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A partition A F n is a sequence of nonnegative integers
A=A > A >..0)
with
n=IA=XA+X+--

N,, = # partitions of n

A Constructive theory of Partitions, arranged in three
Acts, an Interact and an Exodion.

By J. J. SYLVESTER, with Insertions by Dr. F. FRANKLIN.

(2) The most obvious mode of graphically representing a partition is by
means of a network or web formed by two systems of parallel lines or filaments.
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What are Partitions?

A partition A F n is a sequence of nonnegative integers

A=A > A >..0)
with

n=IA=XA+X+--
N,, = # partitions of n

Ny (m) = # partitions of n with at most m parts

N, (¢, m) = # partitions of n with at most m parts of size ¢




Why Partitions?

e Index conjugacy classes and irreducible representations of Sn
e Signatures of irreducible polynomial representations of GLn
e Basis for the ring of symmetric functions

e Connections to Lie algebra identities

e Arise in physics

(ex: Baxter’s solution of the hard hexagon model)



g-Binomial coeflicients

N, (¢, m) = # partitions of n with at most m parts of size /¢

This is also the ¢-binomial coefficient

{+m _ HfiT(l_qi) :emN .
( m >q Hle(l—qi)H?ll(l—qi) 7;) n(6m)g

They
e Count /-dimensional subspaces of Ff]+m

o« Count lattice paths taking fixed # of north and east steps

e Appear in statistical tests (Wilcoxon rank sum test)
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History of Partitions

Partitions w/ restricted parts and sizes studied at least as far back as
Bishop Wibold of Cambrai (c. 965) in the context of dice

Leibniz appears to be first interested explicitly in partitions (“divulsions”)

LEIBNITII AD BERNOULLIUM.

An unquam confiderafti numerum difcerptionum vel divuliionum
numeri dati, quot fcilicet modis pollit divellijin partes duas, tres,
&c. Videtur mihi ejus determinatio non facilis, & tamen digna

qu habeatur. Dabam Hanovere 28. Juli 1699.

Deditiffimus

(Excerpt from 1745 printing of Leibniz-Bernoulli letters) G. G. LeienNiTI US.



(Generating Function

First major results by Fuler in
1748, using generating function

O , @) 1
Z Nng™ = H 1 — ¢
n=0 I=1

Euler’s use of generating functions was
the most 1mportant 1innovation 1n the
entire history of partitions. Almost every
discovery 1in partitions owes something to
Euler’s beginnings. - George Andrews

INTRODUCTIO

L N AN AL T8 N

INFINITORUM.

AUCTORE

LEONHARDO FULERO,
Profeffore Regio BEROLINENSI, €9 Academiz I~

periales Scientiarnm PETR 0vOLITAN £
Socto.

TOMUS PRIMUS

\" ‘ :,
e '-‘5 ) . -
LAUSANNGZE,
| ] - -
e V' - ~

Apud MAR CUM-MICHAELEM BousQueT & Socios.

-

MDCCXLVIIL



DE PARTITIONE NUMERORUAM. 253

S S Pl Pk E

De Partitione numerorum.

~ 305. Si ponatur z==1x, atque fimiles Poteftates ipfius x
conjunétim exprimantur , hec expreflio

- ) |

\—_—-—-\—-—-——.——-‘:—" — ——————————————————
(st)(l——x’/(l——-x’)(l*-x")(l——x’)(l-——x‘) &e. 5

evolvetur in hanc Seriem
1 & x4 300+ 5x% 90’ foraxt e rsa7 4 2% &l

in qua quilibet coéfliciens indicat, quot variis modis Exponens
Poteftatis adjunéte per additionem produci queat ex numeris
inteeris , five 2qualibus five inzqualibus. Scilicet ex termino



History

In 1856, Cayley conjectured that for fixed ¢, m the sequence N, (¢, m)

1S unimodal:
1 = NO(évm) < Nl(&m) < --- < NLmZ/QJ > e 2 ng(f,m) =1

Proven by Sylvester via representation theory of sk
Several modern proofs, none asymptotic - none with good bounds

XXYV. Proof of the hitherto undemonstrated Fundamental
Theorem of Invariants. By J.J. SYLVESTER, Professor of
Mathematics at the Johns Hopkins University, Baltimore®.

AM about to demonstrate a theorem which has been wait-
ing proof for the last quarter of a century and upwards.

At the moment of completing a memoir, to ap in Borchardt’s
Journal, demonstrating my quarter-of-a~century-old theorem for enabling
Invariants to procreate their species, as well by an act of self-fertilization
as by conjugation of arbitrarily paired forms, the unhoped and unsought-
for prize fle into my lap, and I accomplished with scarcely an effort a task

which I had believed lay outside the range of human power.
November 13, 1877.



History

(Pak and Panova 2013)

g-binomial coefficients are strictly unimodal

Authors later showed
IV's

Nou(€;m) = Ny (€,m) 2 0.004 57,

s = min{2n, £, m*}

Use that

N, (¢,m) — Ny—1(6,m) = g((¢m — n,n), m", m")

Kronecker coefficient (describes decomposition of tensor product of two reps of Sn).
Geometric complexity theory relies on (conjectured) ability to show positivity in poly time.



Asymptotics




Statement of the main theorem.
THEOREM. Suppose that

(171)

__Ng d
| ¢°(“)‘21r42dn( A
where C and A\, are defined by the equations (1'63), for all positive integral
values of q; that p is a positive integer less than and prime to ¢ ; that @, 4 1s
a 24q-th oot of unity, defined when p is odd by the formula

(1721)

- 1 ’ ’ .
one=() exp| - {1 2= pa-p) + w(a-7) o~ + )} i,
and when q is odd by the formula
(1722). )
W i 13- “1 2p - o' + 520"} a7
@p,q ( 7 )eXPL {i(q 1)+1‘y(q q) (2p-p +p’p)}m],
where (afb) is the symbol of Legendre and Jacobit, and p’ is any positive

integer such that 1+ pp’ is divisible by q ; that

(173) Aq (n) =3 wp, qg"’ml’”‘/q,'
(p)

and that a s any positive constant, and v the integral part of a/n.

Then

(174) »(n) =%Aq¢q+ 0 (n),

8o that p (n) s, for all sufficiently large values of n, the integer nearest to

(175) 3 4,4,
1
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Asymptotics

Herschel (1818), Cayley (1855), Sylvester (1882)
Asymptotics of N, (m) for small fixed m

Easy using partial fraction decomposition

Hardy and Ramanujan (1918)
Asymptotics of N,, (w/ error tending to 0)

() ~ S Py (gﬁ)'
P 4n4/3 PiTy\38/)

Rademacher (1937)

Convergent series expansion of N,,




Asymptotics of Nn(m)

Erdos and Lehner (1941)

nm—l

Ny, (m) ~ for m = 0(n1/3)

m!(m — 1)!

Szekeres (1953)

THEOREM 1. Let n/k? be bounded, n < c, k?, and let B, v be determined
from

wehoF f =1 d‘ﬂﬁ(ev_l )+l =
(1

Then, unsformly in n and k,

P(n, k) = ——B *B-‘exp[2ﬂ —-——-dt (vﬂ+§)log(l e~%)4-

0

= ‘1)][1+Bl(v>ﬂ-l+ A+ Bay(0)B-41+0(8-™)]  (2)

for any given m > 0, where

" dt=2 (3)

- (e'—l)a



Asymptotics of Nu(l,m)

Mann and Whitney (1947)
Size of a uniform random partition in a rectangle satisfies a

normal distribution

Takacs (1986)

1 {4+ m 1 (n—0m/2\"
N, (£, m) ~ = | o=/ 1)/12
(£,m) ae,m\/ﬁ< l )exp { 2 ( 0¢,m ) } ot Vim(t=m+1)/

when

n—tm/2| < Kopm = O (\/Zm(é T m))



Asymptotics of Nn(l,m)

0 0.2 0.4 0.6 0.8 1
B

Figure 1: Exponential growth of Np,,2(m,m) predicted by Takécs’ formula (blue, above) compared to the
actual exponential growth
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1 c+d
1 1 ectd — 1
A= dt — 1= =1
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Our Results

We give asymptotics in all cases where a limit shape exists

{/m—A and n/m*— B

Given A and B, let ¢ and d be defined from

1 c+d
1 1 ectd — 1
A= dt — 1= =1
,/0 1 —e—c—dt d0g<ec—1>

! t 1 dlog(l —e %) 4 dilog(1 — e~°) — dilog(1 — e~ ¢~ %)
o0 1—ec~adt 2 d?

and set

.~ 2Be“(e?—1) +2A(ec—1) -1 A2
B d?(edtc —1)(ec — 1) d?

A :



Our Results

We give asymptotics in all cases where a limit shape exists

{/m—A and n/m*— B

Given A and B, let ¢ and d be defined from

1 c+d
1 1 ectd — 1
A= dt —1 = -1
/0 1 —e—c—dt dog(ec—1>

dt — —

/1 t 1 dlog(l —e %) 4 dilog(1 — e~°) — dilog(1 — e~ ¢~ %)
B — —
0 ]. — e_c_dt 2 d2

and set
Sufficient to consider

A= B




A=1{/m
Our Results B =n/m’

Theorem (M., Panova, Pemantle 2018)

Let K be a compact subset of {(x,y) : x > 2y > 0}
As m — oo and [ and n vary so that (A,B) remains in K,

6m[(:A—I—chB—lc)g(l—e_c_d)]
2rm2y/A (1 —e=¢) (1 — e—c—d)

where ¢ and d vary in a Lipshitz manner with (A,B)

N, (¢, m) ~

Our methods allows us to determine the expected limit curve



0.8

0.6

0.4-

0.2

0

0 02 04 06 08 1
Limit curve of (A, B) = (1,1/3) and ran-
dom partitions of size 120, 201 and 300.



A=/{/m
Our Results B =n/m’

Theorem (M., Panova, Pemantle 2018)

Let K be a compact subset of {(x,y) : x > 2y > 0}
As m — oo and [ and n vary so that (A,B) remains in K,

d
Npi1(d,m) — Np(€,m) ~ ENR(Z’ m)

This gives a significant asymptotic generalization of Sylvester’s

unimodality theorem



RANDOM GENERATION
AND
LOCAL LAMIT THEOREMS



Encoding by Gaps

Fix partition A = (A1,...,Ay) and define Ag :=¥¢, A, 41 =
A partition is uniquely determined by its gaps

CI?j .= )\j —)\j_|_1 Z 0



Encoding by Gaps

Fix partition A = (Aq,...,\,,) and define A\g := ¢,
A partition is uniquely determined by its gaps

CIJj .= )\j —)\j_|_1 Z 0

Being in the rectangle corresponds to

A

m+1 - — 0

¢
.~ _
)\1 1(131 - ZU-—D
A2 - _To
m -
>z =1t "
7=0
m A |
E j‘/I;] — ] A’i—i—l 4———32—1——_’
7=0
Am




Encoding by Gaps

This is a bijection: given g,...,Z, = 0 with
m m
> @i = D dzi=n (¥
§=0 7=0

the partition with \; =¢ —x9 —--- — x,;_1 is in the rectangle.

Suppose we want to generate a partition uniformly at random
Generate a non-negative tuple subject to (%)



Encoding by Gaps

This is a bijection: given g,...,Z, = 0 with
m m
> @i = D dzi=n (¥
§=0 7=0

the partition with \; =¢ —x9 —--- — x,;_1 is in the rectangle.

Suppose we want to generate a partition uniformly at random
Generate a non-negative tuple subject to (%)

Random var X has geometric distribution with parameter p it

P(X=Fk)=p-(1—p)*, k=0,1,...



Rejection Sampling

Suppose X = (xg,...,T,) satisfies (x)
X = (Xo,...,X;m) RV geometrics with parameters po,...,Pm

Then



Rejection Sampling

Suppose X = (xg,...,T,) satisfies (x)

X = (Xo,...,X;n) RV geometrics with parameters po, - - .

Then

Independent of x!

s Pm



Rejection Sampling

Thus, to randomly sample a partition in a box we can sample the

RVs X until we get a sequence satisfying (x)

But which distribution should we use?
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Rejection Sampling

Thus, to randomly sample a partition in a box we can sample the

RVs X until we get a sequence satisfying (x)

But which distribution should we use?

Let
i=0 i=0
It makes sense to take a =¢, [ =d/m so that
& Um LS imE m(mt)
g_mzl_e—c—dj/m (m +1) r=m Zl_e—c—dj/m 9



Rejection Sampling

Thus, to randomly sample a partition in a box we can sample the

RVs X until we get a sequence satisfying (x)

But which distribution should we use?

Let
1=0 1=0

It makes sense to take a =¢, [ =d/m so that

)+ 0tm)



Rejection Sampling

Thus, to randomly sample a partition in a box we can sample the
RVs X until we get a sequence satisfying (x)

But which distribution should we use?

Let
1=0 1=0

It makes sense to take a =¢, [ =d/m so that

(= Am + O(1) n = Bm* + O(m)
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To Counting

If x satisfies (x) then P(X = x) is constant
Thus,

N,(l,m) - P(X=x)=P[(Sy,Tm) = (£,n)]



To Counting

If x satisfies (x) then P(X = x) is constant

Thus,
N,(l,m) - P(X=x)=P[(Sy,Tm) = (£,n)]
N, (¢, m) = exp {m ( l;;:’ - e A+ de>} P (S, Tm) = (£,n)]

where L,, = Zlogpj

7=0



To Counting

If x satisfies (x) then P(X = x) is constant

Thus,
N,(l,m) - P(X=x)=P[(Sy,Tm) = (£,n)]
N, (¢, m) = exp {m ( l;:; - e A+ de>} P (S, Tm) = (£,n)]

where L,, = Zlogpj

7=0



[Local Central Limit Theorem

Let
M = covariance matrix for (S, T )
p(a,b) = P[(Sm, Tim) = (a,0)]
1 1 —1 T
) — —5(a—p,b—v)M™ " (a—pu,b—v)
Na.b) = o et a2
Then

sup |p(a,b) — N (a,b)| = O(m_5/2)
a,beZ



[Local Central Limit Theorem

Let
M = covariance matrix for (S, T )
p(a,b) = P[(Sm, Tim) = (a,0)]
1 1 —1 T
) — —5(a—p,b—v)M™ " (a—pu,b—v)
Na.b) = o et a2
Then

sup |p(a,b+1) —p(a,b) — (N(a,b+1) — N(a,b))| = O(m™*)

a,beZ




Conclusion

Partitions are classical objects, appearing all over mathematics

We give the first asymptotics of partitions in a rectangle for the

general regime where a limit shape exists

Can we use these methods to derive new results on other kinds of

partitions?
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Counting partitions in a rectangle
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FILM REVIEW

The Man Who Knew Infinity:

A Report on the Movie

by George E. Andrews

The pioneering combinatory analyst, Major P. A. MacMa-
hon, has an important part in the movie. Since I edited
MacMahon’s Collected Papers for the MIT Press [4], I
watched this role with great interest. Actually I was
delighted by the first seemingly implausible interaction
between MacMahon and Ramanujan. MacMahon chal-
lenges Ramanujan to give the square root of a quite
large integer. Ramanujan responds correctly after some
hesitation and has to correct his result with a few added
decimal places. Ramanujan then asks MacMahon to square
the original number which he does with lightning speed.
MacMahon is triumphant at having won the contest.

Surely you are wondering why this story would please
me. After all, this must be pure fantasy and unlike any
interaction of serious mathematicians. In fact, this is a
fairly accurate account of history. According to Gian-
Carlo Rota in his introduction to Volume I of MacMahon’s
Collected Papers: “It would have been fascinating to be
present at one of the battles of arithmetical wits at
Trinity College, when MacMahon would regularly trounce
Ramanujan by the display of superior ability for fast
mental calculation (as reported by D. C. Spencer, who
heard it from G. H. Hardy). The written accounts of the
lives of these characters, however, omit any mention of
this episode, since it clashes against our prejudices.”

NOTICES OF THE AMS VOLUME 63, NUMBER 2

Shtetl- Optlmlzed

The Blog of Scott Aaronson

“Largely just men doing sums”: My
Felview of the excellent Ramanujan
ilm

Audiences might even have /iked some more T&A
(theorems and asymptotic bounds).

Apparently, Brown struggled for an entire decade to
attract funding for a film about a turn-of-the-century
South Indian mathematician visiting Trinity College,
Cambridge, whose work had no commercial or military
value whatsoever. At one point, Brown was actually told
that he could get the movie funded, if he’d agree to
make Ramanujan fall in love with a white nurse, so that a
British starlet who would sell tickets could be cast as
his love interest. One can only imagine what a battle it
must have been to get a correct explanation of the
partition function onto the screen.



