# MULTIVARIATE GENERATING FUNCTIONS: NON-GENERIC DIRECTIONS AND REGIME CHANGE

#### Stephen Melczer

University of Pennsylvania



Theory work joint with Yuliy Baryshnikov and Robin Pemantle Computer algebra work joint with Éric Schost and Kevin Hyun

### Basics of Analytic Combinatorics

There are deep links between **analytic properties** of a generating function and **asymptotics** of its coefficients.

If  $F(z) = \sum_{n>0} f_n z^n$  is analytic at the origin, then CIF implies

$$f_n = rac{1}{2\pi i} \int_C rac{F(z)}{z^{n+1}} dz$$

where C is a sufficiently small circle around the origin

There are uniform treatments for functions satisfying (algebraic, differential, ...) equations of different forms. Can be linked to different combinatorial behaviours.

**Idea:** Use a multivariate rational function  $F(\mathbf{z}) = G(\mathbf{z})/H(\mathbf{z})$  to encode sequences

$$F(\mathbf{z}) = \sum_{(i_1, \dots, i_d) \in \mathbb{N}^d} f_{i_1, \dots, i_d} z_1^{i_1} \cdots z_d^{i_d} = \sum_{\mathbf{i} \in \mathbb{N}^d} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$$

#### Example (Main Diagonal)

The main diagonal sequence consists of the terms  $f_{n,n,...,n}$ 

$$F(x,y) = \frac{1}{1-x-y}$$

$$= 1 + x + y + (2xy) + x^2 + y^2 + x^3 + 3x^2y + 3xy^2 + y^3 + 6x^2y^2 + \cdots$$

**Idea:** Use a multivariate rational function  $F(\mathbf{z}) = G(\mathbf{z})/H(\mathbf{z})$  to encode sequences

$$F(\mathbf{z}) = \sum_{(i_1, \dots, i_d) \in \mathbb{N}^d} f_{i_1, \dots, i_d} z_1^{i_1} \cdots z_d^{i_d} = \sum_{\mathbf{i} \in \mathbb{N}^d} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$$

#### Example (Apéry)

$$F(w,x,y,z) = \frac{1}{1-z(1+w)(1+x)(1+y)(wxy+xy+x+y+1)}$$

Here  $(f_{n,n,n,n})_{n\geq 0}$  determines Apéry's sequence, related to his celebrated proof of the irrationality of  $\zeta(3)$ .

In general, the r-diagonal of F forms the coefficient sequence of

$$(\Delta_{\mathbf{r}}F)(t) = \sum_{n\geq 0} f_{nr_1,\dots,nr_d} z_1^{nr_1} \cdots z_d^{nr_d} = \sum_{n\geq 0} f_{n\mathbf{r}} \mathbf{z}^{n\mathbf{r}}$$

A priori, the coefficient  $f_{n\mathbf{r}}$  is only nonzero if  $n\mathbf{r} \in \mathbb{N}^d$ In particular, this sequence is only non-trivial when  $\mathbf{r} \in \mathbb{Q}^d_{>0}$ 

In general, the r-diagonal of F forms the coefficient sequence of

$$(\Delta_{\mathbf{r}}F)(t) = \sum_{n\geq 0} f_{nr_1,\dots,nr_d} z_1^{nr_1} \cdots z_d^{nr_d} = \sum_{n\geq 0} f_{n\mathbf{r}} \mathbf{z}^{n\mathbf{r}}$$

A priori, the coefficient  $f_{n\mathbf{r}}$  is only nonzero if  $n\mathbf{r} \in \mathbb{N}^d$ In particular, this sequence is only non-trivial when  $\mathbf{r} \in \mathbb{Q}^d_{\geq 0}$ The CIF has a (somewhat) natural generalization

$$f_{n\mathbf{r}} = \frac{1}{(2\pi i)^d} \int_{\mathcal{C}} F(\mathbf{z}) \frac{d\mathbf{z}}{\mathbf{z}^{n\mathbf{r}+1}}$$

The field of analytic combinatorics in several variables (ACSV) uses this expression and singularity analysis to determine asymptotics

#### Analytic Combinatorics in Several Variables

Singularities of  $F(\mathbf{z}) = G(\mathbf{z})/H(\mathbf{z})$  form algebraic set  $\mathbb{V}(H)$ 

#### Easiest cases:

- A finite set of singularities determines asymptotics of the **r**-diagonal
- A local analysis of F at these points can be automated, and effective methods have been developed

#### Difficulties:

- An infinite number of singularities to consider
- Geometry of singular set determines type of singularity
- Singularities of multivariate functions can be very complicated

#### Analytic Combinatorics in Several Variables



**arXiv.org** > **math** > **arXiv:1709.05051** 

**Mathematics > Combinatorics** 

# Analytic Combinatorics in Several Variables: Effective Asymptotics and Lattice Path Enumeration

Stephen Melczer

Comments: PhD thesis, University of Waterloo and ENS Lyon - 259 pages Subjects: Combinatorics (math.CO); Symbolic Computation (cs.SC)

Cite as: arXiv:1709.05051 [math.CO]

Theory developing rapidly

## Generic Asymptotics

For "generic" directions  $\mathbf{r}$  asymptotics have a uniform expression varying smoothly with  $\mathbf{r}$  staying in fixed cones of  $\mathbb{R}^d$ 

Thus, one can define asymptotics for any (generic) direction  $\mathbf{r} \in \mathbb{R}^d_{\geq 0}$  as a limit!

$$f_{n\mathbf{r}} \to \lim_{\substack{\mathbf{s} \to \mathbf{r} \\ \mathbf{s} \in \mathbb{O}^d}} \left( \lim_{n \to \infty} f_{n\mathbf{s}} \right)$$



### 2D Example

Let

$$F(x,y) = \frac{1}{(1-x-y)(1-2x)}$$

Then  $[x^{an}y^{bn}]F(x,y)$  satisfies

$$b \left( \frac{(a+b)^{a+b}}{a^ab^b} \right)^n n^{-1/2} \left( \frac{(a+b)^{3/2}}{\sqrt{2ab\pi}(b-a)} + O\left(\frac{1}{n}\right) \right)$$

$$2 \cdot \left( 2^{a+b} \right)^n + O(\rho^n)$$

### 2D Example

Let

$$F(x,y) = \frac{1}{(1-x-y)(1-2x)}$$

Then  $[x^{an}y^{bn}]F(x,y)$  satisfies



## Asymptotic Regime Change

The exponential growth of  $[x^{an}y^{bn}]F(x,y)$  varies smoothly with (a,b), so scale by the exponential growth.

For our example, around  $\mathbf{r} = (1,1)$  the remaining terms go from decaying as  $n^{-1/2}$  to being the constant 2.



## Asymptotic Regime Change

The exponential growth of  $[x^{an}y^{bn}]F(x,y)$  varies smoothly with (a,b), so scale by the exponential growth.

For our example, around  $\mathbf{r} = (a, a)$  the remaining terms go from decaying as  $n^{-1/2}$  to being the constant 2.

How does this transition occur?

It makes sense to look at the transition on the square-root scale

$$[x^{n+t\sqrt{n}}y^n]F(x,y)$$
 for  $t = O(n^c)$  with  $0 < c < 1/2$ 

## Asymptotic Regime Change

The exponential growth of  $[x^{an}y^{bn}]F(x,y)$  varies smoothly with (a,b), so scale by the exponential growth.

For our example, around  $\mathbf{r} = (a, a)$  the remaining terms go from decaying as  $n^{-1/2}$  to being the constant 2.

How does this transition occur?

It makes sense to look at the transition on the square-root scale

$$[x^{n+t\sqrt{n}}y^n]F(x,y)$$
 for  $t = O(n^c)$  with  $0 < c < 1/2$ 

First step: Get data for our example!

### Experimental Data

How do we usually generate  $f_{n\mathbf{r}}$  for large n?

Theorem (Christol, Lipshitz): The sequence  $f_{n\mathbf{r}}$  satisfies a linear recurrence relation with polynomial coefficients.

There are effective algorithms (Lairez / Bostan, Lairez, Salvy) for determining such a recurrence and practical implementations (**Best**: Lairez's MAGMA package, **Also Good**: Koutschan's Mathematica package)

### Experimental Data

How do we usually generate  $f_{n\mathbf{r}}$  for large n?

Theorem (Christol, Lipshitz): The sequence  $f_{n\mathbf{r}}$  satisfies a linear recurrence relation with polynomial coefficients.

There are effective algorithms (Lairez / Bostan, Lairez, Salvy) for determining such a recurrence and practical implementations (**Best**: Lairez's MAGMA package, **Also Good**: Koutschan's Mathematica package)

**Problem #1:** Singly exponential complexity which increases with the numer/denom of  $\mathbf{r}$ 's coordinates

**Problem #2:** We need truly multidimensional data

### Computing Coefficients

#### With Kevin Hyun and Éric Schost:

Efficient algorithm for generating terms of multivariate rational function (right now only in *bivariate case*)

**Idea:** Each section  $\alpha_j(x) = \sum_{n \geq 0} f_{n,j} x^n$  is a rational function  $\frac{P_j(x)}{H(x,0)^j}$ 

Can find  $P_j$  using fast interpolation procedures

Since denominator is a power of a fixed polynomial, can find terms in good complexity using work of Hyun, M., Schost, and St-Pierre

 $Very\ efficient\ implementation\ in\ C++\ using\ Shoup$ 's  $NTL\ library$ 

```
void bivariate_lin_seq::find_row_geometric(zz_pX &num, zz_pX &den, const long &D){
    long degree = (D+1) * d1;
    zz_pX x;
    SetCoeff(x,1,1);
   zz_p x_0;
    random(x_0);
    zz_pX_Multipoint_Geometric eval(x_0, x_0, degree);
    Vec<zz_p> pointsX, pointsY;
    pointsX.SetLength(degree);
    pointsY.SetLength(degree);
    eval.evaluate(pointsX, x); // grabs all the points used for evaluation
    Vec<zz_pX> polX_num, polX_den;
    create_poly(polX_num, num_coeffs);
    create_poly(polX_den, den_coeffs);
    for (long i = 0; i < degree; i++){
        zz_pX eval_num, eval_den;
        eval_x(eval_num, pointsX[i], polX_num);
        eval_x(eval_den, pointsX[i], polX_den);
        Vec<zz_p> init = get_init(d2, eval_num, eval_den);
        auto rp = get_elem(D,reverse(eval_den), init);
        auto p_pow = power(ConstTerm(eval_den), D+1);
        pointsY[i] = (rp*p_pow);
    eval.interpolate(num, pointsY);
    power(den, polX_den[0], D+1);
void bivariate_lin_seq::get_entry_sq_ZZ
(Vec<ZZ> &entries_num,
Vec<ZZ> &entries_den,
```

#### Asymptotic Transition For Our Example



$$4^{-2.50^2-t50} \cdot [x^{50^2+t50}y^{50^2}]F(x,y)$$
 for  $t = -10...10$ 

#### A Gaussian error curve!

$$\operatorname{erf}(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-y^2} dy$$



$$4^{-2\cdot 50^2 - t50} \cdot [x^{50^2 + t50}y^{50^2}]F(x,y)$$
 for  $t = -10...10$ 

## Final term calculated (5501 bits)

#### Transition in this Example

Integral manipulations show

$$2^{-2n-t\sqrt{n}} \cdot \left[ x^{n+t\sqrt{n}} y^n \right] F(x,y) \sim I(t) = \frac{1}{\pi i} \int_{\mathbb{R} - i\epsilon} \frac{e^{-4nz^2 + 2i\sqrt{n}tz}}{z} dz$$

#### Transition in this Example

Integral manipulations show

$$2^{-2n-t\sqrt{n}} \cdot \left[ x^{n+t\sqrt{n}} y^n \right] F(x,y) \sim I(t) = \frac{1}{\pi i} \int_{\mathbb{R} - i\epsilon} \frac{e^{-4nz^2 + 2i\sqrt{ntz}}}{z} dz$$

$$(\partial I/\partial t)(t) = \frac{2\sqrt{n}}{\pi} \int_{\mathbb{R}-i\epsilon} e^{-4nz^2 + 2i\sqrt{n}tz} dt = \frac{e^{-t^2/4}}{\sqrt{\pi}}$$

$$I(0) = \frac{1}{\pi i} \int_{\mathbb{R}-i\epsilon} \frac{e^{-nz^2}}{z} dz = 1$$

### General (Linear) 2D Transition

Theorem (Baryshnikov, M., Pemantle): This error function appears more generally. For instance, suppose

$$F(x,y) = \frac{G(x,y)}{\ell_1(x,y)\ell_2(x,y)}$$

For "non-generic" directions where asymptotics are determined by a singularity  $\boldsymbol{\sigma}$  there exist explicit constants  $A, B \in \mathbb{R}$  and  $\mathbf{v} \in \mathbb{R}^2$  such that

$$\boldsymbol{\sigma}^{n\mathbf{r}+t\sqrt{n}\mathbf{v}} \cdot \left[\mathbf{z}^{n\mathbf{r}+t\sqrt{n}\mathbf{v}}\right] F(\mathbf{z}) \sim A \cdot \text{erf}(Bt) + A$$

### Example #2

$$F(x,y) = \frac{1}{(1-2x-y)(1-x-2y)}$$



## CONCLUSION

#### Conclusion

- ACSV developing rapidly
- Diagonals are data structures for univariate sequences, but ACSV also allows for treatment of truly multivariate questions
- Now that "generic" behaviour is starting to be figured out, time to branch out to more pathological cases
- Perhaps most interesting, we can examine how behaviour transitions between different uniform regimes
- Still many ways to generalize, and lots more to come!

#### THANK YOU!

Asymptotics of multivariate sequences IV: generating functions with poles on a hyperplane arrangement.
Y. Baryshnikov, S. Melczer, and R. Pemantle.
In preparation.

Please contact me if interested in knowing more!

### Asymptotics in Generic Directions

After introducing negligible error terms, some residue computations reduce dominant asymptotics to finding asymptotics of a *Fourier-Laplace* integral

$$\int_{\mathbb{R}^r} \boldsymbol{\theta}^{\mathbf{m}} e^{-n\left(\boldsymbol{\theta}^T \mathcal{H} \boldsymbol{\theta}\right)} d\boldsymbol{\theta} \qquad (r < d)$$

where  $\mathbf{m} \in \mathbb{N}^r$  and  $\mathcal{H}$  is a symmetric positive definite matrix

Terms in such an asymptotic expansion are known **explicitly**.

#### Asymptotics in Non-Generic Directions

In "non-generic" directions, one is not allowed to do all the necessary residue computations needed to reduce to a Fourier-Laplace integral, while still having acceptable error bounds

One ultimately obtains a modified expression of the form

$$\int_{\mathbb{R}^r + i(\epsilon, \dots, \epsilon)} \boldsymbol{\theta}^{\mathbf{m}} e^{-n \left(\boldsymbol{\theta}^T \mathcal{H} \boldsymbol{\theta}\right)} d\boldsymbol{\theta} \qquad (r < d)$$

where  $\mathbf{m} \in \mathbb{Z}^r$ .

These "negative Gaussian moments" seem to be much less studied (one dimension is easy, otherwise ad hoc using e.g. int. by parts)