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Abstract. The Euler equations for an incompressible inviscid 
uid in di-
mension three possess a wealth of topological phenomena woven into the
dynamical and geometric properties of the 
uid. Focusing �rst on steady
Euler �elds, we outline known results, giving special attention to the Bel-
trami �elds and the contemporary topological techniques required to elu-
cidate their dynamical features. We also propose a topological perspective
for understanding the global dynamics of the Euler equations on the space
of velocity �elds.

1. Introduction to Geometric Euler Flows

The behavior of the velocity �eld, u, of a perfect, inviscid, incompressible

uid is governed by the Euler equations:

@u

@t
+ruu = �rp ; div(u) = 0: (1)

Here, p is a real-valued (time-dependent) function measuring pressure. On
Euclidean 3-space, the term ruu is also written (u � r)u. These equations
are, for the obvious reasons, usually considered only on a Euclidean domain.
However, since we are interested in taking a topological perspective, there
is no reason not to consider these equations in their most general setting.

Let M denote a manifold of dimension n (we will usually consider the
case n = 3 for simplicity). For any time-dependent velocity �eld u on M ,
all of the terms in (1) save the �rst require some addition structure in
order to compute. Thus, choose a Riemannian metric g on M : this g is a
smoothly-varying inner-product on each tangent space to M . Via g, one
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may then compute all the standard quantities of vector calculus, including
the gradient of p : M ! R and the covariant derivative ruu of the vector
�eld u in the direction u. In addition, to talk of divergence-free �elds, one
needs a notion of volume on M : this too can be chosen as some density
(a volume form � to be precise) which may or may not be equal to that
derived from the metric g. For the reader not familiar with the basics of
di�erential geometry in the context of 
uids, we would recommend selected
passages of [4] or [1].

The wealth of topological phenomena that arise within the Euler equa-
tions cannot be under-estimated. We restrict to the goal of convincing the
reader that cutting-edge topological techniques are not only eÆcacious but
crucial for understanding even the most basic types of 
uid 
ows. The
reader who thirsts for more will �nd a nearly inexhaustible supply of inter-
esting ideas and results in the recent excellent monograph of Arnold and
Khesin [4].

The Euler equations are diÆcult enough on the tame Euclidean 3-space
we so often work in: even the existence of solutions for all time is unknown
and not at all clear. In order to get any concrete results for arbitrary geo-
metric manifolds, we must begin modestly. For almost the entire remainder
of this work, we restrict to the class of steady solutions to the Euler equa-
tion: hence,

ruu = �rp ; div(u) = 0; (2)

where neither u nor p :M ! R is time-dependent.
While the reader (and the authors!) may be most interested in proving

results about the case where M = R
3 and g is the Euclidean metric, it is

nevertheless both interesting and instructive to see how steady Euler 
ows
manifest themselves in other geometric contexts.

Example 1.1 [Hopf �eld] Consider the 3-sphere, denoted S3, which con-
sists of all points in R4 a unit distance from the origin. Via stereographic
projection, this 3-manifold is equivalent to R

3 with an added \point at
in�nity." The round metric on S3 is that inherited by it as a subset of Eu-
clidean R4, much in the same manner as we would describe the geometry of
the round 2-sphere S2

� R
3. The simplest example of a steady Euler �eld

on the round S3 is that given by the Hopf �eld, pictured in Figure 1. One
may realize this �eld in Euclidean coordinates on R4 via

XH :=

�
_x = �y ; _z = �w

_y = x ; _w = z
(3)

These equations correspond to the motion of two identical uncoupled simple
harmonic oscillators at a �xed energy level. Thus, every orbit of the 
ow
is periodic, or closed. Indeed, this is an extraordinary 
ow: every orbit is a
geodesic on S3, and the entire 
ow is symmetric.
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Figure 1. The Hopf 
ow on S3 = R
3

+ f1g is �lled with closed unknotted 
owlines
which �ll a 1-parameter family of invariant tori limiting onto a pair of circles.

Note that this 
uid 
ow is �lled with 
owlines that are (1) closed, and
(2) unknotted. It is a remarkable feature of inviscid 
uids that both of these
properties persist in some vestigial form no matter how one deforms the
metric on S3 or the conserved volume or the dynamics of the steady 
ow:

Theorem 1.2 [11] Every non-vanishing solution to (2) on any Rieman-

nian S3 possesses a closed, unknotted 
owline, assuming that the vector

�eld and metric are suÆciently smooth.1

Such is not the case for non-Euler vector �elds [27, 28]: being a steady
solution to the Euler equations is restrictive. This result hints that there
are features of steady Euler 
ows which are entirely topological, independent
of the geometry of the underlying manifold.

2. Integrable Flows

One's �rst thought is that the problem of analyzing steady Euler 
ows on
a Riemannian manifold is trivial: consider the following adaptation of the
Bernoulli theorem (cf. Arnold's theorem [2]).

`Not-quite-true' Theorem: Given u a steady non-vanishing Euler 
ow

on M a compact 3-manifold without boundary. If everything is of smooth-

ness class C! (real-analytic), then M is �lled almost everywhere by invari-

ant tori.

`Almost-correct' Proof: Transform Equation (2) via a standard vector-calculus
identity into the Bernoulli form of the equation,

u� (r� u) = �rH; (4)

1Real analytic, or C!, is the simplest set of suÆcient conditions.
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where H :M ! R is the Bernoulli function and r� u is the vorticity �eld
of the 
uid. Take the dot-product of both sides of the equation with u.
Since the left-hand side is the scalar triple product of u with itself and with
r� u, we obtain u � rH = 0. In other words, H is constant along orbits
of u. Now, thanks to the Inverse Function Theorem, the level sets of H
in M are generically smooth, closed, invariant submanifolds of dimension
two. As the vector �eld u is non-vanishing, each level set H�1(c) must have
Euler characteristic zero: this implies (via the Classi�cation Theorem for
Surfaces) that H�1(c) is either a torus or a Klein bottle. However, being
oriented by the vector rH, the non-degenerate level sets of H are invariant
tori. Since everything is C!, at most a �nite number of level sets of H can
be degenerate, and these must be of codimension strictly greater than zero.

QED

If this proof were correct, then it would imply that, under the stated
hypotheses, non-vanishing steady Euler 
ows would be very rare beasts.
They would simply not exist on most three-dimensional manifolds! Indeed,
any closed manifold which can be out�tted with a hyperbolic geometry
cannot be �lled almost-everywhere with tori, no matter what the actual
geometry of the manifold is. All such steady Euler 
ows would qualitatively
look like the Hopf 
ow of Figure 1, and would not be terribly interesting.

The mistake, of course, lies in the assertion that the functionH :M ! R

is not a constant function. In that (and only in that) case,2 the conclusions
fail since the level set of H is all of M . Notice that if H is a constant on
M , then u� (r� u) is necessarily zero: u is parallel to its curl.

The true result that can be proved (the modern formulation of the
Bernoulli Theorem, due to Arnold3) is the following:

Theorem 2.1 [2] Given u a steady non-vanishing Euler 
ow on M a com-

pact 3-manifold without boundary. If everything is of smoothness class C!

(real-analytic), then either (1) M is �lled almost everywhere by invariant

tori; or (2) u is an eigen�eld of the curl operator.

This one case will occupy the remainder of our attention.

3. Beltrami Fields

De�nition 3.1 A volume-preserving vector �eld u is Beltrami if it is an

eigen�eld of the curl operator: i.e., if r� u = �u for some � 2 R .

2This is where the C! assumption is critical.
3Arnold actually proves quite a bit more than stated | his proof concerns arbitrary

integrable Hamiltonian systems and consists in showing that the velocity and vorticity
�elds commute. It is curious that, for three-dimensional vector �elds, one does not require
that the 
ow be volume-preserving: only an integral of motion is needed.



5

Example 3.2 [Hopf �eld] The Hopf �eld on S3 is an example of a Beltrami
�eld on the round S3 with eigenvalue 1. Notice that, although it is Beltrami,
the dynamics of the �eld still satisfy the conclusions of Arnold's Theorem.

Example 3.3 [ABC �elds] The most historically in
uential example of a
Beltrami �eld is the following:

_x = A sin z + C cos y ; _y = B sinx+A cos z ; _z = C sin y +B cos x
(5)

In this equation, A, B, and C are parameters. For all such parameter val-
ues, one has a Beltrami �eld on the Euclidean R

3, or, by quotienting out
the periodic boundary conditions, on the three-dimensional torus T 3. For
parameter values satisfying A2 > B2+C2, the �eld is non-vanishing. As dis-
played in Figure 2, the dynamics can be rather complicated | one appears
to have regions of chaotic, non-integrable 
ow.

Figure 2. The ABC �elds represented in a fundamental domain of R
3

, projected onto
a square. The dynamics display integrable behavior (left) when one of the parameters is
zero; increasing the parameter (middle,right) reveals increasingly non-integrable dynam-
ics.

Despite the initial appearance of being the \exceptional" steady Euler
�elds, Beltrami �elds turn out to be surprisingly important objects [4, 31]:

1. As already mentioned, Beltrami �elds are the only steady solutions to
the Euler equations which may exhibit \chaotic" Lagrangian dynamics.

2. The L2-energy of a 
uid u is the integral of kuk2 over the manifold. If
one considers this functional restricted to all vector �elds ��u obtained
from u by deforming it with a volume-preserving di�eomorphism �,
then the Beltrami �elds are critical points of this functional [3].

3. Every Beltrami �eld with non-zero eigenvalue has a non-vanishing he-
licity, a measure of average asymptotic linking of 
owlines [3] which
forms a lower bound on the L2-energy of the 
uid.

4. Given a perfectly-conducting 
uid, the Beltrami �elds yield steady
solutions to the MHD equations linking the 
uid 
ow and its induced
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magnetic �eld. This is an important class of steady plasmas. In ideal
MHD, Beltrami �elds are thus called force-free �elds [8].

Despite their relative importance, there have been relatively few rigor-
ous results about the dynamics of Beltrami �elds. Nearly everything known
about their dynamics comes from either numerical experiments [9] or from
applying Melnikov analysis to near-integrable examples [7, 20], a very nar-
row band of �elds.

There are numerous open problems concerning the dynamics and topol-
ogy of Beltrami �elds.

Question 3.4 Does every Riemannian 3-manifold admit a Beltrami �eld
without �xed points?

Every three-manifold admits volume-preserving vector �elds without �xed
points: the question is whether any of these can be Beltrami. The spectral
theorem applied to the curl operator (whose square is the Laplacian) quickly
yields the existence of in�nitely many Beltrami �elds on every Riemannian
3-manifold. The analytic approach provides no control over the existence
of �xed points, however. We believe that when the manifold is suÆciently
negatively curved, Beltrami �elds always possess �xed points.

Question 3.5 Given a Beltrami �eld on a closed 3-manifold, how many
periodic orbits must exist?

This problem is a distant cousin of the Arnold Conjecture in the setting of

uids (see [30] for an introduction to the Arnold Conjecture in symplectic
dynamics). One's �rst guess is that every Beltrami �eld must have in�nitely
many periodic orbits. However, this is not true: by deforming the round 3-
sphere into something ellipsoidal, one can perturb the Hopf 
ow into a
Beltrami �eld which has but two periodic orbits. It is an open conjecture
that the minimum for the 3-sphere (in any metric) is two, and that any more
than two implies in�nitely many. A far-reaching tool for this conjecture is
the symplectic �eld theory of [10].

Question 3.6 Are there any parameter values for which the ABC �elds
possess a closed orbit on R3?

Such orbits de�nitely do not exist when any of the parameters A, B, or C
is equal to zero. In x5, we outline a program for �nding such an orbit.

Question 3.7 Characterize the topology of the 
owlines of Beltrami �elds.
What kinds of knots must/can be traced out by periodic 
owlines?

Several partial results will be stated in x6.

Question 3.8 Under what circumstances is a Beltrami �eld forced to pos-
sess a closed 
owline which is hyperbolic? That is, the eigenvalues of the
linearization of the Poincar�e return map are not equal to one.
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This problem is, thanks to [19], a route to establishing hydrodynamic in-
stability for steady Euler �elds. We comment more on this problem in x7.

4. An Introduction to Contact Topology and Dynamics

Surprisingly, understanding the dynamics of Beltrami �elds seems to require
a foray into some rather esoteric-looking branches of three-dimensional
topology. But a self-enforced exile to the furthest abstraction is rarely per-
manent and certainly not without reward. Most every question is x3 can be
approached via techniques involving contact structures.

4.1. CONTACT STRUCTURES AND FORMS

For our purposes, a contact structure on a 3-manifoldM is a certain type of
smoothly-varying plane �eld �. Just as a vector �eld assigns a vector to each
tangent space of M , a plane �eld assigns some 2-dimensional subspace to
each tangent space. For example, given a vector �eld X on a Riemannian
3-manifold M , the 2-D subspace orthogonal to X in each tangent space
de�ne a plane �eld on M .

While any smooth vector �eld can always be \integrated" into a collec-
tion of smooth curves tangent to the �eld, such is not the case for a general
plane �eld. Only in very rare circumstances can one stitch together the
planes (like scales on a �sh) to �ll M with two-dimensional sheets tangent
to the planes. Most often, the planes twist in such a way as to break the
integrability. Occasionally, there can be found plane �elds which twist so
much as to be nowhere-integrable, not even at a single point.

De�nition 4.1 A contact structure on a 3-manifold M is a smoothly-

varying plane �eld � which is completely non-integrable.

Two more precise de�nitions can be formulated:

1. � is a contact structure i� for any pair of locally non-zero vector �elds
U; V tangent to �, their Lie bracket [U; V ] is nowhere tangent to �.

2. � is a contact structure i� it can be written [locally] as the kernel of a
contact form | a di�erential 1-form � satisfying

� ^ d� 6= 0: (6)

That these de�nitions are all equivalent is really the Frobenius Theorem
[1]. The two above de�nitions are most useful in computations, while the
\twisted plane �eld" de�nition is perhaps the most readily grasped. The
best way to \visualize" a contact form is in terms of the kernels of � and
d�. On each three-dimensional tangent space, the kernel of � is a two-
dimensional plane: the contact element. The 2-form d� has a 1-dimensional
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kernel consisting of those vectors which annihilate d� when plugged into
the �rst slot. Equation (6) translates into saying that � is a contact form
i� these subspaces are never tangent, see Figure 3(left).

ker �
ker d�

x

y

z

Figure 3. (left) Visualizing a contact form at a tangent space; (right) Every contact
structure is locally equivalent to the kernel of dz + xdy.

Example 4.2 [Standard contact structure on R3]
Consider the 1-form

�1 := dz + x dy: (7)

where fdx; dy; dyg are the duals (co-vectors) to the standard basis vectors
in R3. Since d�1 = dx ^ dy, we have that �1 ^ d�1 = dz ^ dx ^ dy which is
nowhere zero (a volume form). Thus, the kernel of �1 is a contact structure.
This kernel is de�ned by solving �1 = 0 to obtain dz=dy = �x. That is, the
slope of the plane �eld is given by �x: see Figure 3(right). If an observer
walks along any x-axis, the plane �eld � twists counter-clockwise.

The Darboux theorem states that the standard contact form is a \building
block" for any contact form on any 3-manifold, i.e., any contact form under
appropriate change of coordinates can be locally expressed by (7).

Example 4.3 [Standard contact structure on S3] Recall Example 1.1 of
the Hopf �eld on the round S3. The plane �eld orthogonal to this vector
�eld is a contact structure. One may check this by recalling the vector �eld
XH of (3) and de�ning the 1-form �2 via �2(V ) := XH � V . One readily
shows that �2 = 1

2
(x dy � y dx + z dw � w dz), and that this is indeed a

contact form satisfying (6) on S3.

4.2. REEB FIELDS

Example 4.3 gives several hints that contact structures are dynamically in-
teresting objects. First, being related to the Hopf �eld, this contact struc-
ture is related to the global topological features of the three-sphere. Second,
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the Hopf �eld actually lies in the kernel of d�2, as a simple computation
reveals. It thus follows (from the Cartan formula) that the 
ow of the Hopf
�eld preserves the contact form.

Indeed, if we consider an arbitrary contact form �, the \cartoon" repre-
sentation of Figure 3(left) indicates that the kernel of d� provides a \nat-
ural" or \canonical" direction on each tangent space. Choosing a non-zero
vector in each such line yields a vector �eld onM whose dynamics ought to
be related to the geometry of the contact structure. Indeed, this observation
naturally leads one to the following de�nition:

De�nition 4.4 The Reeb �eld associated with a contact form � is de�ned

as the unique vector �eld X satisfying

i) d�(X; �) = 0 and ii) �(X) = 1: (8)

A Reeb-like �eld is one for which we relax the second condition to �(X) >
0.

The 
ow of a Reeb �eld leaves the contact structure and the contact
form invariant. They are always volume-preserving for the natural volume
form � ^ d�.

Example 4.5 [Reeb �elds] The Reeb �eld associated with the local contact
form �1 of Example 4.2 is the vertical �eld @

@z
. The Reeb �eld associated

with the contact form �2 orthogonal to the Hopf �eld is precisely the Hopf
�eld XH .

It is by no means a coincidence that the de�nition of a contact structure
as a plane �eld which \everywhere twists" and the intuition of a rotational
Beltrami �eld as a vector �eld which \everywhere rotates about itself" are
so similar. The following correspondence asserts roughly that all Beltrami
�elds are Reeb �elds, and vice versa (up to reparametrizations by time,
which changes none of the topological features):

non-singular rotational

Beltrami �elds

for all metrics,

all non-zero scalings

,

all Reeb �elds

for all contact forms,

all non-zero scalings

One direction is trivial: the orthogonal plane �eld associated with any
Beltrami �eld is always a contact structure. To go in the other direction,
one begins with a Reeb-like �eld and constructs a metric for which the �eld
is Beltrami (see [12] for details and simple proof).

The category of Beltrami �elds is geometric and rigid. But, after col-
lecting all Beltrami �elds for all metrics together, the resulting class is the
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set of Reeb �elds | a decidedly topological category. This allows one to
prove a number of non-trivial result about Beltrami �elds by relaxing the
metric constraints and treating them as topological objects.

One immediate application is to the problem of existence of non-singular
Beltrami �elds (Question 3.4). According to [29], every 3-manifold admits
a contact structure. Any Reeb �eld associated with this yields a Beltrami
�eld; thus,

Corollary 4.6 Every 3-manifold admits a non-singular Beltrami 
ow for

some Riemannian structure.

Contact perspectives also allow us to construct examples of Beltrami �elds
on higher dimensional manifolds, e.g., analogues of the ABC �elds (5) on
the 5-torus T 5 [21].

4.3. HOFER'S THEOREM AND OVERTWISTED STRUCTURES

A compelling reason for understanding contact structures and their topo-
logical properties comes from recent work of Hofer and collaborators [25, 26,
10]. The programme outlined in [10] indicates that the topological prop-
erties of a contact structure are delicately entwined with the dynamical
properties of the Reeb �elds associated with that contact structure, much
in the same way that the topology of a manifold can be recovered via the
dynamics of a gradient �eld. The �rst hint of this relationship appears in the
paper [25] which �nds that certain types of contact structures are forced to
have periodic orbits in their Reeb �elds. Understanding and applying this
result requires a deeper understanding of the topological classi�cation of
contact structures.

To summarize roughly the past twenty years of contact topology in one
idea: the best way to analyze a contact structure � onM is to consider how
� intersects various two-dimensional discs in M . Dynamical properties of
these intersections correlate to dynamical properties of Reeb �elds.

De�nition 4.7 Given a contact structure � and a disc D embedded in M ,

the characteristic foliation, D�, is the set of curves carved out on D by

intersecting the planes of � with the tangent planes of D in M .

De�nition 4.8 The contact structure � is overtwisted if there exists an

embedded disc D in M whose characteristic foliation D� contains a limit

cycle (an attracting periodic orbit): see Figure 4. If no such disc exists, then

� is called tight.

Example 4.9 [Tight vs. overtwisted] The standard contact structures for
R
3 and S3 given in Examples 4.2 and 4.3 are tight. A concrete example of an

overtwisted structure on R3 is that given by the form (in polar coordinates):

�3 = cos(r)dz + r sin(r)d�: (9)
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Figure 4. A contact structure slices a disc into curves and �xed points (of tangency).
An overtwisted contact structure carves a limit cycle into some disc.

For this contact form, the slope of the contact form is given by dz=d� =
�r tan r; the planes \
ip" over many times, in contrast to Example 4.2.

Hofer's theorem states the surprising result that a limit cycle in the
dynamics of the contact planes (intersecting a disc) implies the existence
of a periodic orbit in the transverse Reeb dynamics:

Theorem 4.10 [25] Any Reeb �eld for an overtwisted contact structure on

a closed 3-manifold M possesses a periodic orbit (some multiple of which

can be shrunk to a point in M).

This theorem, a tour-de-force of symplectic geometry and non-linear anal-
ysis, is essentially the only available global tool for analyzing the dynamics
of arbitrary 3-D Beltrami �elds (though see [10]).

5. Existence of Closed Orbits

5.1. CLOSED ORBITS

Hofer's techniques, combined with the correspondence between Reeb and
Beltrami �elds, quickly yields existence results for closed orbits of arbitrary
Beltrami �elds on certain 3-manifolds. We state a few examples.

Theorem 5.1 [12, 13] Let u be a steady non-vanishing Euler 
ow of class

C! (or, if restricting to Beltrami �elds, C2 suÆces). Then u possesses a

closed 
owline in the following cases:

On any Riemannian 3-sphere, for any such u;

On any Riemannian solid torus, for any u tangent to the boundary;

On any Riemannian 3-torus, for any u which is homotopically non-

trivial.4

The proofs of these results all have three parts: (1) proving in the case of
an integrable Euler �eld (this requires the C! assumption); (2) determining

4Homotopically trivial means that one can rotate the vectors of u so that they all
point in the same direction.



12

which Beltrami �elds are tight, and which are overtwisted; (3) using Hofer's
Theorem in the overtwisted cases and some clever techniques for the tight
cases, which depends on the manifold. The genuinely diÆcult case is that of
the solid torus D2

�R ; this also is the case most closely tied to applications
in plasma dynamics. We elaborate on the solid torus below.

5.2. A 3-D INDEX

Consider a non-vanishing Beltrami �eld u on a tubeD2
�R which is periodic

in the third variable and tangent to the boundary of the tube. Choose any
convenient cross-sectional disc D, and project the vector �eld u orthogo-
nally onto D. This generates a vector �eld u? onD tangent to the boundary
which generically has a �nite number of �xed points of type source/sink or
saddle. The standard Euler-Poincar�e index theory says that the sum of the
indices of the �xed points on D (+1 for sources/sinks and �1 for saddles)
equals the Euler characteristic of D, which is 1. Such arguments are often
used to �nd �xed points or periodic orbits in 2-D 
ows.

However, for D and u? arising from a Beltrami �eld, there is a vestige
of this 2-D index theory. Consider the �xed points of u? on D: these are
the points at which u is orthogonal to D. There is thus an additional sign
depending on whether u points to the \right" or the \left" of the disc (see
Figure 5).

Figure 5. Projecting a Beltrami �eld to a cross-sectional disc yields a vector �eld with
weighted index �2. The Beltrami �eld thus has a closed orbit in D �R .

Theorem 5.2 [15] With D, u? as above, compute the Euler-Poincar�e in-

dex of the vector �eld u? on D, weighting each term with a (+) if the vector
�eld u points to the right and (�) if it points to the left of D. If this weighted

index is not �1, then the Beltrami �eld u has a closed 
owline in D2
� R .

The proof of this result is to use the stated information about u? to
reconstruct the contact planes orthogonal to u on D. Through topologi-
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cal techniques, the weighted index computation indicates that the contact
structure on D � R is overtwisted. One then applies Hofer's techniques.

This is really oblique: one knows nothing about the �eld u except that
(1) it is Beltrami; and (2) it is orthogonal to some disc D at certain points
with certain behavior. Nothing else is known about u away from the disc
D. Genuinely two-dimensional data yields a genuinely three-dimensional
implication. Of course, the result holds in an arbitrary metric, and the
modi�ed index is independent of the choice of disc D. It is remarkable that
the chosen disc D might not intersect the closed orbit it detects. Even so,
deforming the metric and the Beltrami �eld by an arbitrary amount o� of
the disc will not destroy the closed orbit.

This is a prime example of a topological result: it is stable with respect
to arbitrarily large perturbations.

6. Knots

In dimension three, periodic 
owlines are embedded closed curves: knots,
which together form a link of closed curves. There is a long beautiful
string of theory about the relationships between the dynamics of a three-
dimensional 
ows and the topology of the link of closed orbits (see, e.g.,
[5, 23] and references therein).

By Theorem 2.1, it is necessary to partition our discussion of knot types
into two classes: the integrable case and the Beltrami case.

6.1. INTEGRABLE FLOWS

As hinted at by Example 1.1, the knot types present in an integrable vector
�eld are especially simple. Since almost all of the orbits are constrained to
lie on a torus, one expects a certain rigidity.

De�nition 6.1 The connected sum of two knots K and K 0 is the knot

obtained by splicing the two together as in Figure 6(left). Given a knot K,

the cables of K are those knot types which can be drawn as simple closed

curves on the surface of a torus having K at its core (Figure 6(right)). The

torus knots are those knot types which are the cables of the unknot.

The following theorem classifying knots of integrable �elds has a con-
voluted history. It was �rst stated (with a slightly stronger assumption) by
Fomenko and Nguyen [16]. Casasayas et al. [6] observed that their result
follows e�ortlessly from earlier work of Wada [33] and Morgan [32].

Theorem 6.2 Every closed orbit in a non-vanishing C! integrable vector

�eld on S3 is a knot obtained from the unknot by repeated cabling and

connected sum.
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Figure 6. Connected sums (left) and a cable of the �gure-eight knot (right).

Thus, the presence of a single �gure-eight knot5 in a non-vanishing 
ow
is enough to conclude that the 
ow is not integrable.

6.2. BELTRAMI FIELDS

Beltrami 
ows, in contrast to their integrable cousins, display the broadest
possible variety of behavior with respect to 
owline topology. The trick is
in the correspondence between Reeb �elds and Beltrami �elds. Reeb �elds,
since they are topological in nature, are subject to all of the manipula-
tions a topologist can muster: surgery, cut-and-paste, and the like. After a
customized contact form is built, one invokes the correspondence theorem
to realize this as a genuine Beltrami �eld for the appropriate Riemannian
metric. Using a very delicate sequence of topological constructions, one can
construct a Beltrami �eld which exhibits the most complex type of �eld
line topology imaginable:

Theorem 6.3 [14] There exists a non-vanishing Beltrami �eld on a Rie-

mannian 3-sphere6 which possesses closed 
owlines of all possible knot and

link types.

The velocity �eld and the metric are all of class C! (real-analytic). These
�elds are by no means degenerate: any C1-close vector �eld still possesses
this set of knotted and linked 
owlines. However, the construction most
certainly does not yield a round (or Euclidean) metric.

5Or, indeed, any knot whose complement in S3 admits a hyperbolic metric...
6The proof also works and is indeed easier for a Riemannian R

3
.
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Question 6.4 Is it possible for a smooth, steady Euler 
ow on Euclidean
R
3 to possess closed 
owlines of all knot types?

The paper [22] gives suÆcient conditions for this to occur in terms of ex-
istence of certain homoclinic or heteroclinic orbits. Whether such can be
found in a steady Euler 
ow is not clear.

7. Moving Beyond Steady Flows

Given a dynamical system, the �rst task is to �nd and classify the �xed
points. The next step of a qualitative analysis is to determine the existence
and nature of any periodic orbits or connecting orbits in the global 
ow.

In the case of the Euler equations, one has a dynamical system on the
space of all divergence-free vector �elds. This survey has covered the basics
of what can be said about the �xed points of this dynamical system: the
steady Euler 
ows.7 The next logical step after �nding the �xed points is to
determine the stability of these solutions: this in itself is a delicate problem.

7.1. INSTABILITY

The problem of classifying the local behavior of �xed points is precisely
the classical problem of hydrodynamic stability. Though there are manifold
notions of how hydrodynamical stability or instability should be de�ned (see
[17]), the goal is to determine whether nearby velocity �elds (perturbations
of a steady Euler �eld) remain in a vicinity of the steady �eld, or whether
perturbations grow large.

The answer seems quite plain, but there appears to be no way to prove
it in general. The conjecture is this: Almost every steady Euler �eld in

dimension three is hydrodynamically unstable. It is a genuine challenge to
make this a mathematically well-de�ned question. The �rst point is to settle
on the type of instability one seeks: linear or nonlinear? energy or velocity
norm? The paper [17] contains an excellent discussion of this issue.

The second order of business is to determine what possible sense one
could ascribe to the phrase \almost every"? For the Beltrami �elds, the
idea of \almost every" is strained | for a generic Riemannian metric, the
eigenvalues of the curl operator are simple, and there are thus a countable
number of Beltrami �elds, each of which is isolated in the space of volume-
preserving vector �elds. The only possible sense that \almost every" can
take is \all but a �nite number" or, equivalently, \for all suÆciently large

7We have restricted attention to the case of dimension three, but the contact topology
perspective is eÆcacious in all odd dimensions. For even dimensions, the appropriate
framework is that of symplectic topology, as pointed out by Ginzburg and Khesin [24].
There are some beautiful ways in which steady 
uids in high dimensions have radically
di�erent behaviors depending on the parity of the dimension.
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eigenvalues." In this (most typical) setting, one most decidedly cannot per-
turb a Beltrami �eld in any manner which will yield a new Beltrami �eld
(ignoring scalar multiples of the �eld).

In the particular case of the Euclidean metric, the symmetries provide
for multiple eigenspaces of curl leading to parametrized families of Beltrami
�elds. The ABC �elds are one such example (thus explaining the existence
of three parameters) for the �rst eigenvalue of curl. In this context, one
may restrict to such families and try to prove generic instability (as is done
for most singular ABC �elds in [18]).

The situation for steady integrable �elds is much cloudier. Are such
�elds isolated in the space of volume-preserving vector �elds? Can they
appear in parametrized families? Clearly, in the presence of enough sym-
metry, whole families can arise: but it seems reasonable to expect that such
families would have identical stability properties. Indeed, if a symmetric
stable family could be found, this could provide a counter-example to the
Instability Conjecture. We point out the following simple test case:

Question 7.1 Are the Hopf �elds on the round 3-sphere hydrodynamically
unstable?

As we see the situation, the best hope for establishing a universal result
on hydrodynamic instability is to use the criteria of a 
uid lyapunov num-

ber developed by Friedlander and Vishik using techniques from geometric
optics.

Theorem 7.2 [19] Any steady Euler 
ow which possesses a hyperbolic pe-

riodic orbit is (linearly) hydrodynamically unstable (in L2 norm).

The contact-topological techniques provide a partial answer. In the case
of an overtwisted Beltrami �eld, the periodic orbit forced is not elliptic: it
is either hyperbolic or degenerate This orbit is thus hyperbolic generically
(among Reeb �elds). In like vein, the symplectic �eld theory of [10] indicates
that, generically in the space of Reeb �elds on T 3 (even in the tight case!),
there exist hyperbolic periodic orbits. When one includes the metric as
a variable (thus working in the space of all Reeb �elds as opposed to the
discrete space of Beltrami �elds for a �xed metric), one can rigorously prove
that hyperbolic orbits (and thus instability) are generic.

7.2. CONNECTIONS AND PERIODIC ORBITS

The next step in a global analysis concerns simple recurrence. Recall that a
homoclinic orbit for a dynamical system is one which approaches a certain
�xed point asymptotically both forwards and backwards in time. A hete-

roclinic orbit (or \connection") is an orbit which approaches two distinct
�xed points as time goes to �1.
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Question 7.3 Do the Euler equations admit any homoclinic or heteroclinic
orbits?

There are no obvious topological obstructions to the existence of homo-
clinic orbits of the Euler equations. Heteroclinic orbits have what appear
to be extraordinarily rigid obstructions. Assume that there is an orbit u(t)
of Equation (1) which limits to Beltrami �elds u+ and u� as t ! �1

respectively. Since the vorticity �eld is \frozen in" by the Euler 
ow, the
vorticity �elds r� u(t) are all equivalent by volume-preserving di�eomor-
phisms, and, in the limits, u+ and u� are themselves related: an unlikely
situation apart from unusual symmetries.

Question 7.4 Classify the periodic orbits of the Euler equations in the
space of volume-preserving vector �elds.

Surely one could construct such a periodic orbit using a periodic pressure
function pt :M ! R : take for example R3 with linear 
ow and use a family
of pressure functions pt(x; y; z) to rotate the velocity vectors uniformly.
Examples would be most helpful for obtaining a clearer picture of the global
structure of the Euler equations as a dynamical system on the space of
volume-preserving vector �elds.
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