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Abstract
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Foundations of Computational Mathematics

1 Introduction

1.1 Motivation from Analytic Combinatorics

Analytic combinatorics in several variables (ACSV) studies coefficients of multivari-
ate generating functions via analytic methods; see, for example, [36,44]. The most
developed part of the theory is the asymptotic determination of coefficients of multi-
variate series F(z) =∑

r arz
r where the coefficients ar are defined by a multivariate

Cauchy integral

ar = 1

(2π i)d

∫

T
z−rF(z)

dz
z

, (1)

for an appropriate torus of integration T ⊂ C
d . In many applications, F(z) =

P(z)/Q(z) is rational function with a power series expansion whose coefficients are
indexed by r, an integer vector. More generally, one often looks for formulas valid as
r varies over some cone.

Let |r| :=∑d
j=1 |r j | denote the �1 norm and let r̂ denote the scaled vector r/|r|. As

a slight abuse of notation we sometimes consider r̂ to be an element of RPd−1, rather
than the �1 unit ball, when the implicit identification of ±r̂ leads to no ambiguity.

Given any r ∈ R
d we define the phase function, which depends only on r̂ and is

also known as the height function, by

h(z) = hr(z) = h r̂(z) = −�(r̂ · log z) = −
d∑

j=1
r̂ j log |z j | , (2)

where the logarithm is taken coordinate-wise and�(z) denotes the real part of complex
z. The height function is useful because it captures the behavior of the term |z−r| =
exp(|r|hr(z)) in the Cauchy integral that grows with r. Note that even though the ratio
r̂ = r/|r| is always rational, a sequence of such direction vectors may converge to any
real r̂ and our results often hold uniformly for r̂ in cones of RPd−1. We will be clear
when results do not require r̂ to be rational.

Typically, the Cauchy integral (1) is evaluated by applying the stationary phase
(saddle point) method after a series of deformations of the chain of integration. To
elaborate, we let V := {z : Q(z) = 0} denote the pole variety of rational F(z) =
P(z)/Q(z), with P and Q coprime, let C∗ denote the nonzero complex numbers, and
letM := C

d∗ \V denote the domain of holomorphy of the Cauchy integrand in (1). The
Cauchy integral depends only on the homology class1 [T ] of T in Hd(M). Stratified
Morse theory for complements of closed, Whitney stratified spaces suggests that any
cycle can be deformed downward (in the sense of decreasing hr) until it reaches a
topological obstacle at some (stratified) critical point of V. A topological obstacle
generally implies that a stationary phase contour has been reached. This leads to the
following outline for the asymptotic evaluation of coefficients ar.

(I) Find a basis of the singular homology group with integer coefficients Hd(M),
consisting of attachment chains {σk} localized near the near critical points pk of

1 Throughout, we assume integer coefficients for all homology groups.
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hr on the Whitney stratified space V, in the sense that each chain σk intersected
with the set of points {z : hr(z) > hr(pk)− ε} is contained in a ball around pk
of radius shrinking with ε.

(II) Compute the coefficients of [T ] in this basis; that is, write

[T ] =
∑

k

nkσk (3)

for some integers {nk}.
(III) Asymptotically compute the Cauchy integral over each chain of integration σk .

This paper concerns pre-conditions for the validity of this program. In reverse order,
we discuss parts of the program carried out elsewhere.

Part III of the program varies in difficulty depending on the nature of the critical
point. When the point lies in a stratum of positive dimension where V has at worst
normal intersections, it is at worst a multivariate residue together with a saddle point
integral, the integral being somewhat more tricky if the saddle point is not quadrat-
ically nondegenerate. This follows from [50] or [51] and is stated explicitly in [42]
and [44, Chapter 10]. The more difficult case is when the critical point p is an isolated
singularity of the stratified space V. Homogenizing at p, one reduces to the problem
of computing the inverse Fourier transform of a homogeneous hyperbolic function,
some instructions for which can be found in [3]. This is carried out in [7] for two
classes of quadratic singularities, and in [5] for some singularities of lacuna type. For
non-isolated singularities, or isolated singularities of higher degree, the technology is
still somewhat ad hoc.

Step II is a topological computation. In a slightly different context, Malgrange [34]
noted the lack of techniques for approaching a similar problem. Effective algorithms
exist only in special cases, such as the bivariate case [16]. A new computational
approach, relying on the results of the present article together with techniques from
computer algebra, is discussed in [5] and below.

Step I may fail entirely. It is not always true that such a basis exists (see Examples 2
and 4), due to the existence of a topological obstruction at infinity2. The focus of
the present paper is to find checkable conditions under which the class [T ] is indeed
representable in form (3). This has been a sticking point up to now in the development
of ACSV methods.

1.2 PreviousWork

Although themethods ofACSVparallelwell-establishedmathematical techniques, the
underlying combinatorics often results in constraints which are natural in our context
but not covered by existing theory. In this section we discuss related previous work
and why the results we need do not follow from it.

2 Here and throughout, “infinity” refers not only to projective points but to points where at least one
coordinate vanishes; these are the cases in which the height function may not be well defined. Affine points
with coordinates equal to zero may arise as critical points when dealing with Laurent series expansions.
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Tobegin, there are several reasonswhy stratifiedMorse theory does not immediately
imply the existence of the type of basis appearing in Step I. If hr were aMorse function
(in the stratified sense) then Theorems A and B of [23] would in fact imply that such a
basis exists with some numbermk of generators associated with each critical point pk .
These are given by the rank of a relative homology group of the normal link at pk of
the stratum containing pk (in the dimension equal to the codimension of the stratum).
If hr fails to be Morse by behaving degenerately at pk such a basis still exists, though
it might take a messy perturbation argument to compute the rank at pk and give cycle
representatives for a basis.

Amore serious problem for us is thathr is not a proper functiononV. Thismeans that
gradient flows of theCauchy domain of integrationmay reach infinity or the coordinate
planes at some finite height c, and hence that contours may not be deformable to levels
below c because they get sucked out to infinity first. As shown in the examples in
Sect. 4, this can indeed happen.

A somewhat generic cure for this is to compactify. In “Appendix”, we outline
how to embed M in a compactification X to which the phase function hr and its
gradient extend continuously. Applying the results of stratifiedMorse theory to X then
decomposes the topology of X into attachments at critical points of X . Generically,
there will be finitely many critical points of X , all lying in M. When this occurs,
M is said to have no stationary points at infinity and the decomposition in Step I
follows. Two weaknesses of this approach are the difficulty in computing X (it relies
on an unspecified resolution of singularities) and the fact that X depends on r not
continuously but rather through the arithmetic properties of the rational vector r̂, thus
failing to deliver asymptotics uniform in a region.

1.2.1 Related Notions of Singularities at Infinity

Wenow review three streams of priorworkwhere, under somehypotheses of avoidance
of critical points at infinity, the topology of a space is shown to decompose similarly
to the desired decomposition in Step I.

One settingwhere such problems have been investigated concerns the Fourier trans-
form of exp( f ) where f : Rd → R is a real polynomial. When f is homogeneous,
resolution of singularities puts the phase into a monomial form, after which leading
term asymptotics can be read from its Newton diagram [50,51]. For general polyno-
mials, critical points of f occur at places other than the origin and these local integrals
must be pieced together according to some global topological computation3. A key
difference from our case is that this is an integral over all of Rd (there is no polar set).
Morse theory enters the picture via the filtration {�( f ) ≤ c}−∞<c<∞, which dictates
how the contour of integration may be deformed, where �( f ) denotes the imaginary
part of f .

Many similarities between this case and ours are evident. The height function �{ f }
plays a similar role to our height function hr. One may apply methods of saddle point
integration at the critical points of f , as done by Fedoryuk [19] andMalgrange [33,34].

3 Pham attributes this idea to Malgrange, “The reduction of a global Fourier-like integral to a sum of
Laplace-like integrals is the topic of Malgrange’s recent paper, motivated by an idea of Balian-Parisi-
Voros.” [45].
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Fedoryuk computes in relative homology, which is good enough for the estimation
of integrals. Pham [45] uses an absolute homology theory over a family of supports,
enabling more precise asymptotic results. Pham’s crucial hypothesis H1 is that there
are no bifurcation points of the second type or “critical points at infinity”. The con-
clusion is the existence of a basis for the homology of Cd with downward supports
consisting of so-called Lefschetz thimbles, along with a dual basis (in the sense of
intersections) allowing one to compute the coefficients of an arbitrary cycle in this
basis. Unfortunately, we can see no direct connection that would reduce our computa-
tion to the type analyzed by Pham and others before him. Even if we could, the issue
of spurious critical points at infinity would still need to be addressed. As pointed out
in [45, page 330], there is no simple way of telling which of these is relevant.

A second stream of work concerns the topology of complex polynomial hypersur-
faces. Here there are no integrals, hence no phase functions per se, althoughmotivation
from [34,45] is cited in the introduction of [12]. In this paper, Broughton computes
the homotopy type of a generic level set f −1(c), showing it to be a bouquet of n
spheres, where n is obtained by summing the Milnor numbers at the critical points of
f other than those with critical value c. Examples show that a hypothesis is necessary
to rule out “critical points at infinity”; see also [40]. Both of these works refer to an
assumption of only isolated critical points at infinity or none at all, but do not supply
a specific definition of critical points at infinity. Such a definition is supplied in [48],
where the authors compactify f by taking the closure of its graph in projective space
and taking a Whitney stratification of the resulting relation. Depending on whether
there are no critical points at infinity, void (hence ignorable) critical points at infinity,
isolated non-void critical points at infinity, or non-isolated points, various conclusions
can be drawn about the topologies of the fibers f −1(c). Again, no direct relation allows
us to derive from this the decomposition in Steps I and II, and even then, the issue of
spurious critical points would remain.

A third stream of work concerning critical values at infinity comes closest to our
aims here. The focus of this stream of work is, given a smooth map F : M → N

on some sort of space, to find a set B ⊆ N that is not too big, such that outside
of F−1[B], the mapping is a locally trivial fibration. For proper maps one has the
Thom isotopy lemma, which states that B can be taken as the set K0 of critical values,
namely the set F(x)where F is not a submersion at x , failing to map the tangent space
surjectively. To extend the isotopy lemma to nonproper maps, one needs to add to K0
an appropriately defined set K∞ of critical values at infinity. When M is smooth the
so-called Palais–Smale Condition, and Rabier’s general notion of asymptotic critical
value [47, Section 6], yields such an isotopy result, valid in a quite general infinite
dimensional setting. Further work has shown that under reasonable hypotheses the set
of critical values K∞ is not too big, for example it has measure zero [30].

Ourwork requires a result along similar lines, but for stratified spaces.More specifi-
cally, in the proof ofTheorem1 ,weuse an isotopy result away froma small computable
set of stratified critical values for the height function to describe Hd(M) in terms of
stationary phase contours. A similar project is undertaken in the contemporaneous
work [17]. There, Dinh and Jelonek prove a version of the (stratified) Thom isotopy
lemma away from a computable and nowhere dense set K0 ∪ K∞ of affine and at-
infinity critical values. In comparison to our work, Dinh and Jelonek work in a more
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general setting but therefore use more complicated constructions leading to a less
practical algorithm for detecting critical points at infinity. We thus do not use their
stratified non-proper isotopy lemma [17, Theorem 3.4, Section 3]; rather, we use a
similar but streamlined approach to prove exactly what is needed for the topological
decomposition in the first part of our main results. A robust study of these topics from
the point of view of efficient algorithms is a promising direction for future work in the
computer algebra community.

1.3 PresentWork

We define a set of projective points which we call stationary points at infinity (SPAI).
These are limits at infinity (including the coordinate planes) of sequences of points
that are asymptotically converging to criticality for a given height function h r̂. The
ultimate goal is to find such sequences on which h r̂ remains bounded, because these
indicate trajectories in which gradient-like Morse deformations may get pulled out to
infinity. Such sequences, together with limit points of the height function, are called
heighted SPAI (H-SPAI). Their image under h r̂ coincides with the set of asymptotic
critical values in, e.g., [17,47]. Note that we use the term stationary point instead of the
term critical point (common in the analytic combinatorics literature) as ‘critical point’
is overloaded and potentially misleading to readers in some areas of mathematics.

The advantage to working with SPAI is that these are easily computed for any real r̂
or when r̂ is a symbolic parameter. While spurious SPAI do arise (see Examples 3 and
7), all such examples we know of can be ruled out by determining the height function
to be unbounded (that is, we do not need to compute the limit set of heights, just to
check whether it is empty). As to whether H-SPAI themselves can be spurious, as
noted in the introduction of [17], characterization of bifurcation values (where local
triviality fails) is open, and in particular these can be a proper subset of critical values.
However, in all examples we know of coming from applications to ACSV where there
are H-SPAI the attachment cycles do not in fact form a basis of the relevant homology
group, therefore the isotopy arguments must fail.

Methodologically, it should be noted that we do not try to show topological triviality
at infinity in the absence of SPAI, only that the necessary deformations can avoid
infinity.

Our main results are the following.

(i) Given a direction r̂ and real a < b, we define three sets SPAI ⊇ H-SPAI ⊇
crit[a,b].

(ii) We give an algorithm for computing SPAI.
(iii) We prove Theorem 1, which states that cycles may be pushed down until a

stationary value is reached in such a way that they remain above the stationary
height only in an arbitrarily small neighborhood of the stationary point(s).

As a consequence, when SPAI is empty (which is easily computed) or when H-SPAI
is empty (which may be computed more easily than whether crit[a,b] is empty), any
cycle may be decomposed into attachment cycles. We also note that for a generic r̂
the set SPAI is indeed empty, and that computability of SPAI for symbolic r̂ means
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we can compute a polynomial criterion for the set of directions r̂ in which SPAI is
nonempty.

The main value of our work lies in its application to ACSV which, in turn, derives
its value from combinatorial applications. The next subsection reviews several combi-
natorial paradigms in which ACSV yields strong results; a different class of examples
is presented in Sect. 4. The purpose of those later examples is (a) to show how Theo-
rem 1 can considerably strengthen the ACSV analysis, and (b) to illuminate the role of
the hypotheses in the main results and the increased efficacy in eliminating spurious
stationary points.

Beyond this, Theorem 1 pays back a debt in the literature. Previous books and
papers on ACSV [43,44] often use Morse-theoretic heuristics to motivate certain con-
structions, but cannot useMorse theory outright to prove general results. By ruling out
stationary points at infinity, those results can be recast as following from the stratified
Morse framework.

The remaining sections of the paper, after reviewing applications of ACSV, are
organized as follows. Section 2 sets the notation for the study of stratified spaces
and stationary points, formulates definitions, and states the main result. Section 3
shows how to determine all SPAI using a computer algebra system. Some examples
are given in Sect. 4. Section 5 proves Theorem 1 by constructing Morse deformations
from height b down to height a, remaining in a bounded region provided crit[a,b] is
empty.

1.4 Applications of ACSV

The techniques of analytic combinatorics in several variables find application to a
diverse range of topics in mathematics, computer science, and the natural sciences.We
briefly summarize some of these applications here; anyone wanting more information
can consult, for instance, Pemantle and Wilson [43,44] or Melczer [36].
Quantum Random Walk Since their introduction [1] in the early 1990s, quantum vari-
ants of randomwalks have been studied as a computational tool for quantumalgorithms
(see the introduction of Ambainis et al. [2] for a listing of quantum algorithms based
around quantum random walks, for example). Results obtained by ACSV go well
beyond what has been obtained by other methods such as orthogonal polynomials
or the univariate Darboux method [13]. In particular, ACSV may be used to analyze
one-dimensional quantum walks with arbitrary numbers of quantum states [10] and
families of quantum random walks on the two-dimensional integer lattice [4]. Both of
these results involve ad hoc geometric arguments which may be streamlined based on
the results of the present paper.

Example 1 As described in Bressler and Pemantle [11], the analysis of quantum
randomwalks on the one-dimensional integer lattice canbe reduced to studying asymp-
totics of coefficients

F(x, y) = G(x, y)

1− cy + cxy − xy2
=

∑

i, j≥0
fi, j x

i y j ,
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where c ∈ [0, 1] is a parameter depending on the underlying probabilities used to
transition between different states in the walk and G(x, y) is a polynomial which
depends on the initial state of the system. In particular, for any given c one wishes to
determine the asymptotic behavior of the sequence aλ

n = fn,�λn� as n →∞. A short
argument about the roots of H(x, y) = 1− cy+ cxy− xy2 implies aλ

n ∼ Cλn−1/2ρn
λ

where 0 < λ < 1; the values of λ such that ρλ = 1 form the feasible region of study
while the values ofλwithρλ < 1,where aλ

n exponentially decays, form the nonfeasible
region. For any values of c, λ ∈ (0, 1) the height function h(x, y) in direction r̂ =
(1 : λ) has two stationary points. Previously, to determine asymptotic behavior one
needed to check which of these stationary points were in the domain of convergence
of F(x, y), a computationally difficult task that requires arguing about inequalities
involving the moduli of variables in an algebraic system with parameters. Running
our Maple implementation of Algorithm 1 shows that F(x, y) has no stationary points
at infinity, meaning Theorem 5 applies and asymptotics of aλ

n can be written as an
integer linear combination of two explicitly known asymptotic series. In particular,
when 2λ ∈ [1 − c, 1 + c] then both stationary points are on the unit circle and
our results immediately imply that λ must be in the feasible region. Similarly, if
2λ /∈ [1− c, 1+ c] it can be shown that λ is not in the feasible region. Although our
results ease the derivation of previously known results in this instance, they also allow
for the derivation of results outside the scope of previous methods (see, for instance,
Example 6).

Queuing Theory and Lattice Walks Queuing theory—the study of systems in which
items enter, exit, and move between various lines—arises naturally in computer net-
working, telecommunications, and industrial engineering, among other areas. Often,
one can derive multivariate generating functions describing the state of a system at a
point in time, then derive desired information about the underlying model through an
asymptotic analysis. Such analyses, using analytic combinatorics methods to analyze
queuing models, can be seen in Bertozzi and McKenna [8] and Pemantle and Wil-
son [43, Section 4.12], for instance. These systems can often be modeled by (classical)
random walks on integer lattices subject to various constraints [18, Ch. 9 & 10], an
enumerative problem for which the methods of ACSV are extremely effective [36,
Ch. 4, 6 & 10].
RNA Secondary Structure The secondary structure of a molecule’s RNA, describing
base pairings between its elements, encodes important information about themolecule,
and predicting such structure is a well-studied topic in bioinformatics. One approach
to secondary structure prediction uses stochastic context-free grammars to generate
potential pairings; this approach is implemented in the popular Pfold programofKnud-
sen and Hein [29]. To analyze Pfold, Poznanović and Heitsch [46] used multivariate
generating functions tracking the probability that certain biological features arise.
Using classical methods in analytic combinatorics, those authors found distributions
for single features (the numbers of base pairs, loops and helices generated by a gram-
mar). Their central limit theorems rely on results of Flajolet and Sedgewick, quoted
as [46, Thoerem 4.1], whose hypotheses can be replaced by more checkable multivari-
ate hypotheses once one has our Theorem 1. More recently, Greenwood (see [24] and
a forthcoming extension) used ACSV to analyze the probability that certain combina-
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tions of features appear. Greenwood’s hypotheses in his Theorem 1 and Corollary 2
can be weakened and much more easily checked with the Morse-theoretic tools in the
present paper.
Sequence Alignment The problem of optimally aligning more than two sequences on
a finite alphabet is fundamental to the study of DNA and known in several ways to
be mathematically intractable. In [43, Section 4.9] several cases are analyzed using
techniques of ACSV. At the time of that paper, ACSV could only handle cases where
the dominant singularitywas at a stationary point all ofwhose coordinateswere known,
via Pringsheim’s Theorem, to be real. Morse theory allows us in principle to handle
further biologically relevant cases.

2 Definitions and Results

2.1 Spaces, Stratifications and Stationary Points

Throughout the remainder of the paper, Q is a polynomial and V is the algebraic
hypersurface {z ∈ C

d : Q(z) = 0}. The elements of V with nonzero coordinates are
denoted V∗ := V ∩ C

d∗ .

2.1.1 Whitney Stratifications

The followingdefinitions of stratification andWhitney stratification are taken from [23,
26]. A stratification of a space V ⊆ C

d is a partition of V into finitely many disjoint
sets {Σα : α ∈ A} such that each stratum Σα is a real manifold4 of some dimension
at most 2d. We consider here only algebraic stratifications, meaning that each stratum
is an algebraic set, potentially with an algebraic set of lower dimension removed. A
Whitney stratification furthermore satisfies the following conditions.

1. If a stratum Σα intersects the closure Σβ of another, then it lies entirely inside:
Σα ⊆ Σβ .

2. Whitney’s Condition B on tangent planes and secant lines of the strata should hold;
because we make use only once of this condition and never need to check it, we
refer readers to [23, Chapter 1.2] for the definition.

A stratification of the pair (Cd∗,V∗) is a Whitney stratification of Cd∗ in which the
only (2d)-dimensional stratum is M := C

d∗ \ V. When V is a complex algebraic
variety, such a stratification always exists.

Logarithmic Space, Natural Riemannian Metric, Tilde Notation

Let T := R/2πZ denote the one-dimensional torus. We introduce the logarithmic
space (logspace) L ∼= T

d × R
d together with the exponential diffeomorphism exp :

L→ C
d∗ defined for η ∈ T

d and ξ ∈ R
d by

exp(η, ξ) := exp(ξ + iη).

4 In fact our strata are always complex manifolds and complex algebraic sets, however this is not required
in the definition of a stratification.
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We refer to ξ ∈ R
d as the real coordinates on the logspace. Mostly we do not need

logspace until Sect. 5, though we refer to coordinates ξ and η occasionally. The
reason for using both C

d∗ and the logspace is that deformations and other geometric
constructions are more transparent in L but polynomial computations via computer
algebra involving Q must be carried out in Cd∗ .

Directions and Affine Stationary Points

A direction is an equivalence class of vectors in R
d under positive multiples. The

direction containing the nonzero vector r can be canonically identified with the unit
vector r̂. Fix a direction r̂. The phase function h r̂ from (2) is given in logspace by the
linear function r̂ · ξ . Stationary points of h r̂ on any complex-analytic submanifold of
C
d∗ are therefore the same as stationary points of a branch of zr.
Fix a stratification {Σα} ofV. For a stratumΣ , we define an affine r-stationary point

as a stationary point of the restriction of h r̂ to Σ . These points are what is referred to
in ACSV literature as critical points; we call them affine stationary points, in contrast
to SPAI, which are stationary points at infinity.

Stationary Point Relation

Given a stratum Σ , a point x ∈ Σ and a direction r̂, a necessary and sufficient
condition for h r̂|Σ to have a stationary point at x is a drop in the rank of a certain
matrix of differentials. To make this more precise, choose a neighborhood of x in
which the closure of Σ is locally cut out by c independent polynomials, where c is
the codimension of Σ ,

Σ =
{
z : f Σ

j (z) = 0 : 1 ≤ j ≤ c
}

. (4)

The stratum Σ may be obtained by intersecting Σ with a set {gΣ
i (z) �= 0} of poly-

nomial non-equalities to remove points in substrata. By refining the stratification if
necessary, we can assume that the polynomials f Σ

j and gΣ
i define the whole stratum

and that the differentials {d f Σ
j } are linearly independent everywhere on Σ . For any

point z ∈ Σ and vector y ∈ C
d , let J(z, y) = JΣ,r̂(z, y) denote the (c+ 1)× d matrix

with entries

Ji, j := z j
∂ fi
∂z j

for 1 ≤ i ≤ c, and Jc+1, j = y j . (5)

Note that after dividing the j th column of J(z, y) by z j its rows become the gradients
(∇ fi )(z) together with the scaled gradient−(∇hy)(z). The rank of J (z,w) is invariant
under the mapw �→ λw for any nonzero λ, thus we define a binary relation (z, y) ∈ S
which we interpret as (∇hy)(z) lying in the normal space to Σ at z.

Definition 1 (binary relation for stationary points) Define S = S(Σ) ⊆ C
d∗ ×CP

d−1
by (z, y) ∈ S if and only if rank(J (z, y)) ≤ c.

Note that rank(J (z, y)) ≤ c if and only if all (c + 1)× (c + 1) minors of J (z, y),
which are polynomials in z and y, vanish.
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Proposition 1 LetΣ be a stratumand suppose z ∈ Σ and r̂ is real. Then (z, r̂) ∈ S(Σ)

if and only if z is a critical point of the height function h r̂ on the stratum Σ .

Proof The tangent space to a stratum Σ defined by analytic functions is a complex
linear subspace ofCd . The function h r̂ is the real part of a (branched) analytic function
hCr̂ :=

∑d
j=1 r j log z j . It follows that the vanishing of dh r̂|Σ on the real part of the

complex tangent space TΣ is equivalent to its vanishing on all of TΣ , which is
equivalent to the vanishing of dhCr̂ on all of TΣ . Vanishing of the complexified
height is equivalent to r̂ being in the complex normal space, which is equivalent to the
rank being at most c of any basis for the normal space, together with the vector r̂. ��

Stationary Points at Infinity

Definition 2 (SPAI) Let S denote the closure of S when embedded in CPd ×CP
d−1.

Define a SPAI in direction r̂ to be an element (z, r̂) ∈ S where z /∈ C
d∗ , meaning z

either lies in the plane at infinity or has at least one vanishing coordinate. A witness
to the SPAI (z, r̂) is a sequence (zn, r̂n) in Cd∗ × CP

d−1 converging to (z, r̂).

Definition 3 (ternary relation for heighted stationary points) Fix a direction r̂. Let
R := R(Σ, r̂) denote the set of triples (z, y, η) ∈ C

d∗ × CP
d−1 × C such that the

following three conditions hold.

(i) z ∈ Σ ;
(ii) rank(J(z, y)) ≤ c, where c is the co-dimension of Σ ;
(iii) h r̂(z) = η.

Definition 4 (H-SPAI) Let R denote the closure of R in CP
d × CP

d−1 × R. A triple
(z, y, η) ∈ R with z /∈ C

d∗ is called an H-SPAI in Σ in the direction r̂, and is said to
have height η. A witness for the H-SPAI (z, y, η) is a sequence (zn, yn, ηn) in R(Σ, r̂)
converging to (z, y, η).

We say that the real number η is a generalized stationary value of h r̂ on the stratum
Σ if it is either an affine stationary value (that is, a stationary value of h r̂|Σ ) or else
it is the third coordinate of some H-SPAI. We denote the set of stationary values by
K (Σ, r̂) = K0 ∪ K∞.

Definition 5 (stationary points in an interval) Fix r̂,Σ, and fix −∞ ≤ a < b ≤ ∞.
The z coordinates of all stationary points on Σ with heights in [a, b] form the set

crit[a,b](Σ, r̂) := {z ∈ CP
d : ∃y, η with (z, y, η) ∈ R, y = r̂ and η ∈ [a, b]} .

Omitting the argument Σ or [a, b] denotes a union over all strata and taking [a, b] =
(−∞,∞), respectively. We write critaff[a,b](Σ, r̂) for the elements of crit[a,b](Σ, r̂)
which are affine stratified points and crit∞[a,b](Σ, r̂) for the remaining elements.

Remark 1 Because we sometimes need to refine stratifications, we note that refining
the stratification can introduce more stationary points, affine or infinite, but cannot
remove any.
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2.2 Main Topological Results

For any space S with height function h, and any b ∈ R, we define S≤b = {x ∈ S :
h(x) ≤ b}. We first state our main deformation result, an extension to the nonproper
setting of well-known stratified Morse theoretic results for proper height functions.

Theorem 1 (Morse deformation) Fix Q,V,M := C
d∗ \V, and aWhitney stratification

{Σα} of (Cd∗,V∗). Fix also a direction r̂ and height function h r̂(z) = zr̂.

(i) Suppose crit[a,b](Σ, r̂) is empty. Then Σ≤b ∼= Σ≤a for any stratum Σ , and
M≤b ∼=M≤a.

(ii) Suppose crit[a,b](Σ, r̂) = critaff[a,b](Σ, r̂) = {z1, . . . , zk} with h r̂(z j ) = c ∈
(a, b) for all 1 ≤ j ≤ k. Then for any stratum Σ , any chain C supported on
Σ≤b is homotopic in Σ≤b to a chain supported on the union of Σ<c together with
arbitrarily small neighborhoods of the points zk in Σ . Taking Σ =M, it follows
that every homology class in Hd(M≤b) is represented by a cycle supported on
this union.

Remark 2 This theorem draws no conclusion about whether the topology of M or V
can be deduced from the topology near the stationary points, stating only that certain
neededdeformations exist. In fact, all the topological information necessary to estimate
the Cauchy integrals is present in the relative homology group (M,M≤−K ) for some
sufficiently large K , hence the topology ofM at sufficiently low heights is irrelevant.

The purpose of these homotopy equivalences is to push the cycle of integration T
down to one whose maximum height is as low as possible. For example, because the
cycle T in the Cauchy integral of interest can be pushed down at least until hitting
the first stationary point corresponding to direction r̂, the magnitude of coefficients
in direction r̂ is bounded above by the Cauchy integral over a contour at this height.
The following corollary of Theorem 1 was given only as a conjecture in [44] because
it was not known under what conditions T could be pushed down to the stationary
height.

Corollary 1 Fix r̂ and a Laurent polynomial Q and Laurent expansion P(z)/Q(z) =∑
r∈K arzr. Suppose K (Σ, r̂) is finite for all strata anddenote themaximumstationary

value by c. Then

lim sup
r→∞
r/|r|→r̂

1

|r| log |ar| ≤ c .

More generally, we would like to examine how a cycle C inM can be represented
as the sum of cycles, each of which has been pushed down until reaching an obstacle
at some stationary height. In the case where h r̂ is proper, this is a classical result of
Morse theory (when V is smooth) or more generally of stratified Morse theory. We
briefly recall the relevant Morse theoretic notions.

Let h : X → R be a proper smooth function on a stratified space X . Suppose that
h has finitely many (stratified) stationary points x1, . . . , xk . For ease of exposition,
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assume the stationary values c1 := h(x1) > · · · > ck := h(xk) are distinct. Let
(X+j , X−j )denote the pair (X≤c j−ε∪B2ε(x j ), X≤c j−ε)where B2ε(x j ) is a ball of radius

2ε and ε is sufficiently small. The relative homology group Hd(X
+
j , X−j ) is called the

attachment group at x j . Stratified Morse theory guarantees that the attachment pairs
generate all the homology of X . For example, the following proposition is well-known
(see, e.g., [44, Section B.2]).

Proposition 2 (attachments generate homology: proper case)

(i) Every integer homology class C ∈ Hd(X) can be written as a finite integer com-
bination of classes α ∈ Hd(X

+
j ) projecting to a nonzero class in Hd(X

+
j , X−j ).

(ii) Let G j be the image of Hd(X
+
j ) under the projection from X+j to (X+j , X−j ), that

is, those relative homology classes representable by absolute cycles. If d is the
homological dimension of X then Hd(X) ∼=⊕k

j=1 G j .
(iii) When X is a smooth 2d-manifold and h is harmonic, each attachment group is

a homology d-sphere, each G j is the whole attachment group Hd(X
+
k , X−k ) and

Hd(X) ∼=⊕k
j=1 Hd(X

+
k , X−k ).

Proof The first statement follows from the homotopy equivalence between X+k and
X+k−1 (because Theorem 1 always holds for proper height functions) and the standard
Morse filtration. The second statement follows from the long exact sequence for the
pair (X+k , X−k ) and the vanishing of Hd+1(X−k ). The third follows because attachments
in smooth Morse theory are d-balls modulo their boundaries, where d is the index of
the stationary point. ��
Remark 3 When the stationary values are not distinct one may add in the balls B2ε(x j )
one at a time, arriving at the same result.

Ourmain topological result is that all of this holds for the nonproper height function
h r̂ unless obstructed by stationary points at infinity.

Theorem 2 (attachments generate homology: general case) Fix Q,V, M := C
d∗ \ V,

and a Whitney stratification {Σα} of (Cd∗,V∗). Fix also a direction r̂ and let z1, . . . zk
be the affine stationary points with c j := h r̂(z j ) nonincreasing. LetM±

j be the spaces

X±k from above, with X =M.

(i) Suppose K∞ = ∅, that is, there are no H-SPAI. Then Hd(M) ∼=⊕k
j=1 G j where

G j are the relative cycles in Hd(M+
j ,M−

j ) represented by absolute cycles.
(ii) Suppose K∞ is nonempty, having maximum element c. Let {c j } be the stratified

values as above, and pick s so that cs > c ≥ cs+1. Then any class C ∈ Hd(M)

may be written as C = β+∑s
j=1 α j where α j ∈ G j for j ≤ s and β is supported

on M≤c+ε.

Proof Part (i) follows from Theorem 1 and Proposition 2 by deforming each M−
j to

M+
j+1. Part (i i) follows by performing the deformations only down to j = s. ��
Theorem 2 says that in Steps I–III of the asymptotic coefficient evaluation from

Sect. 1.1 the only integrals that need to be evaluated are integrals over classes in each
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G j . In general, these attachment classes are the best places to integrate. For example,
as mentioned above, if a stationary point x is a smooth point of V∗ then G will have a
single generator which is a saddle point contour and an asymptotic expansion can be
deduced automatically.

We also remark that the direct sum in part (i) and the expansion of C in part (i i)
are not natural. Elements of G j are equivalence classes modulo Gi for all i > j , and
correspondingly α j in part (i i) is determined only modulo linear combinations of αi

for i > j . However, the pair ( j∗, α j∗) is well defined, where j∗ is the least index j for
which α j �= 0 (in part (i i), the least among 1, . . . , s).

In the remainder of Sect. 2 we expand on our underlying motivations, describing
the application of Theorems 1 and 2 to the computation of cycles, integrals over these
cycles, and coefficient asymptotics of multivariate rational functions. These results,
collected from various prior and simultaneous works, can be skipped if one is only
interested in examples, proofs and computations of stationary points at infinity.

2.3 Intersection Classes on SmoothVarieties

We assume throughout this section that V is smooth. It is useful to be able to transfer
between Hd(M) and Hd−1(V∗): topologically this is the Thom isomorphism and,
when computing integrals, corresponds to taking a single residue. We outline this
construction, which goes back at least to Griffiths [25]. Because ∇Q does not vanish
on V, the well-known Collar Lemma [37, Theorem 11.1] states5 that an open tubular
vicinity of V is diffeomorphic to the space of the normal bundle to V.

It follows that for any k-chain γ in V we can define a (k + 1)-chain oγ , obtained
by taking the boundary of the union of small disks in the fibers of the normal bundle.
The radii of these disk should be small enough to fit into the domain of the collar
map, but can (continuously) vary with the point on the base. Different choices of the
radii matching over the boundary of the chain lead to homologous tubes. We will be
referring to oγ informally as the tube around γ . Similarly, the symbol •γ denotes the
product with the solid disk. The elementary rules for boundaries of products imply

∂(oγ ) = o(∂γ ) ;
∂(•γ ) = oγ ∪ •(∂γ ) .

(6)

Because o commutes with ∂ , cycles map to cycles, boundaries map to boundaries,
and the map o on the singular chain complex of V∗ induces a map to the homology of
H∗(Cd∗ \ V); we also denote this map on homology by o to simplify notation.

Proposition 3 (intersection classes) Suppose V := {Q = 0} is smooth, and define
o : Hd−1(V∗)→ Hd(M) as above.

(i) ◦ is injective and its image is the kernel of the map ι∗ induced by the inclusion
M ι−→C

d∗ .

5 See [31] for a full proof.
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(ii) Given α ∈ ker(ι∗), one may compute the pullback I(α) := o−1(α) by intersecting
V∗ with any (d + 1)-chain in C

d+1∗ whose boundary is α, and for which the
intersection with V∗ is transverse.

Specializing to α = T − T′ where T and T′ are two d-cycles in M homologous in
C
∗
d , we call I(T− T′) the intersection class of T and T′.

Proof The Thom–Gysin long exact sequence implies exactness in the following dia-
gram,

Hd+1(Cd∗)
I∗→ Hd−1(V∗) o→ Hd(M)→ Hd(C

d∗). (7)

Thismay be found in [22, page 127], takingW = C
d∗ , though in the particular situation

at hand it goes back to Leray [32]. Here the first mapping, I∗, denotes the map induced
by transverse intersection, I . Injectivity of o follows from the vanishing of Hd+1(Cd∗).
The rest of part (i) follows from exactness at Hd(M).

For part (i i), we begin by showing that I induces a well defined map from ker(ι∗)
to Hd−1(V∗). Given α ∈ ker(ι∗), because transversality is generic, there exist (d+1)-
chains intersecting V∗ transversely whose boundary is α. If D is such a chain and
C = I (D) then C is a cycle:

∂C = ∂(D ∩ V∗) = (∂D) ∩ V∗ = α ∩ V∗ = ∅ .

LetD1 andD2 be two such chains, and denote C j := D j ∩V∗. Observe thatD1−D2

is null homologous because there is no (d + 1)-homology in C
d∗ , whence

[C1 − C2] = [I (D1 −D2)] = 0 ,

showing that [I (D)] for ∂D = α is well defined in Hd−1(V∗).
Finally, if α = o(γ ) then taking D = •(γ ) gives I (D) = γ , showing that I does

in fact invert o, hence computes I. ��

2.4 Integration

Integrals of holomorphic forms on a space X are well defined on homology classes
in H∗(X). Relative homology is useful for us because it defines integrals up to terms
of small order. Throughout the remainder of the paper, F = P/Q denotes a quo-
tient of polynomials except when a more general numerator is explicitly noted. Let
amoeba(Q) denote the amoeba {log |z| : z ∈ V∗} associated with the polynomial Q,
where log and | · | are taken coordinatewise.6 Components B of the complement of
amoeba(Q) are open convex sets and are in correspondence with convergent Laurent
expansions

∑
r∈E arzr of F(z), each expansion being convergent when log |z| ∈ B

and determined by Cauchy integral (1) over the torus log |z| = x for any x ∈ B.

Definition 6 (c∗ and the pair (M,−∞)) Fix r̂∗ and let c∗ = c∗(r̂∗)denote the infimum
of heights of stationary points, both affine and at infinity. Denote by Hd(M,−∞) the

6 One should think of the amoeba as sitting in ξ -space, the real part of logspace.
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homology of the pair (M,M≤c) for any c < c∗. By part (i) of Theorem 1, these pairs
are all naturally homotopy equivalent.

For functions of r ∈ E ⊆ (Z+)d , let ≡exp denote the relation of differing by a
quantity decaying more rapidly than any exponential function of |r|. If E contains
vectors r whose angle with a fixed r∗ is bounded above by π/2 − ε, we note for use
below that h r̂ and h r̂∗ go to −∞ at comparable rates on E . Homology relative to
−∞ and equivalence up to superexponentially decaying functions are related by the
following result.

Theorem 3 Let F = G/Q with Q rational and G holomorphic. Fix r̂∗ and suppose
that c∗(r̂∗) > −∞. For d-cycles C inM, as r varies over a set E whose angle with r̂∗
is bounded above by π − ε, the ≡exp equivalence class of the integral

∫

C
z−rF(z) dz

depends only on the relative homology class of C when projected to Hd(M,−∞).

Proof Fix any c < c∗. Suppose C1 = C2 in Hd(M,−∞). From the exactness of

Hd(M≤−c)→ Hd(M)→ Hd(M,M≤c) ,

observing that C1 − C2 projects to zero in Hd(M,M≤c), it follows that C1 − C2 is
homologous in Hd(M) to some cycle C ∈ M≤c. Homology in M determines the
integral exactly. Therefore, it suffices to show that

∫
C zrF(z) dz ≡exp 0.

As a consequence of the homotopy equivalence in part (i) of Theorem 1, for any
t < c∗ there is a cycle Ct supported on M≤t and homologous to C in M. Fix such
a collection of cycles {Ct }. Let Mt := sup{|F(z)| : z ∈ Ct } and let Vt denote the
volume ofCt . Observe that |z−r| = exp(|r|h r̂(z)) ≤ exp(κt |r|) onCt for some κ > 0.
It follows that

∫

C
z−rF(z) dz =

∫

Ct

z−rF(z) dz ≤ VtMt exp(t |r|).

Because this inequality holds for all t < c∗, the integral is thus smaller than any
exponential function of |r|. ��

When F = P/Q is rational we may strengthen determination up to ≡exp to exact
equality for all but finitely many coefficients. The Newton polytope, denoted P, is
defined as the convex hull of degrees m ∈ Z

d of monomials in Q. It is known (see,
e.g., [20]) that the components of amoeba(Q)c map injectively into the integer points
inP, and that each extreme point P corresponds to a non-empty component. Moreover,
this can be done in such a way that the recession cone of a component (collection of
directions of rays contained in the component) equals the dual cone of the Newton
polytope at the corresponding vertex; see Fig. 1.Hence the linear function ξ �→ −(ξ ·r)
is unbounded from below on any component when r points in the same direction as any
element of the dual cone of the Newton polytope P(Q) at the corresponding integer
point. Fix the component B corresponding to the Laurent expansion F =∑

r arz
r and

integer point v in the Newton polytope. The closed dual cones at extreme points of the
Newton polytope cover all ofRd , therefore there exists a component B ′ of the amoeba
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Fig. 1 Left The Newton polytope of Q(x, y) = 1− x− y together with the dual cones at each vertex. Right
The amoeba of Q(x, y) together with the recession cones of the complement components

complement (probably many components would do) with h r̂(ξ) → −∞ linearly in
|ξ | as ξ →∞ in B ′.
Proposition 4 LetT(ξ) denote the centered torus with polyradii exp(ξ1), . . . , exp(ξd).
If F = P/Q is rational and ξ ∈ B ′, then

∫

T(ξ)

z−rF(z) dz = 0

for all but finitely many r ∈ E, the support of the Laurent expansion on B.

Proof By assumption, there is a continuous path moving ξ to infinity within B ′. On
the corresponding tori, the (constant) value of hr approaches −∞. Let T(ξt ) denote
such a torus supported on M≤t . Because the tori are all homotopic in M, the value
of the integral ∫

T(ξt )

z−rF(z) dz (8)

cannot change. On the other hand, with Mt and Vt as in the proof of the first part, both
Mt and Vt are bounded by polynomials in |z|, the common polyradius of points in
T(ξt ). Once any coordinate r j is large enough so that the product of the volume and
the maximum grows more slowly than |z j |r j the integral for that fixed r goes to zero
as t →−∞, and thus is identically zero. ��

The utility of Proposition 4 is to represent the Cauchy integral as a tube integral. Let
T = T(ξ) for ξ ∈ B, the component of amoeba(Q)c defining the Laurent expansion,
and choose T′ = T(ξ ′) for ξ ′ ∈ B ′ as in Proposition 4. By Proposition 3, if γ denotes
the intersection class I(T,T′) we have T = oγ + T′ in Hd(M). By Proposition 4,
the integral over T′ vanishes for all but finitely many r ∈ E , yielding

Corollary 2 If F = P/Q is rational and V is smooth, then there exists a (d − 1)-cycle
of integration γ in V∗ such that for all but finitely many r ∈ E,

ar = 1

(2π i)d

∫

oγ

z−r−1F(z) dz .

��
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2.5 Residues on SmoothVarieties

This section again assumes that V∗ is smooth. Having transferred homology fromM
to V∗ via intersection classes, we transfer integration there as well via residues. The
point of this is to obtain integrals amenable to a saddle point analysis: pushing down
cycles until their maximum height is minimized drives the maximum to occur on V∗,
not on M. Thus we need a reduction to saddle point integrals on V∗ rather than on
M. In what follows, H∗(X) denotes the holomorphic de Rham complex, whose k-
cochains are holomorphic k forms. The following duality between residues and tubes
is well known.

Proposition 5 (residue theorem) There is a functor Res : Hd(M)→ Hd−1(V∗) such
that for any class γ ∈ Hd(V) and every ω ∈ Hd(M),

∫

oγ

ω = 2π i
∫

γ

Res (ω) . (9)

The residue functor is defined locally and, when Q is square-free, it commutes with
products by any locally holomorphic scalar function. If, furthermore, F = P/Q is
rational, there is an implicit formula

Q ∧ Res (F dz) = P dz .

For higher order poles, the residue can be computed by choosing coordinates: if
F = P/Qk, and locally {Q = 0} defines a graph of a function, {z1 = S(z2, . . . , zd)},
then

ResV
[

z−rF(z)
dz
z

]

:= 1

(k − 1)!(∂Q/∂z1)k
dk−1

dzk−11

[
Pz−r

z

]

|z1=S(z2,...,zd ) dz2 ∧ · · · ∧ dzd .

(10)

Proof Restrict to a neighborhood of the support of the cycle γ in the smooth variety
V∗ coordinatized so that the last coordinate is Q. The result follows by applying the
(one variable) residue theorem, taking the residue in the last variable. ��

Applying this to intersection classes and using homology relative to−∞ to simplify
integrals yields the following representation.

Theorem 4 Let F = P/Q be the quotient of Laurent polynomials with Laurent series∑
r∈E arzr converging onT(x)when x ∈ B, where B is a component ofamoeba(Q)c.

Fix r̂∗ and assume the minimal stationary value c∗(r̂∗) is finite and K∞(r̂∗) is empty.
Let B ′ denote a component of the complement of amoeba(Q) on which h r̂∗ goes
linearly to −∞, as constructed prior to Proposition 4. Then for any x ∈ B and
y ∈ B ′,

ar = 1

(2π i)d−1

∫

I(T,T′)
Res

(

z−rF(z)
dz
z

)
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for all but finitely many r. If P is replaced by any holomorphic function then the same
representation of ar holds up to a function decreasing super-exponentially in |r|.
Proof If P is polynomial then, for all but finitely many r ∈ E ,

(2π i)d−1ar = 1

2π i

∫

T(x)
z−rF(z)

dz
z

= 1

2π i

∫

oI(T,T′)
z−rF(z)

dz
z
+ 1

2π i

∫

T(y)
z−rF(z)

dz
z

= 1

2π i

∫

oI(T,T′)
z−rF(z)

dz
z

.

The first line above is Cauchy’s integral formula, the second is Proposition 3, and the
third is Corollary 2 or Proposition 4. By the Residue Theorem,

1

2π i

∫

oI(T,T′)
z−rF(z) =

∫

I(T,T′)
z−rRes

(

F(z)
dz
z

)

,

proving the theorem when P is a polynomial. When P is not polynomial, use Theo-
rem 3 in place of Proposition 4 in the last line. ��

Combining Theorems 2 and 4 yields the most useful form of the result: a represen-
tation of the coefficients ar in terms of integrals over relative homology generators
produced by the stratified Morse decomposition. In the following theorem we remove
the assumption that V∗ is smooth, though we still use residues at the smooth points.

Let σ1, . . . , σm enumerate the stationary points of V∗ in weakly decreasing order
of height c1 ≥ c2 ≥ · · · ≥ cm . For each j , denote the relevant homology pair by

(X+j , X+j ) := (V≤c j−ε ∪ Bj ,V≤c j−ε) (11)

where Bj is a sufficiently small ball around σ j in V. Let k j := dim Hd−1(X+j , X−j )

and let β j,1, . . . , β j,k j denote cycles in Hd−1(X+j ) that project to a basis for

Hd−1(X+j , X−j ) with integer coefficients.
In the case where σ j is a smooth point of V, stratified Morse theory [23] implies

that k j = 1 and β j,1 = oγ j is a cycle agreeing locally with a tube around the unstable
manifold γ j for the downward h r̂ gradient flow on V. This leads to the following
decomposition for ar.

Theorem 5 (stratified Morse homology decomposition) Let F = P/Q be rational.
Fix r̂∗, assume K∞(r̂∗) is empty, and enumerate the affine stationary points σ1 . . . , σm
as above. Then there are integers {n j,i : 1 ≤ j ≤ m, 1 ≤ i ≤ k j } such that

ar = 1

(2π i)d−1
m∑

j=1

k j∑

i=1
n j,i

∫

β j,i

z−rF(z)
dz
z

. (12)
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When σ j is a smooth point of V∗ then k j = 1, the cycle β j agrees locally with a tube
γ j around the unstable manifold γ j at σ j for the downward gradient flow of h r̂∗ on V
and the corresponding summand in (12) is given by

∫

γ j

Res

(

z−rF(z)
dz
z

)

.

Theorem 5 is the culmination of this Section, and provides a crucial (and highly
desired) tool for analytic combinatorics in several variables. Let j∗ be the least j for
which some n j,i is nonzero. Generically the dominant asymptotic term is then the sum
of the terms in (12) with n j,i = 0 and h r̂∗(σ j ) = h r̂∗(σ j∗). The full expansion has
several benefits over a statement of the leading term only. First, onemight not know j∗.
In fact in [5], the asymptotics of the diagonal coefficients are settled only by computing
all the residue integrals, then determining the integers {n j,i } via rigorous numerics.
Secondly, knowing the subdominant terms allows one to compute error estimates in
the case where the exponential rates are very close or are converging to one another.
Thirdly, sometimes G j is generated by a local cycle, supported in an arbitrarily small
neighborhood of σ j . This is a natural choice for α j , whence the next asymptotic terms
are meaningful. Fourthly, one may want a trans-series expansion of ar, for which the
contributions of all orders are needed.

3 Computation of Stationary Points at Infinity

We begin by recalling some background about stratifications and affine stationary
points.

Computing a Stratification

To compute stationary points one requires a stratification. Often, there is an obvious
stratification; for example, polynomial varieties are generically smooth, in which case
the trivial stratification {V} suffices7 In non-generic cases, however, one must produce
a stratification of V before proceeding with the search for stationary points.

There are two relevant facts to producing a stratification. One is that there is a
coarsest possible Whitney stratification, called the canonical Whitney stratification
of V. It is shown in [49, Proposition VI.3.2] that there are algebraic sets V = F0 ⊃
F1 ⊃ · · · ⊃ Fm = ∅ such that the set of all connected components of Fi \ Fi+1 for
all i forms a Whitney stratification of V and such that every Whitney stratification
of V is a refinement of this stratification. This canonical stratification is effectively
computable: an algorithm exists, given Q, to determine generators for the radical
ideals corresponding to the Zariski closed sets Fi .

Mostowski and Rannou [38] give an algorithm to compute stratifications using
quantifier elimination, leading to a bound on the computation time which is doubly

7 Formally one must join with the stratification generated by the coordinate planes, so smooth manifolds
intersecting coordinate subspaces nontransversely (which again, is non-generic) might require refinement.
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exponential in m; an alternative algorithmic approach is presented in [17, Section 2].
In our experience, the large doubly exponential upper bound is somewhat more pes-
simistic than what one has to deal with on actual combinatorial examples.

Computing the Affine Stationary Points

Assume now that a Whitney stratification {Σα : α ∈ A} is given, meaning the index
set A is stored, along with, for each α ∈ A, a collection of polynomial generators
fα,1, . . . , fα,mα for the radical ideal I(Σα). The set Σα is the algebraic set Vα :=
V( fα,1, . . . , fα,mα )minus the union of varieties Vβ of higher codimension. Potentially
by replacing I(Σα)with its prime components, we may assume that the tangent space
of Vα at any smooth point has constant codimension kα . After computing the canonical
Whitney stratification, recall that we refine if necessary to ensure that the defining
ideal for each stratum of co-dimension k has k generators with linearly independent
differentials at every point.

By Definition 3 the set of affine stationary points critaff(Σα, y) in the direction
y is defined, after removing points in varieties of higher codimension, by the ideal
containing the polynomials fα,1, . . . , fα,mα together with the (c+1)× (c+1)minors
of J(z, y). Taking the union over all strataΣα produces all the affine stationary points.
This description simply restates the so-called critical point equations given in [44,
(8.3.1-8.3.2)], or, in the common special case of a stratum of co-dimension one, more
explicitly by (8.3.3) therein.

For the fixed integer vector r and height interval [a, b], the inequalities h r̂(z) ∈
[a, b] impose further semi-algebraic constraints. Unfortunately, these increase the
complexity considerably and behave badly under perturbations of the integer vector r.
If one can compute open cones of values of r in which the structure of the computation
does not change, one can then pick a single r in the cone to minimize complexity,
making for a feasible computation. Otherwise, one must settle for computations based
on a fixed direction r.

Computing Stationary Points at Infinity

To determine whether there exist stationary points at infinity we use ideal quotients,
corresponding to the difference of algebraic varieties. Recall that the varietyV(I : J∞)

defined by the saturation I : J∞ of two ideals I and J is the Zariski closure of the
set difference V(I ) \ V(J ) (see [14, Section 4.4]), and can be determined through
Gröbner basis computations.

Definition 7 (saturated stationary point ideal Cα)

• For a stratum Σα let Cα be the projective ideal defining critaff(Σα, y). In other
words, taking the homogenizing variable to be z0, the ideal Cα is generated by
the homogenizations in the z variables of both fα,1(z, y), . . . , fα,mα (z, y) and the
(c + 1)× (c + 1) minors of J(z, y).

• Let Dα denote the ideal generated by z0z1 · · · zd and the homogenizations of all
polynomials fβ, j in strata of higher codimension kβ > kα .
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• Define Cα to be the result of saturating Cα by the ideal Dα .

Geometrically, the varietyV(Cα) is the Zariski closure ofV(Cα)\(V(z0z1 · · · zd)∪
V(F j+1)

)
, that is, the closure of that part of the graph of the relation z ∈ crit(y) in

CP
d×CPd−1 corresponding to points (z, y)whose z component is not on a substratum

and not at infinity (including the coordinate planes). Note that in this setting, the Zariski
closure equals the classical topological closure [39, Theorem 2.33].

Definition 8 (saturated ideals) Fix a stratum Σα .

• Let C∞α denote the result of substituting z0 = 0 in Cα .
• Let C∞α (r̂) denote the result of substituting y = r̂ in C∞α .

The variety V(C∞α ) finds all SPAI. The variety V(C∞α (r̂)) finds all SPAI in a given
direction r̂, that is, all limits of affine points in crit(Σα, y) with y→ r̂. This is stated
in the following proposition, whose proof follows directly from our definitions.

Proposition 6 (computability of stationary points at infinity)

(i) The rational function F(z) = P(z)/Q(z) has SPAI if and only if for some α there
is a projective solution to C∞α , in other words, a solution other than (0, . . . , 0).

(ii) The rational function F(z) = P(z)/Q(z) has SPAI in direction r̂ if and only if for
some α there is a projective solution to C∞α (r̂).

��
Proposition 6 computes a superset of what we need: SPAI regardless of height. We

only care about those at finite heights, indeed heights above the least affine stationary
value. Unfortunately, we do not know a way to automate the height computation,
which is not polynomial; doing so is an interesting problem for further research.

Problem 1 Find an effective way to compute crit[a,b](r̂), for irrational r̂ or as a
symbolic computation in r̂.

When r̂ is rational, we can do a little better. In this case the height(s) may be
computed from the start along with the stationary points themselves because the expo-
nentiated heights are polynomial. This gives the following corollary, whose use is
illustrated in the upcoming examples.

Corollary 3 Let r be an integer vector. Introducing one more variable η, let Hα denote
the ideal generated by Cα along with ηz|r|0 − zr. Let Hα be the result of saturating by
Dα , let H∞α be the result of substituting z0 = 0, and let H∞α (r) be the result of further
substituting y = r. Then there exists a H-SPAI of height log c in direction r if and only
if there is a solution to H∞α (r) with η-coordinate equal to c.

4 Examples

When Q is square-free and V is smooth, V itself forms a stratification. The pseudocode
in Algorithm 1 computes stationary points at infinity in this case (the pseudocode in
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Algorithm 2 computes stationary points at infinity in the general case but requires the
algebraic sets defining the canonical Whitney stratification of V as input). We have
implemented this algorithm in Maple and a worksheet with our code and examples is
available from ACSVproject.org (search for this paper) and the authors’ webpages.

Algorithm 1: Stationary points at infinity (smoothness assumption)

Input: Polynomial Q ∈ Z[z] and direction r ∈ Zd with V(Q) smooth
Output: Ideal C′ in the variables of Q and a homogenizing variable z0 such that there is a

stationary point at infinity if and only if the generators of C′ have a non-zero solution.
If Q is not square-free replace it with its square-free part (the product of its distinct irreducible
factors);

Let Q̃ = z
deg Q
0 Q(z1/z0, . . . , zd/z0);

Let C be the ideal generated by Q̃ and

y j z1(∂ Q̃/∂z1)− y1z j (∂ Q̃/∂z j ), (2 ≤ j ≤ d);

Saturate C by z0z1 · · · zd to obtain the ideal C;
Substitute y j = r j for 1 ≤ j ≤ d and return the resulting ideal with the generator z0z1 · · · zd
added.

Algorithm 2: Stationary points at infinity (no smoothness assumption)

Input: Polynomial Q ∈ Z[z], direction r ∈ Zd and polynomial generators of algebraic sets
F0 ⊃ F1 ⊃ · · · ⊃ Fm defining the canonical Whitney stratification of the zero set of Q

Output: Set of ideals S in the variables of Q and a homogenizing variable z0 such that there is a
stationary point at infinity if and only if there exists C′ ∈ S whose generators have a
non-zero solution.

Set S = ∅
For j from 1 to m − 1:

Compute the prime decomposition of ideals Fj = P1 ∩ · · · ∩ Pr
For each I ∈ {P1, . . . , Pr }:
Let c be the codimension of I ;
Let C be the ideal generated by I together with the (c + 1)× (c + 1) minors of the matrix

J(z, y)
in (5) with the fi polynomials set to the generators of I ;
Homogenize C in the z variables with the new variable z0 to obtain the ideal C ′;
Saturate C ′ by z0z1 · · · zd to obtain the ideal C;
Substitute y j = r j into C for 1 ≤ j ≤ d and put this ideal with z0z1 · · · zd added into S;

Return S

We give three examples in the smooth bivariate case, always computing in the main
diagonal direction r = (1, 1) and examining the coefficients an,n of 1/Q. In the first
example there is no affine stationary point; it follows that there must be a stationary
point at infinity which determines the exponential growth rate. In the second there
are both stationary points at infinity and affine stationary points, with the stationary
point at infinity being too low to matter. In the third, the stationary point at infinity
is higher than all the affine ones and controls the exponential growth rate of diagonal
coefficients.
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Example 2 (smooth case, stationary point at infinity) Let Q(x, y) = 2− xy2− 2xy−
x + y, so that V is smooth and we can use the above code for the diagonal direction
r = (1, 1). First, an examination of the polynomial system Q = ∂Q/∂x−∂Q/∂ y = 0
shows there are no affine stationary points. Thus, if there were no stationary points at
infinity then the diagonal coefficients of Q(x, y)−1 would decay super-exponentially.
It is easy to see that this does not happen, for example by extracting the diago-
nal. This may be done via the Hautus–Klarner–Furstenberg method [9,27], giving
ΔQ(x, y)−1 = (1− z)−1/2/2.

We compute the existence of stationary points at infinity in the diagonal direction
using our Maple implementation via the command

SPatInfty(2 - x*yˆ2 - 2*x*y - x + y , [1,1])

This returns the ideal

[(H - 1)ˆ2 , Z, y (H - 1), x ]

where Z is the homogenizing variable, meaning the projective point (Z : x : y) =
(0 : 0 : 1) is a stationary point at infinity, which has height log |1| = 0. The stationary
point at infinity is a topological obstruction to the gradient flow across height 0, pulling
trajectories to infinity; it suggests that the diagonal power series coefficients of 1/Q
do not grow exponentially nor decay exponentially (in fact they decay like a constant
times 1/

√
n). Further geometric analysis of this example is found in [15, pages 120–

121].

Example 3 (highest stationary point is affine) Let Q(x, y) = 1 − x − y − xy2.
To look for stationary points at infinity in the diagonal direction, we execute
SPatInfty(Q,[1,1]) to obtain the ideal

[(H + 1)(4Hˆ2 + 4H - 1), Z, y(H + 1), x]

showing that (x : y : Z) = (0 : 1 : 0) is a stationary point at infinity at height
log | − 1| = 0. This time, there is an affine stationary point (1/2,

√
2 − 1) of greater

height. This affine point is easily seen to be a topological obstruction and therefore
controls the exponential growth. Theorem 4 allows us to write the resulting integral
as a saddle point integral in V∗ over a class local to (1/2,

√
2− 1), thereby producing

an asymptotic expansion with leading term an,n ∼ cn−1/2(2+√2)n .

Example 4 (stationary point at infinity dominates affine points) Let Q(x, y) = −x2y−
10xy2− x2− 20xy− 9x + 10y+ 20. This time SPatInfty(Q,[1,1]) produces

[(2 Hˆ4 - 11 Hˆ3 + 171 Hˆ2 - 1382 H + 3220) (H-1)ˆ2, Z, y (H-1), x]

Again, because x and y cannot both vanish, the only height of a stationary point
at infinity is log |1| = 0. There are four of affine stationary points: a Gröbner basis
computation produces one conjugate pair with |xy| ≈ 9.486 and another conjugate
pair with |xy| ≈ 4.230. Both of these lead to exponentially decreasing contributions,
meaning the point at infinity could give a topological obstruction for establishing
asymptotics. If there is an obstruction, it would increase the exponential growth rate of
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diagonal coefficients from 4.23−n to no exponential growth or decrease. To settle this,
we can compute a linear differential equation satisfied by the sequence of diagonal
coefficients. This reveals that the diagonal asymptotics are of order an,n # n−1/2,
meaning the exponential growth rate on the diagonal is in fact one.

Example 5 (dominant asymptotics with no SPAI) If Q(x, y, z) = 1− x − y − z− xy
then running SPatInfty(Q,[1,1,1]) shows there are no SPAI. The two affine
stationary points are computed easily,

σ1 =
(

−3+√17

4
,−3+√17

4
,
7+√17

8

)

σ2 =
(

−3−√17

4
,−3−√17

4
,
7−√17

8

)

,

so Theorem 5 implies

an,n,n = 1

(2π i)2

2∑

j=1

∫

β j

z−rRes
(

F(z)
dz
z

)

where β1 and β2 are, respectively, the downward gradient flow arcs on V at σ1 and
σ2. Saddle point integration gives an asymptotic series for each, the series for σ1
dominating the series for σ2, yielding an asymptotic expansion for an,n,n beginning

an,n,n =
(
3+√17

2

)2n (
7+√17

4

)n

· 2

nπ
√
26
√
17− 102

(

1+ O

(
1

n

))

.

The following application concerns an analysis in a case where V is not smooth.
There is an interesting singularity at (1/3, 1/3, 1/3, 1/3) and a geometric analysis
involving a lacuna [5], which depends on there being no stationary points at infinity at
finite height. This example illustrates shows the full power of the results in Sect. 2.3–
2.5.

Example 6 (application to GRZ function) In [6], asymptotics are derived for the diag-
onal coefficients of several classes of symmetric generating functions, including the
family of 4-variable functions {1 − x − y − z − w + Cxyzw : C > 0} attributed to
Gillis, Reznick and Zeilberger [21]. The most interesting case is when the parameter
C passes through the stationary value 27: diagonal extraction and univariate analysis
show the exponential growth rate of the main diagonal to have a discontinuous jump
downward at the stationary value [6, Section 1.4]. This follows from Corollary 1 if we
show there are in fact no stationary points at infinity above this height. Here there is
a single point where the zero set of Q is non-smooth, the point (1/3, 1/3, 1/3, 1/3).
Running Algorithm 1 with the modification to remove the single non-smooth point
yields the ideal [Z,zˆ4,−z+ y,−z+ x,−z+ w] which has only the trivial solu-
tion Z = w = x = y = z = 0. Thus, there is no stationary point at infinity for the
diagonal direction.
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There are three affine stationary points, one at (1/3, 1/3, 1/3, 1/3), one at
(ζ, ζ, ζ, ζ ) and one at (ζ , ζ , ζ , ζ ), where ζ = (−1 − i

√
2)/3. Call these points x(1),

x(2), and x(3). The stationary point with the greatest value of hr (in the main diagonal
direction) is (1/3, 1/3, 1/3, 1/3), which has height log 81. The other stationary points
both have height log 9. By a somewhat involved topological process, it is checked
in [5] that πT = 0 in H4(B ∪Mlog 81 − ε,Mlog 81 − ε), where B is a small ball cen-
tered at x(1). Crucially for the analysis after that, it follows from Proposition 2 that T
is homologous to a chain supported inMc2+ε. In other words, T can be pushed down
until hitting obstructions at (ζ, ζ, ζ, ζ ) and (ζ , ζ , ζ , ζ ). In fact an alternative analysis
using a differential equation satisfied by the diagonal verifies a growth rate of 9n , not
81n . By means of Theorem 4, the coefficients an,n,n,n may be represented as a residue
integrals and put in standard saddle point form. When this is done, one obtains the
more precise asymptotic Kn−3/29n . The value of K depends on geometric invariants
(curvature) and topological invariants (intersection numbers) and can be deduced by
rigorous numeric methods. Details are given in [5, Section 8].

We end with a three-dimension example with SPAI that are irrelevant for asymp-
totics.

Example 7 (irrelevant SPAI in three dimensions) Consider the diagonal direction and

Q(x, y, z) = 1− x + y − z − 2xy2z.

There are two affine stationary points, x± =
(
1
3 ,

9±√105
4 , 1

3

)
. Running our algorithm

shows there is also a stationary point at infinity of height − log | − 1/2| = log(2).

Since the height of x− is − log
∣
∣
∣ 9−

√
105

36

∣
∣
∣ > log(2), the stationary point at infinity

does not affect dominant asymptotics of 1/Q. One can get a mental picture of the
situation by examining the Newton polytope of Q. Due to the monomials x, y, and z,
the dual cone of the Newton polytope at the origin is the negative orthant. Thus, the
component B of amoeba(Q) corresponding to the power series expansion of 1/Q
admits the negative orthant as its recession cone. This implies one cannot move along
a direction perpendicular to (1, 1, 1) and stay in B, so the stationary point at infinity
comes from other components of the amoeba complement. In fact, the stationary point
at infinity lies on the closure of the complements of amoeba(Q) corresponding to the
vertices (0, 1, 0) and (1, 2, 1) of the Newton polytope of Q; it can be directly verified
that both of these components have a recession cone containing a vector normal to
the diagonal direction. Ultimately, the lack of a stationary point at infinity of highest
height implies an asymptotic expansion of the diagonal of 1/Q beginning

an,n,n =
(

−27+ 3
√
105

2

)n

·
√
3

2nπ

(

1+ O

(
1

n

))

.
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5 Proof of Theorem 1

In the log-space, the phase function h becomes the linear function h̃ mapping x to
〈r̂, x〉. We denote by dh̃Σ(x) the tangential differential, meaning the restriction of the
differential of the phase function (in log space) to the tangent space to Σ at the point
x ∈ Σ .

Lemma 1 Assume that crit∞[a,b](r̂) = ∅ for some real interval [a, b]. Then for every

neighborhood N of critaff[a,b](r̂), there is a δ > 0 such that

∣
∣
∣dh̃Σ(x)

∣
∣
∣ ≥ δ (13)

at every affine point x ∈ Ṽ \ N whose height is in the interval [a, b]. In particular,
if there are no affine stationary points then |dh̃Σ(x)| is globally at least δ for some
δ > 0.

Proof It suffices to prove this separately for each of the finitely many strata. We may
therefore fix r̂ and Σ . Also fixing a < b, we let Σ[a,b] denote the intersection of
a stratum Σ in the log space with the set of points having heights in [a, b]. Assume
towards a contradiction that the norm of the tangential differential is not bounded from
below on Σ[a,b] \ N where N is a neighborhood of critaff(r̂) in the log space. Let
xk be a sequence in Σ[a,b] \N for which the left-hand side of (13) goes to zero; this
sequence has no limit points whose height lies outside of [a, b] and no limit points in
critaff[a,b](r̂). There are also no affine limit points outside of crit(r̂); this is because if
x→ y with y in a stratum Σy ⊂ Σ then |dh̃Σy (y)| ≤ lim infx→y |dh̃Σ(x)|, since the
projection of the differential onto a substratum is at most the projection onto Σ .

By compactness {xk} must have a limit point x ∈ CP
d . It follows from ruling

out noncritical points, and affine stationary points with heights inside or outside of
[a, b], that x ∈ H∞. Passing to a subsequence if necessary, h̃(xk) converges to a point
c ∈ [a, b]. The differential of the phase on the log space is the constant co-vector r̂.
Therefore, convergence of the norm of the tangential projection of the differential to
zero is equivalent to the projection yk of r̂ onto the normal space toΣ at xk converging
to r̂ (here we make repeated use of the identification of normal spaces to the phase
function at different points of log-space). The points (xk, yk, h̃(xk)) have thus been
shown to converge to (x, r̂, c). Furthermore, each (xk, yk, h̃(xk)) is in R(Σ, r̂) due to
the choice of yk as a nonzero vector in the normal space to Σ at xk . The sequence
is therefore a witness to a stationary point at infinity of height c, contradicting the
hypothesis and proving the lemma. ��

Recall from [35, Section 9] the notion of a stratified vector field. Given a Whitney
stratification ofL, a stratified vector field v is defined to be a collection {vΣ } of smooth
sections of (Σ, TΣ). Greatly summarizing Sections 7 and 8 of [35], a stratified vector
field is said to be controlled if for any strata Σ ⊆ ∂Σ ′,

(i) 〈dρ, vΣ ′ 〉 = 0 where ρ is the squared distance function to Σ in a given local
product structure, and
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(ii) projection from Σ ′ to Σ in this local product structure maps vΣ ′ to vΣ .

Proposition 9.1 of [35], with P = R, f = h and ζ the constant vector field−d/dx
on R, says that there is a controlled lift of ζ to L, that is a controlled stratified vector
field v mapping by h∗ to ζ . This will be almost enough to prove Theorem 1. What we
need in addition is a uniform bound on |v|. Although Mather (and Thom before him)
was not interested in bounding |v| (indeed, their setting did not allow a meaningful
metric), his proof in fact gives such a bound, as we now show.

Lemma 2 Let a < b be real and suppose {Σα} is a Whitney stratification of Ṽ for
which there are no finite or infinite stationary points with heights in [a, b]. Assume a
given set of projections and distance functions satisfying the control conditions of [35,
Sections 7-8]. Then there is a vector field v in the log space, in other words a section
of TL, over the base set L ∩ h̃−1[a, b], with the following properties.

(i) control: v is a controlled stratified vector field for the stratum Σ .
(ii) unit speed: 〈dh̃, v〉 ≡ −1.
(iii) regularity: v is bounded.

Before beginning the proofwemotivate itwith a shorter argument that does not quite
hold water. By Lemma 1, the negative unit gradient vector field vΣ on each stratum
has magnitude at least δ. For each point x in a stratum Σ , take a neighborhoodNx in
C
d∗ intersecting no lower dimensional strata and for which vΣ extends continuously

to a vector field vx for which 〈dh̃, vx 〉 ≥ δ/2. Piece these together with a partition of
unity. By convexity the resulting vector field v has norm at most 1 everywhere. By
linearity 〈dh̃, vx 〉 ≥ δ/2 everywhere. This is the natural argument. The gap is that
the local product structure does not, on the surface, guarantee a bounded continuous
extension of vΣ . This must be argued; however, as mentioned above, it follows from
Whitney’s conditions and is implicit in Mather’s arguments.

Proof ByLemma 1, the tangential differential dh̃Σ is globally bounded from below by
some positive quantity δ. Hence, the hypotheses of [35, Proposition 9.1] are satisfied
with V = L and the given Whitney stratification, P = R, f = h and ζ the negative
unit vector field on R. Following the proof of [35, Proposition 9.1], which already
yields conclusions (i) and (i i) of the lemma, the only place further argumentation
is needed for boundedness and continuity is at the bottom of page 494. There, vΣ is
constructed inductively given vΣ ′ on all strata of lower dimension. The word “clearly”
in the third line from the bottom of page 494 hides some linear algebra which we now
make explicit.

We assume that X and Y are strata, with X ⊆ ∂Y and dim X = m < � = dim Y .
First we straighten X near a point x ∈ X . In a neighborhood N of x in the ambient
space R2d there is a smooth coordinatization such that Rm × 0 maps to X . Applying
another linear change of coordinates if necessary, we can assume that vX (x) = e1.
This requires a distortion of magnitudes of tangent vectors by 1/|dh̃X | at the point x ;
taking N small enough, we can assume that the distortion on the tangent bundle over
N is bounded by twice this, hence globally by at most 2/δ.

Whitney’s Condition A stipulates that as y ∈ Y converges to a point x ∈ X , any
limit �-plane of a sequence Ty(Y ) must contain Tx X = R

m × 0. This implies for
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1 ≤ j ≤ m that the distance of e j to Ty(Y ) goes to zero (recall we have identified
the tangent spaces Ty(Y ) for different y). Hence, for 1 ≤ k ≤ m there are vectors
ck(y) ∈ (Rm)⊥ going to zero as y→ x , such that ek + ck(y) ∈ Ty(Y ). These vectors
ck(y) may be chosen as smooth functions of y ∈ Y , continuously as y → x ∈ X ;
this follows because the tangent planes Ty(Y ) vary continuously with y ∈ Y and
semicontinuously as y → x ∈ X , meaning that Tx (X) is contained in the liminf of
Tyn (Y ). The vectors fk := ek+ck(y) are linearly independent for 1 ≤ k ≤ m because
their projections to the first m coordinates are linearly independent; hence they may
be completed to a basis { f1, . . . , f�} of Ty(Y ).

Let {yn} be a sequence of points in Y converging to x ∈ X . Write yn as (xn, zn)
with x ∈ R

m in local coordinates and z ∈ R
2d−m . Apply Whitney’s Condition B

applied to the sequences {yn} in Y and {xn} in X . Passing to a subsequence in which
Tyn (Y ) → τ and zn/|zn| → u, Whitney’s Condition B asserts that u ∈ Tx (Y ).
Because Tx (Y ) ⊆ τ , it follows that the distance between zn/|zn| and Tyn (Y ) goes
to zero. Hence there is a sequence cm+1(yn) → 0 in (Rm)⊥ as n → ∞ such that
zn/|zn| + cm+1(yn) ∈ Tyn (Y ) for all n. Because cm+1 ∈ (Rm)⊥, it follows that we
may choose the basis {1 j : 1 ≤ j ≤ �} so that fm+1(y) = z(y)/|z(y)| + cm+1(y).

Now we have what we need to construct a controlled vector field on Y that is
controlled and close to e1. In fact we can construct one that is spanned by f1, . . . , fm+1
using linear algebra. Write

v(y) =
m+1∑

j=1
a j (x(y), z(y)) f j (y) . (14)

Guessing at the solution, we impose the conditions 〈v, e j 〉 = δ1, j for 1 ≤ j ≤ m.
This implies the second control condition, namely that v is preserved by projection
from Y to X . The first control condition, preservation of distance along the vector
field, means that 〈v, z/|z|〉 = 0 in local coordinates. Thus we arrive at the following
system.

〈v, e1〉 =
m+1∑

j=1
a j 〈 f j , e1〉 = a1 + am+1〈cm+1, e1〉 = 1

〈v, e2〉 =
m+1∑

j=1
a j 〈 f j , e2〉 = a2 + am+1〈cm+1, e2〉 = 0

...

〈v, em〉 =
m+1∑

j=1
a j 〈 f j , em〉 = am + am+1〈cm+1, em〉 = 0

〈

v,
z

|z|
〉

=
m+1∑

j=1
a j

〈

f j ,
z

|z|
〉

= am+1 +
m∑

j=1
a j

〈

c j ,
z

|z|
〉

= 0
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We may write this as (I + M)a = (1, 0, . . . , 0)T where I is the (m + 1) × (m + 1)
identity matrix and M → 0 smoothly as y → x . Therefore, in a neighborhood of x
in Y , the solution exists uniquely and smoothly and converges to e1 as y → X . This
allows us to extend v from X to a controlled vector field in a neighborhood of X in Y ,
varying smoothly on Y \ X and extending continuously to X , with the properties that
〈dh̃Y , v〉 ≡ −1 and that the norm on Y is at most a bounded multiple of the norm on
X .

The solution of the control conditions together with the condition 〈dh̃Y , v〉 ≡ −1
are a convex set; a partition of unity argument as in [35] preserves continuity, and, by
the triangle inequality, global boundedness of v. ��

We are now ready to complete the proof of Theorem 1.

Proof (of conclusion (i) of Theorem 1) Choose a vector field v as in the conclusion of
Lemma 2. LetD be the setL∩ h̃−1[a, b], inheriting stratification from the pair (L, Ṽ).
On each stratum of D the vector field v is smooth and bounded. Let D′ be the space-
time domain {(x, t) ∈ D×R

+ : t ≤ h̃(x)− a}. Let Ψ : D′ → D be a solution to the
differential equation

d

dt
Ψ (x, t) = v (Ψ (x, t)) ; Ψ (x, 0) = x .

Such a flow exists on each stratum because v is smooth and bounded, and the phase
exit the interval [a, b] in finite time h̃(x)− a ≤ b− a; therefore each trajectory stays
within a uniformly bounded vicinity of its starting point. Hence, by compactifying the
support of the vector field if necessary, the flow exists for the time necessary for the
height to drop below a from any point of the stratum, and is smooth, hence is well-
defined everywhere on the stratum. As in [35, Section 10], the local one-parameter
group of time-t maps are all injective. Because the flow preserves the squared distance
functions to strata, the flow started on a stratum X cannot reach a stratum Y ⊆ ∂X ;
hence the time-t maps preserve strata. Continuity of the vector field implies continuity
of the time-t maps.

Extend the flow to D × [0, b − a] by setting Ψ (x, t) = Ψ (x, h̃(x) − a) for t >

h̃(x) − a. By construction the flow is tangent to strata, hence the flow is stratum
preserving. The flow is continuous because the velocity is bounded and the stopping
time h̃(x)− a is continuous. For any stratum Σ , the flow defines a homotopy within
Σ≤b whose final cross section is in Σ≤a . ��
Proof (of conclusion (ii) of Theorem 1) Still in the logspace, for any r ≥ 0, letNr denote
the union of closed r -balls about the affine stationary points; in particularN0 is the set
of stationary points. Due to the presence of affine stationary points, we may no longer
invoke the conclusions of Lemma 2. We claim, however, that the conclusions follow
if (i i i) is replace by (i i i ′): v is bounded and continuous outside any neighborhood
Nr of the affine stationary points. This follows from the original proof because the
distortions are bounded by constant multiples of the quantities 1/|dh̃X |, while by
Lemma 1 |dh̃X | is uniformly bounded away from zero outside any neighborhood of
the affine stationary points. Fix the vector field v = vr satisfying conclusions (i) and
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(i i) of Lemma 2 and (i i i ′) above and let K = K (r) be an upper bound for |v(r)|
outside of Nr/2.

We build a deformation in two steps. Fix r > 0 and set ε = r/K (r). Next, apply
Lemma 2 with [c + ε, b] in place of [a, b], which we can do because there are no
stationary points with heights in [c + ε, b]. This produces a deformation retract of
h−1(−∞, b] to h−1(−∞, c + ε].

Nowwe compose this with a slowed down version of v. The hypotheses of no affine
or infinite critical values in [a, b] other than at c imply the same hypotheses hold over
a slightly large interval [a−θ, b]. Let χ : [0,∞)→ [0, 1] be a smooth nondecreasing
function equal to 1 on [1,∞) and 0 on [0, 1/2). Define the vector field w = wr on
h−1[a − θ, b] by

w(x) := χ (||x ,N0||) · χ

(
h(x)− (a − θ)

θ

)

· v(x) ,

where ||·, ·|| denotes distance. Because v defines a flow, so does w, the trajectories of
which are precisely the trajectories of v slowed down inside Nr and below height a.
Note that the trajectories of w stop completely inside Nr/2 and below height a − θ ,
however, trajectories not in these regions slow down so as never to reach Nr/2 nor
height a − θ .

Run the flow defined by v at time 2ε. LetΣ be any stratum and let x be any point in
Σ≤c+ε. Let τx : [0, ε] → Σ be the trajectory started from x (the trajectory remains in
Σ because v is a controlled stratified vector field).We claim that the time-2εmap takes
x to a point in Σ<c ∪ N3r . Because r is arbitrary, this is enough to prove theorem.
The flow decreases height, so we may assume without loss of generality that x ∈
h−1[c, c+ ε]. If the trajectory never entersNr then height decreases at speed 1, hence
τx (2ε) ∈ Σ≤c−ε and the claim follows. If the τx (2ε) ∈ Nr then trivially the claim is
true. Lastly, suppose the trajectory enters Nr and leaves again. Let s ∈ (0, 2ε) be the
last time that τx (s) ∈ Nr . Because |v| ≤ K , we have ||τ(2ε),N0|| ≤ r + 2εK ≤ 3r ,
that is, τ(2ε) ∈ N3r , finishing the proof of the claim. ��
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A Appendix

We now give an abstract answer to [41, Conjecture 2.11], in a manner suggested to us
by Justin Hilburn and Roberta Guadagni. Let H(z) := zm be the monomial function
on Cd∗ and G ⊂ Cd∗ × C

∗ its graph. An easy case of toric resolution of singularities
(see, e.g., [28]) implies the following result.

Theorem 6 There exists a compact toric manifold K such that Cd∗ embeds into it as
an open dense stratum and the function H extends from this stratum to a smooth
P
1-valued function on K .
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Proof The graph G is the zero set of the polynomial Pm := h − zm on Cd∗ × C
∗,

where h is the coordinate on the second factor. Theorem 2 in [28] implies that a
compactification ofCd∗×C∗ inwhich the closure ofG is smooth exists if the restrictions
of the polynomial Pm to any facet of the Newton polyhedron of Pm is nondegenerate
(defines a nonsingularmanifold in the corresponding subtorus). In our case, theNewton
polytope is a segment, connecting the points (m, 0) and (0, 1), and this condition
follows immediately. Hence, the closure of G in the compactification of Cd∗ × C is a
compact manifold K . We notice that the projection to Cd∗ is an isomorphism on G,
and therefore K compactifies Cd∗ in such a way that H lifts to a smooth function on
K .

Lifting the variety V∗ to G ⊂ K and taking the closure produces the desired result:
a compactification of V∗ in a compact manifold K on which H is smooth. ��

A practical realization of the embedding requires construction of a simple fan
(partition ofRd+1 into simplicial cones with unimodular generators) which subdivides
the fan dual to the Newton polytope of h − zm. While this is algorithmically doable
(and implementations exist, for example in macaulay2), the resulting fans depend
strongly on m, and the resulting compactifications K are hard to work with.

Definition 9 (compactified stationary point) Define a compactified stationary point of
H , with respect to a compactification of Cd∗ to which H extends smoothly, as a point
x in the closure of V such that dH vanishes at x on the stratum S(x), and H(x) is not
zero or infinite.

Applying basic results of stratified Morse theory [23] to K directly yields the fol-
lowing consequence.

Corollary 4 (no compactified stationary point implies Morse results) (i) If there are
no stationary points or compactified stationary points with heights in [a, b], then V≤b
is homotopy equivalent to V≤a via the downward gradient flow.

(i i) If there is a single stationary point x with critical value in [a, b], and there is
no compactified stationary point with height in [a, b], then the homotopy type of the
pair

(M≤b , M≤b
)
is determined by a neighborhood of x, with an explicit description

following from results in [23].
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