
{

1 +O|1− τ |
}
,

=
Ai(λ(τ ; s)2)

31/3 · s1/3
·
{

1 +O(s−1/3)
}
·
{

1 +O|1− τ |
}
,
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uniformly for all (r, s) such that (1− ε) ≤ τ ≤ 1 and ∆(r, s) ≤ β. (6.29) follows using

(6.40), which let us conclude that

λ(τ ; s)2 = 3−1/3 · s− r
s1/3

·
{

1 +O|1− τ |
}
,

uniformly for all (r, s) such that (1 − ε) ≤ τ ≤ 1, provided that ε > 0 is sufficiently

small. This completes the proof of the corollary. �

6.3 Proofs of main results

In this section we prove the main two results of this chapter, namely theorems

6.1 and 6.6. We will assume that G(z, w) and H(z, w) are analytic functions on an

open polydisk D centered at (0, 0). In addition, we assume as given a compact set

K ⊂ D of strictly minimal simple zeroes of H containing a particular point (z0, w0).

To prove our main results we require the following lemmas.

Lemma 6.15. For all ε1 > 0 sufficiently small there exists δ1 > 0 such that, for all

(z, w) ∈ K, H(ξ, ζ) is zero-free on the set

{
ξ : |ξ| = |z|, | arg(ξ/z)| ≥ ε1

}
×
{
ζ : |ζ| ≤ (1 + δ1) · |w|

}
.

Proof. Consider, for all ε > 0 and δ > 0 sufficiently small, the sets

Λ1 :=
{

(ξ, ζ) : there exits (z, w) ∈ K such that

| arg(ξ/z)| ≥ ε, |ξ| = |z| , and |w| ≤ |ζ| ≤ (1 + δ) · |w|
}
,

Λ2 :=
{

(ξ, ζ) : there exits (z, w) ∈ K such that

| arg(ξ/z)| ≥ ε, |ξ| = |z| and |ζ| = |w|
}
.
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Observe that Λ1 and Λ2 are contained within D provided that δ > 0 is sufficiently

small.

Due to the minimality of each (z, w) ∈ K, to prove the lemma, it will be enough to

show that H(ξ, ζ) is zero-free over Λ1 provided that ε and δ are selected appropriately.

For this, consider (ξ, ζ) ∈ Λ1 and let (z, w) ∈ K be such that |ξ| = |z| and |w| ≤

|ζ| ≤ (1 + δ) · |w|. Then, it follows that

|H(ξ, ζ)| =

∣∣∣∣∣H
(
ξ,
|w| ζ
|ζ|

)
+
|w| ζ
|ζ|
·
∫ |ζ|/|w|

1

Hw

(
ξ,
|w| ζ
|ζ|
· ρ
)
dρ

∣∣∣∣∣ ,
≥

∣∣∣∣H (ξ, |w|ζ|ζ|
)∣∣∣∣− ∫ 1+δ

1

∣∣∣∣ρw ·Hw

(
ξ,
|w|ζ
|ζ|
· ρ
)∣∣∣∣ dρ ,

≥ inf
Λ2

|H| − δ · sup
(u,v)∈Λ1

|v ·Hw(u, v)| .

Observe that Λ1 is a compact set which increases with δ whereas Λ2 is independent

of this last quantity. As a result, to conclude the lemma, it will be enough to show

that the inf
Λ2

|H| > 0. But, this is obvious because Λ2 is a compact set and H is

zero-free over Λ2. This completes the proof of the lemma.

To state our next result and in consistence with the hypotheses of theorems 6.1

and 6.6, it will be assumed that Hw(z0, w0) 6= 0. The implicit mapping theorem

4.22 implies that there is an open neighborhood Z0 × W0 ⊂ D of (z0, w0) and a

biholomorphic map g : Z0 →W0 such that, for all (z, w) ∈ Z0 ×W0, it applies

(6.41) H(z, w) = 0 if and only if w = g(z) .

At some point in our discussion we will have to deal with the multiplicative inverse

of g(z). Because of this we will assume without any loss of generality that 0 /∈ W0.

This does not reduce the generality of our exposition for the strict minimality of

(z0, w0) requires that z0 · w0 6= 0.
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Lemma 6.16. For all ε2 > 0 sufficiently small there exists δ2 > 0 such that the

equation: H(ξ, ζ) = 0 has, for each fixed ξ such that |ξ − z0| < ε2, only one solution

satisfying |ζ| ≤ (1 + δ2) · |g(ξ)|.

Proof. Observe that H(z0, ·) cannot be a identically zero as a function of its second

argument (see [Rud87], theorem 10.18). In particular, its zero set cannot have accu-

mulation points. The minimality of (z0, w0) then implies that there is δ1 > 0 such

that ζ = w0 is the only zero of H(z0, ζ) in the disk B :=
{
|ζ| ≤ (1 + δ1) · |w0|

}
. Let

0 < δ2 < δ1 be such that the disk Bw :=
{
ζ : |ζ−w0| ≤ δ2 · |w0|

}
⊂ W0. Observe that

H(z0, ζ) is nonzero for ζ ∈ (B − Bw). The uniform continuity of H can now be used

to conclude that, for a sufficiently small ε > 0 and for all ξ ∈ Bz :=
{
z : |z−z0| ≤ ε

}
,

H(ξ, ·) is zero-free on the set (B − Bw). Without loss of generality we may assume

that Bz ⊂ Z0. Since we had Bw ⊂ W0, it follows that ζ = g(ξ) is the only zero of

H(ξ, ζ) within Bw.

The discussion in the previous paragraph shows that, for all |ξ − z0| < ε, the

equation: H(ξ, ζ) = 0, with |ζ| ≤ (1 + δ1) · |w0|, has ζ = g(ξ) as its only solution; in

particular, for all sufficiently small ε > 0, the continuity of g(z) implies that this zero

is indeed contained in the disk
{
ζ : |ζ| ≤ (1 + δ1/2) · |w0|

}
. The lemma will follow if,

for a sufficiently small choice of ε > 0, we can find δ > 0 such that(
1 +

δ1

2

)
· sup
ξ:|ξ−z0|≤ε

∣∣∣∣ w0

g(ξ)

∣∣∣∣ ≤ (1 + δ) ≤ (1 + δ1) · inf
ξ:|ξ−z0|≤ε

∣∣∣∣ w0

g(ξ)

∣∣∣∣ .
Since this is certainly possible for a sufficiently small choice of ε > 0, the lemma

follows.

Our next result and its proof in many ways resembles the one of lemma 4.1

in [PemWil01]. Theorem 6.1 is a direct consequence of the generalized stationary
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phase method (see corollary 5.10 in chapter 5) to study the asymptotic behavior

of the parameter varying Fourier-Laplace integral, Ξ(z; s), in the following lemma.

Similarly, theorem 6.6 results from the application of the generalized coalescing saddle

point method (see theorem 5.12 in chapter 5).

Lemma 6.17. For a sufficiently small choice of ε > 0 and for all |θ| ≤ ε and z

sufficiently close to z0 define

f(z, θ) := ln

{
g(z · eiθ)
g(z)

}
− i · θ · z · g

′(z)

g(z)
,(6.42)

a(z, θ) :=
−G(z · eiθ, g(z · eiθ))

g(z · eiθ) ·Hw(z · eiθ, g(z · eiθ))
.(6.43)

In particular, f(z, 0) = ∂f
∂θ

(z, 0) = 0, for all z sufficiently close to z0. Furthermore,

the <{f(z, θ)} > <{f(z, 0)}, for all (z, w) ∈ K and all nonzero θ ∈ [−ε, ε]. In

addition, if we define

(6.44) Ξ(z; s) :=

∫ ε

−ε
e−s·f(z,θ) a(z, θ) dθ ,

then there is a constant c > 0 such that

(6.45) fr,s =
z−r w−s

2π
·
{

Ξ (z; s) +O(e−s·c)
}
,

uniformly for all (r, s) ∈ dir(z, w) and (z, w) ∈ K sufficiently close to (z0, w0).

Proof. Let ε2 > 0 and δ2 > 0 be as in lemma 6.16. Consider ε > 0 sufficiently small so

that the functions in (6.42) and (6.43) are well-defined for all |θ| ≤ ε and z sufficiently

close to z0.

Define

γ1(z) :=
{
ξ : |ξ| = |z| and | arg{ξ/z}| ≤ ε

}
,

γ2(z) :=
{
ξ : |ξ| = |z| and | arg{ξ/z}| ≥ ε

}
.
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Without loss of generality we may assume that ε > 0 is small enough so that

γ1(z) ⊂
{
ξ : |ξ − z0| < ε2

}
, for all (z, w) ∈ K sufficiently close to (z0, w0). Fur-

thermore, we may also assume that the conclusion in lemma 6.15 applies for ε1 = ε

and δ1 > 0. Motivated by this, we will select 0 < δ < min{δ1, δ2, 1}. Observe that

δ ∈ (0, 1) and, for all (z, w) ∈ K sufficiently close to (z0, w0), it follows that

(6.46) H(ξ, ζ) is zero-free on the set γ2(z)×
{
ζ : |ζ| ≤ (1 + δ) · |w|

}
.

Furthermore, for all ξ ∈ γ1(z), it applies that

(6.47) ζ = g(ξ) is the only zero of H(ξ, ζ) within
{
ζ : |ζ| ≤ (1 + δ) · |g(ξ)|

}
.

With ε > 0 and δ ∈ (0, 1) as in the previous paragraph observe that the strict

minimality of (z, w) ∈ K implies that H is zero-free on the polydisk
{
ξ : |ξ| ≤

|z|
}
×
{
ζ : |ζ| ≤ (1 − δ) · |w|

}
; in particular, F is analytic within this polydisk and

continuous up to the boundary. Cauchy’s formula (see [Rud87]) then can be used to

represent the coefficients of F in the integral form

fr,s =
1

2π

∫
|ξ|=|z|

1

ξr

{
1

2πi

∫
|ζ|=(1−δ)·|w|

G(ξ, ζ)

H(ξ, ζ) · ζs+1
dζ

}
dξ

i ξ
,

=
1

2π

∫
ξ∈γ1(z)

∫
|ζ|=(1−δ)·|w|

1

ξr

{
1

2πi

G(ξ, ζ)

H(ξ, ζ) · ζs+1
dζ

}
dξ

i ξ

+
1

2π

∫
ξ∈γ2(z)

∫
|ζ|=(1−δ)·|w|

1

ξr

{
1

2πi

G(ξ, ζ)

H(ξ, ζ) · ζs+1
dζ

}
dξ

i ξ
.

We will show that the integral over γ2(z) ×
{
ζ : |ζ| = (1 − δ) · |w|

}
is negligible

compared to |z|−r · |w|−s, which is the expected exponential order of fr,s. Indeed,

(6.46) implies, for all ξ ∈ γ2(z), that∫
|ζ|=(1−δ)·|w|

1

ξr
G(ξ, ζ)

H(ξ, ζ) · ζs+1
dζ =

∫
|ζ|=(1+δ)·|w|

1

ξr
G(ξ, ζ)

H(ξ, ζ) · ζs+1
dζ .
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As a result, we obtain that∣∣∣∣∫
ξ∈γ2(z)

∫
ζ:|ζ|=(1−δ)·|w|

1

ξr

{
G(ξ, ζ)

H(ξ, ζ) · ζs+1
dζ

}
dξ

i ξ

∣∣∣∣ ≤ |z|−r · {(1 + δ) · |w|}−s · sup
Λ1

|F | ,

where it has been defined

Λ1 :=
{

(ξ, ζ) : there exits (z, w) ∈ K such that ξ ∈ γ2(z) and |ζ| ≤ (1 + δ) · |w|
}
.

Since Λ1 is compact and H is zero-free over Λ1, it follows that F continuous over this

set and therefore the sup
Λ1

|F | must me finite. As a result, back in the last identity

determined for fr,s, we obtain that

fr,s =
1

2π

∫
ξ∈γ1(z)

1

ξr

{
1

2πi

∫
|ζ|=(1−δ)·|w|

G(ξ, ζ)

H(ξ, ζ) · ζs+1
dζ

}
dξ

i ξ
(6.48)

+ O
(
|z|−r · |w|−s · {1 + δ}−s

)
,

uniformly for all (z, w) ∈ K and r, s ≥ 0.

To deal with the integral term in (6.48) we will use (6.47). It implies that, for all

ξ ∈ γ1(z) with (z, w) ∈ K sufficiently close to (z0, w0), ζ = g(ξ) is the only singularity

of F (ξ, ζ) within the annulus
{
ζ : (1 − δ) · |w| ≤ |ξ| ≤ (1 + δ) · |g(ξ)|

}
. As a result,

the Residue theorem (see [Rud87]) let us conclude that

1

2πi

∫
|ζ|=(1−δ)·|w|

G(ξ, ζ)

H(ξ, ζ) · ζs+1
dζ = −Res

(
G(ξ, ζ)

H(ξ, ζ) · ζs+1
; ζ = g(ξ)

)
(6.49)

+
1

2πi

∫
|ζ|=(1+δ)·|g(ξ)|

G(ξ, ζ)

H(ξ, ζ) · ζs+1
dζ .

The residue term above is computed to be

Res

(
G(ξ, ζ)

H(ξ, ζ) · ζs+1
; ζ = g(ξ)

)
= lim

ζ→g(ξ)

(
ζ − g(ξ)

)
· G(ξ, ζ)

H(ξ, ζ) · ζs+1
,

=
G(ξ, g(ξ))

{g(ξ)}s+1 ·Hw

(
ξ, g(ξ)

) .
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On the other hand, the integral term remaining on the right-hand side in (6.49) is

bounded from above by the quantity |g(ξ)|−s · {1 + δ}−s · sup
Λ2

|F |, where it has been

defined

Λ2 :=
{

(ξ, ζ) : there exits (z, w) ∈ K such that ξ ∈ γ1(z) and |ζ| = (1 + δ) · |g(ξ)|
}
.

But, observe that (6.47) implies that F is continuous over Λ2; in particular, being this

last a compact set, it follows that the sup
Λ2

|F | is finite. Moreover, the minimality of

(z, w) ∈ K implies that |g(ξ)| > |w|, for all ξ ∈ γ1(z). Therefore, for each ξ ∈ γ1(z),

it applies that∣∣∣∣ 1

2πi

∫
|ζ|=(1+δ)·|g(ξ)|

G(ξ, ζ)

H(ξ, ζ) · ζs+1
dζ

∣∣∣∣ ≤ |w|−s · {1 + δ}−s · sup
Λ2

|F | .

Thus, if we define

Ξ(r, s; z) :=
1

2π

∫
ξ∈γ1(z)

1

ξr
· −G(ξ, g(ξ))

{g(ξ)}s+1 ·Hw

(
ξ, g(ξ)

) dξ
i ξ
,

we conclude from (6.48) that

(6.50) fr,s = Ξ(r, s; z) +O
(
|z|−r · |w|−s · {1 + δ}−s

)
,

uniformly for all (z, w) ∈ K sufficiently close to (z0, w0) and all r, s ≥ 0.

Since γ1(z) is a circular arc, we may easily parametrize it using polar coordinates.

Indeed, substituting: ξ = z · eiθ, with θ ∈ [−ε, ε], in Ξ(r, s; z), a simple calculation

reveals that

(6.51) Ξ(r, s; z) =
z−r w−s

2π

∫ ε

−ε
e−s·f(θ;z,r/s) a(z, θ) dθ ,

where a(z, θ) is as defined in (6.43), and

f(θ; z, λ) := ln

{
g(z · eiθ)
g(z)

}
+ i · λ · θ .
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The lemma will follow after the following remarks. First, observe that

∂f

∂θ

(
0; z,

r

s

)
= i

{
z · g′(z)

g(z)
+
r

s

}
.

As a result, since

z · g′(z)

g(z)
= − z ·Hz(z, w)

w ·Hw(z, w)
,

it follows that θ = 0 is a stationary point of f(θ; z, r/s) provided that (r, s) ∈

dir(z, w). (6.45) follows from (6.50) and (6.51) after noticing that, for (r, s) ∈

dir(z, w), f(θ; z, r/s) = f(z, θ), with f(z, θ) as defined in (6.42).

Finally, consider (z, w) ∈ K as fixed. Since w = g(z), the strict minimality of

(z, w) implies that |g(z · eiθ)| > |g(z)|, for all nonzero θ ∈ [−ε, ε]. As a result, if

(r, s) ∈ dir(z, w) then

<{f(z, θ)} = <{f(θ; z, r/s)} > 0

= <{f(0; z, r/s)} = <{f(z; 0)} ,

for all nonzero θ ∈ [−ε, ε]. This completes the proof of lemma 6.17.
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