Homotopy




158 Chapter 8. Homotopy

eformation is the root operation in topology. Homotopy is the primal deforma-

tion, leading to homotopy equivalence and then homotopy theory. As com-

pared to co/homology theory, homotopy theory is intuitive, winsome, and

largely immune to computational methods. The intuition of homotopy combines with
the practicality of co/homology to forge a more complete picture of algebraic topology.

8.1 Group fundamentals

Homological methods are almost entirely comprehensible (and computable) via linear
algebra, usually over the reals or over Fo. Homology with Z coefficients is a bit more
subtle, but even the novice is so familiar with this ring that no detailed explanations
are required for either intuition or computation. The general setting for homology
is best managed using R-modules, and this structure has been both alluded to and
exploited. In homotopy theory, it is no longer possible to avoid the use of general
groups, though, in most every case, it will suffice to work with finitely presented
groups described grammatically in terms of generators and relations: see Appendix
A.2 for the appropriate keywords.

Let X be a space and xg € X be a designated basepoint.
A loop based at xg is defined to be a map a: [0, 1] — X with

a(0) = a(1) = xp. The fundamental group (X, xp) is defined 4
on the set of homotopy classes of loops at xg. That is, two loops \\
(©)

a and B are equivalent if there is a homotopy of loops at xg,
F:: [0,1] — X, deforming Fp = o to F; = . Note that the
basepoint is kept fixed throughout the homotopy, and it is this
that permits a group operation given by concatenation of loops as
follows:

_ . a(2t) - 0<t<1
It is to be checked that this extends to a well-defined associative operation of homotopy
classes of loops: [a]e[B] := [@«f]. The trivial loop is the constant map e: [0, 1] —
{x0}. A loop is contractible if it is homotopic to the trivial loop. The inverse of
a loop ais a !(t) := a(l — t) and provides a true inverse on homotopy classes:

[alle™] = [e] = [a™][a].

(O)="==(Q)

©

The basepoint is largely irrelevant, in that for X a path-connected space, chang-
ing the basepoint from xp to x; by means of a path «y: [0, 1] — X leads to an iso-
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morphism 1 (X, xo) = 71 (X, x1) via [a] + [yeaey 1]. The notation 71 (X) or 71 will
therefore be used when X is path-connected.

While H; comports with a linear-algebraic sen-
sibility, 7y insists upon the full algebraic regalia of a
group: in general my is not abelian. This is a frus-
trating and wonderful fact. Wonderful, in that m
yields information not captured by homology. Frus-
trating, in that any (finitely presented) group can arise
as m; of a space — even such simple spaces as finite
2-dimensional cell complexes or compact smooth 4-
manifolds. Determining such facts as whether a loop
is contractible, or whether two given loops are homo-
topic, leads to provably uncomputable problems over finitely presented groups. Any
computational homotopy questions must be limited to spaces from a suitably inof-
fensive class. This does not make the theory inapplicable, but it does dampen one’s
hopes. On the other hand, m; is made for working with homotopy theory. Compare
the following to the task of proving why simplicial homology or Euler characteristic is
a homotopy invariant.

Lemma 8.1. Fundamental group w, is a homotopy invariant of spaces.
Proof. Let f: X — Y be a map. There is an induced homomorphism,
w(f): m (X, x0) = 71 (Y, f(x0)),

that sends the homotopy class of a loop a: [0, 1] = X to the homotopy class of the
loop f o in Y. One observes that the induced homomorphism is, as in the case of
co/homology, functorial, respecting identities and composition. For f; : X = Y a
homotopy of maps, the loops f; o a are all homotopic. Thus, a homotopy-equivalence
induces an isomorphism on 7. ®

Example 8.2 (Examples of ;) ©)

Certain simple spaces have abelian 7;: for example, m1(S?) = Z, since any loop a
to S* has a well-defined degree that fixes its homotopy and homology class (cf. the
Hopf Theorem of §4.12). The annulus and Mobius strip are homotopic to a circle
and thus have the same m;. The 2-sphere S? has m1(S?) 2 1, since any loop can be
homotoped to one which is not onto S? and thus factors through a punctured sphere
S?—x, which is contractible. In like manner it is shown that spheres S” for n > 1 are all
simply connected, meaning that they are connected and have w; = 1. One predicts
an accord between m; and Hi: the torus has m1(T?) = Z2 and the real projective
plane has 1 (IP?) & Z,. However, nonabelian fundamental groups abound. The plane
R? with N points removed has m; a free group on N generators. Furthermore, every
compact closed surface of genus g > 1 has a nonabelian fundamental group. These
surface groups are beautiful, but hyperbolically complex. For example, a compact
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oriented genus g surface Sy has fundamental group presented as:

T1(Sg) = (X0, Y1, %0, Yo, - Xg. Vg 1 XU1X) Yy X0y Xo Yy Xgygxg tyy t = 1) ©

Lemma 8.3. For X and Y pointed path-connected spaces:

1. m(X xY)=Zm(X) x w(Y), the Cartesian product of groups
2. m(XVY) Zn(X)x7w(Y), the free product of groups

Any finite connected graph is homotopic (by collapsing
out a spanning tree) to \/f’ St a wedge of N circles, which has

as my the free product on N elements: the group of all words on
N symbols and their inverses, with no relations. Notice how

this differs from Hi, which is the abelianization to Z"M that
forgets the order in which one traverses loops. In contrast, the
N-torus TV has enough “room” to reverse the order of loops
and has 7 (TV) = ZN. First homology H; cannot distinguish
graphs from tori; 7 can.

Computing 71 in general is “easy” in that there is an almost-mechanical proce-
dure for assembling w1 from pieces, much like the Mayer-Vietoris sequence does for
homology. Instead of using exact sequences, a more explicit statement using presen-
tations is preferable.

Theorem 8.4 (Van Kampen Theorem). Let U S unv &V obe open and
path-connected with finitely-presented fundamental groups:

T (U) = (u; - r= ]-)i,j
(V) 2 (vie = 5= 1)
7T1(U N V) & <Wm : tn — 1>m,n

Then the union U UV has fundamental group with presentation:

T (UUV) = (u, vk - =1,5=1, T(Lu)(Wm) = 7T(I'V)(Wm)>,',j,k,g,m- (8.1)

In other words, one takes the union of the generators and relations of U and V
and declares new relations identifying generators 1 (UNV') as mapped via ty: UNV <
U with those mapped via ty,: UNV — V. The need for U and V open can be relaxed
if, e.g., they are subcomplexes of a cell structure. The construction permits induction,
and stronger versions can be stated [221]. The difficulties of comparing presentations
should not be underestimated: this theorem, though constructive, is not a panacea.

8.2 Covering spaces

Fundamental groups and induced homomorphisms display their power in classification
theorems, the best example of which is for covering spaces. For the remainder of
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this section, all spaces will be assumed path-connected. A cover of a space X is a
(covering) space X and a map p: X — X which is a local homeomorphism. This
means that to each x € X, there is a small neighborhood U C X of x with the property
that p~(U) is a disjoint union of homeomorphic copies of U, projected by p. The
fibers p~!(x) are all discrete and have the same cardinality. Covers of X have the
same local topology but (often) different global topology.

Example 8.5 (Circles) ©
The canonical example of a covering is the map R — S* given by t > ¢®™* € S C C.
However, there are other covers of S — the maps €?™'t s e®™f forany n A0 € 7
give an |n|-fold covering S* — S'. ©)

Two covers py: X1 — X and p;: Xo — X are said to be
equivalent if there is a homeomorphism f: )~<1 — >~<2 such that
p1 = po o f. For example, e2™t — 271t are equivalent covers
from S* to S? via the antipodal map. A universal cover is a cover
p: X — X with X simply connected. For all reasonable (con-
nected and semi-locally simply connected) spaces X, a universal
cover exists and is unique up to equivalence. Hence, if X is simply
connected, it is its own universal cover, as is the sphere S” for
n > 1 — it has no nontrivial covers. On the other hand, S” for
n > 1 is the universal cover of lots of interesting quotient spaces,
such as 3-dimensional lens spaces with finite ;. For example,
S™ — P"is a double cover (the fiber has cardinality 2).

The problem of distinguishing between a space and a cover
is salient in robot navigation and mapping. Assume a robot that moves about in an
unknown environment and can use primitive vision/sensing to patch together explored
local neighborhoods into a rough map of the environment based on (random or de-
terministic) exploration. While local patching is possible, global recurrence is more
problematic (cf. being lost in the woods — “Have we been here before?”). It is a persis-
tent problem to determine whether or not the robot has accurately mapped the region
or one of its covering spaces.

I

<}-

O

This partially motivates the question of
classifying and distinguishing different covers
O<iX) of a fixed space X: this is a neat-and-tidy

theory that mirrors the fundamental group

/ perfectly. The reader is encouraged to try

1 to classify all the different covers of S v S?.

This is not an easy exercise, either in the set-

— CX} ting of finite or infinite covers. However, the

general theory is elementary (as elementary
as is possible within the whirl of homotopy
theory). This depends crucially on a single concept: a lift. Aliftofamap f: Y — X
to a cover p: X = Xis a map f:Y = X such that f = p o f. The reader should

augment this definition with some examples from the simplest types of covers: covers
of S, T?, and STV S
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The following encapsulates the main results of covering space theory, with an
emphasis on lifts:

Theorem 8.6 (Covering Space Theory). Let X and Y be path-connected, locally
path-connected, and locally simply connected spaces®, and let p: (X, %) — (X, xo)
be a cover.

1. [Lifting criterion]: A map f: (Y, y) — (X, xo) lifts if and only if 7(f) < w1 (p):
that is, nontrivial loops in the image of f are also nontrivial in the image of p.

2. [Homotopy lifting]: Any homotopy fi: (Y, y0) — (X, xo) with an initial lift
for (Y.y0) = (X, %) lifts uniquely to a homotopy f,: (Y. ys) = (X, %o).

3. [Classification]: Covers of (X, xo) up to covering space equivalence are in bi-
Jjective correspondence with subgroups of w1 (X, xo).

These results are sharp and tightly connected. Together, they provide a complete
understanding of covering spaces (topological objects) in terms of subgroups of m;
(algebraic objects). Of course, the correspondence is bidirectional, and as often as
algebra enlightens topology, topology returns the favor: the best proof that every
subgroup of a free group is free is a simple application of covering space theory
[176, 218].

Example 8.7 (Euler angles) ©

IThese can be relaxed with care [176].
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As per §4.11, the orientation of an object (e.g., an airplane or a wiimote) in R? is
as an element of SOz and can be written as an orthogonal matrix with determinant
+1 or as a point in P3. It is more common in applications, however, to use angles to
describe the object’s orientation — in aviation, e.g., one uses roll, pitch, and yaw.
These angles — the Euler angles or any other
choice of three cyclic variables — implicitly de-
fine a map T3 — P3. Since the covers of P® are M
classified by subgroups of my(IP3) & Z,, there

is only the trivial (IP3) and universal (S3) cover.
As T3 cannot be a cover, there is no good coor-
dinate system that is everywhere a local home-
omorphism to P3: the coordinates cannot have full rank at all image points. Here,
m; acts both as a means of classification and obstruction. Note, however, that S3 is
a perfectly good cover, meaning that one can faithfully use quaternions (the group
structure on S3) without experiencing the same degeneracies. ©

8.3 Knot theory

The fundamental group is well-suited to the theory of knots and links, a beautiful sub-
ject for visual topology [260]. Recall from Example 4.24 that a knot is an embedding
of Stinto S3. Two knots are said to be equivalent (or of the same knot type) if there
is an ambient isotopy — a homotopy of homeomorphisms — of S carrying one knot
to the other. This fits with the intuition of deforming the strands without cutting or
pulling a knot so tight as to cause it to vanish. The unknot is a knot equivalent to a
standard S ¢ R? C R3,

The topological type of the complement S3—K of
a knot is, clearly, an invariant, since an ambient isotopy
drags the complement of one homeomorphically to that
of the other. Thus, any algebraic-topological invariant
provides a potential means of discriminating knot types.
One is at first tempted to use homology; however, this
is insufficient to the task. Every knot complement in S3
has the homology type of the circle, since, by Alexan-
der duality, Hc(S3—K) = H?>~%(S'). The fundamental
group is a much stronger, though not a complete, invariant.

Example 8.8 (Genus) ©

The question of knot equivalence has led to a dizzying array of invariants, drawn
on tools ranging from combinatorial trickery, covering spaces, Euler characteristic,
geometry, Morse theory, Floer theory, and more. Among the simplest of invariants is
the genus of a knot. A Seifert surface of a knot K C S3is a punctured orientable
surface S C S3—K embedded in the complement that spans the knot (K = 8S). Such
an S is homeomorphic to a punctured orientable surface of genus g. The minimal such
g is defined to be the genus of the knot. This is by definition an invariant, since an
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ambient isotopy of S® deforms a spanning surface along with the knot. Genus is
by no means a complete invariant, since many distinct knot types have equal genus.
However, genus is unknot detecting in the sense the genus of K is zero if and only if
K is the unknot. ©
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Example 8.9 (Braids) ®

Recall from Example 1.8 that one can describe periodic motions of robots (labeled
or unlabeled) using loops in a configuration space (C"(R?) or UC"(R?) respectively).
The description given is Chapter 1 was necessarily ad hoc. A better language is now
available. The braid group on n strands is defined to be B, = 71 (UC"(R?)); the pure
braid group on n strands is P, = w1 (C"(IR?)). These are both, naturally, groups. The
identity element is the constant loop; that is, nobody moves. Composition in the braid
group is concatenation of braids: first this, then that. The inverse of a braid reverses
motion. The braid group B, has a clean presentation whose generators g; consist of
crossing the i*" strand over the (i + 1)st:

oo, =0;0; . li—j>1
Bn = O1,-.., Op—1 " I | J|
0i0j4+10j = 0410041

motions but also algebraic descriptions of knots and links. A
closed n-braid is the link obtained from a braid in B, by con-
necting the points on the bottom of the braid to those on the L
top via n strands in the simplest possible manner. Equivalent
braids give rise to isotopic closures. A theorem of Alexander [7]
confirms the suspicion that every link can be represented as the
closure of some braid. The smallest n for which a braid in B, can
be closed to form a given knot is a topological invariant called
the braid index of the knot.

The mi-based definition of braid groups extends to braids on any domain. One
can consider, e.g., braids on surfaces other than R?. A great deal of interesting
structure is to be found in braid groups of graphs [118, 145]. ©

Braids provide not only an efficient language to describe robot K

Example 8.10 (DNA and enzyme actions) ©
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Protein chains, power cords, and DNA strands can coil into conformations one is
tempted to call Gordian; however, a typical such chain is not a loop, and thus cannot
be knotted. That has not prevented knot theorists from investigating knotting and
linking phenomena in DNA, which sometimes comes in circular substrate molecules
— loops. With a combination of electron micrography and gel electrophoresis, it is
possible to sort out collections of cyclic DNA strands by knot type. This makes
it possible to use knotted DNA as a test bed for determining the action of certain
enzymes that aid in recombination. Since knotting, linking, and writhing of the chain
prevents a simple parallel replication from separating from the parent chain, there
must be some agents that aid in disassembly and reassembly of the chain. These are
enzymes (recombinase, topoisomerase, etc.) whose actions are localized, vital, and
largely hidden. By applying selective enzymes and analyzing changes to global knot
type, the functionality of these enzymes can be inferred, quantified, and characterized
rigorously [285]. ©

Example 8.11 (Flowlines) ©

Three-dimensional flows exhibit all kinds of knotting.
Some of these flows are physical: smoke-rings and
other types of vortices (as in, e.g., superconducting
fluids) provide beautiful dynamic examples of embed-
ded loops in fluids, some of which are knotted/linked.
Numerous authors [14, 16, 131, 232] have contributed
to understanding lower bounds on the energy of a per-
fect fluid flow by means of knotting and linking of the
flowlines (cf. helicity in Example 6.25), with parallel
investigations in magentohydrodynamics: the text [16] is a good resource for this
body of ideas.

In general, any vector field on S3 or

R may have periodic orbits, each of which

f> % is (by uniqueness of solutions to ODEs) an
embedded loop — a knot. Together, these
form a link of periodic orbits, which may or
may not be a finite link. The basic ques-

Z& tion “Which link types are possible?”, even
in the context of a sufficiently smooth or

tame nonsingular vector field, is delicate.
The empty link is possible, thanks to the solution to the Seifert conjecture [202].
Any finite link is possible (a simple exercise). For flows exhibiting chaotic dynam-
ics (and thus infinitely many periodic orbits), Birman and Williams [39, 40] showed
how to collapse sufficiently hyperbolic invariant sets onto a template — an embedded
branched surface T C S* with a semiflow? — in a manner that preserves all knot and
link data of periodic orbits. Their seminal work on the geometric Lorenz attractor

TR

N &

2A semiflow is an action of RY instead of R. One can flow forward in time uniquely, but not
backward.
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showed that although infinitely many knots types exist as periodic orbits in this flow,
only certain types of knots and links can arise [39]. In contrast, there exist universal
templates which contain all knots and (finite) links as periodic orbits of the semiflow
[143]. These can arise in a number of interesting physical settings — explicit ODEs on
R3 possessing all knots and links as solutions [147].

©

8.4 Higher homotopy groups

The notation 71 (X) for fundamental group foreshadows the higher homotopy groups.
The notation does not predict the resulting surprises.
Fix a space X and a basepoint x; € X. The ho-

motopy group 7, of X at x; measures the number
of ways to map a sphere S” with a fixed basepoint
So into X up to (basepoint-preserving) homotopy.
That is, m, consists of homotopy classes of maps
f:(S" s5) — (X, x0). Note that this reduces to
the loop-based definition in the case n = 1. For
n =0, mo(X, Xxp) is a set whose cardinality mea-

sures the number of path-connected components

of X. For all other n > 0, m,(X, xp) has the structure of a group under the fol-
lowing multiplication operation. Given f,g: (S”,s9) — (X, Xx9), define the product
feg: (S" s5) — (X, xg) by sending an equator of S” (containing sp) to xg, and map-
ping via f on the upper hemisphere and g on the lower. It is clear that the identity
element is represented by the map S” — xg. It is an easy exercise to show that,
for connected spaces X, the homotopy groups are isomorphic for different choices of
basepoint xp: as in the case of my, basepoints are often suppressed unless explicitly
needed.

The definition of homotopy groups is more elementary than that of co/homology.
Indeed, as many algebraic topology courses begin with homotopy groups and only later
turn to co/homology, the experienced reader may be frustrated at this late-in-time
treatment of so fundamental a species. There is good reason to beware homotopy
groups as an admixture of the divine and the devilish. A good example of a homotopy
group computation is that of a sphere. One begins simply enough: 7,(S") is trivial for
0 < k < n, and m,(S™) = Z. This compares favorably with the homology of spheres:
T (S,) = He(S™ Z) for all 1 < k < n (see Theorem 8.14 to come). But what of the
higher homotopy groups? These seem even simpler than the sometimes problematic
1. Any topologist who can't prove the following with a picture, isn’t:

Proposition 8.12. For k > 1, mw, is abelian.
The computation of w3(S?) is the first hint at the mysterious nature of higher

homotopy groups. Surprisingly unlike homology, 7, (X) does not necessarily vanish for
k > dim X. One is misled by the case of S', whose universal cover is contractible.
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In §8.10, it will be shown that m3(S?) = Z. Higher homotopy groups do not offer
much in the way of bubbly optimism for computational topology: perhaps the largest
unsolved problem in algebraic topology is the computation of m4(S”) for large values
of k > n. For example, m(S?) as a function of k > 0 is:

0,7 ,7, %, Ty, Taa, Lun, Lo, T, Txs, Do, 75, Do X Toro, Toga X 2.3, 75, . ..

There is good reason to believe this problem will not be readily solved, not because
of a lack of pattern in existing data on me(S"), but, as with much of Mathematics,
because of a wild abundance of pattern.

Some computations are possible. Like 71, higher homotopy groups are functorial:
a map f: X — Y induces homomorphisms on m, for all n > 0, and homotopic
maps yield the same homomorphism (modulo basepoint considerations). Some maps
preserve (higher) homotopy groups without necessarily being a homotopy equivalence
of spaces. The following is a direct consequence of the lifting criterion of Theorem
8.6:

Corollary 8.13. Covers induce isomorphisms on 7, for all n > 1.

90000066

This leads to some interesting computations.

All graphs have 7, = 0 for n > 1.

All surfaces except S? and P2 have 7, = 0 for n > 1.

S? and P? have all 7, isomorphic except for n = 1.

m(S? Vv St) & 7, since the universal cover has an infinite number of nonho-
motopic copies of S2.

BN
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8.5 Biaxial nematic liquid crystals

Recall from Example 4.25, nematic liquid crystals in R? and R3 are composed of
molecules whose idealized form is that of an axisymmetric rod. The corresponding
singularities in the crystals are completely described by degree theory using homology
(in Z coefficients for the 2-d case and T, for 3-d).

Let the reader note that in cases where the degree
is computed from the director field & by means of a
loop, then the homological degree of £: ST — P! or
¢: S — P? classifies the singularity type: switching to
the fundamental group m returns no new information.
However, in the case of a point-defect in R3, the rel-
evant map of a surrounding sphere gives ¢: §% — P2
In homology, this degree is F»-valued, but in homo-
topy, one has m(£€): m(S?) — mo(P?) which, being a map from Z — 7Z, reveals a finer
invariant.

The advantages of homotopy groups become more pronounced in more general
liquid crystal structures. One important (though only more recently investigated) class
of liquid crystals are the 3-d biaxial nematics, whose molecules are not axisymmetric,
but rather have the form of a rectangular prism [6]. Recall that for the axisymmetric
(nematic) case in R3, the director field takes values in the quotient of the rotation
group SOz by the group of symmetries of an axisymmetric rod: S!. This quotient
is clearly P2. However, in the biaxial setting, the director field takes values in the
quotient of SO3 by D», the symmetry group of a rectangle in the plane.

With a bit of work, this space can be shown

to be homeomorphic to the quotient of S3 by Qs,

the ynit quaternions. Thi's is. the (unique) non- oleBE|Dm=|m
abeﬁan group Qg = {£1, £/, :I:j,.:l:k} of order eight. o0 E B mIEIE
This group, familiar from physics and 3-d vector

calculus, expresses noncommutativity in the rela- H|8|Q|O|Cl/H|m|m
tions ij = k = —ji (and permutations thereof). B(H|O|@ ||| M|
Because the action of Qg on S2 is regular, the OEEEDQIOH|E
quotient S3/Qg is a cover; since S3 is simply con- jimali=lel@l=]l=!
nected, t.he.quc.)tie.nt has fundgmgntal grogp T = DEDOmBE B8O
Qg. It is |nt.r|gumg that this dlrector field .has BOmoEEOe
noncommutative fundamental group: it provides

a much richer dictionary for curves of defect sin-
gularities than homology can [6]. Note also that
because 7, (S3/Qg) = 1 (S?) = 0, there are no point-like singularities up to homotopy.

There are many other interesting materials whose internal structure reveals a
director field expressible as a quotient of the group SO3z or SO, by some subgroup.
These include not only various types of liquid crystals, but also metallic glasses, ferro-
magnets, and superfluid helium [29], all of which can exhibit disclinations and defects
of various types. The best way to categorize these is via induced maps on homotopy
groups.
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8.6 Homology and homotopy

The relationships between mw,, He, and H*®, are too many and too deep to encapsulate.
One begins with the elementary observation that, while 71 (S!V S') is a free group
Z *x 7, H1(S* v S1) is the free-abelian group Z @ Z. The following is one of the few
simple results that binds homotopy and homology groups together. It is the natural
extension of the pattern seen with spheres.

Theorem 8.14 (Hurewicz The-
orem). There are homomor-
phisms

Hur,: 7,(X) — H,(X;7Z),

which, for n = 1, is abelianiza-
tion. If n > 1 and wy(X) is triv-
ial for0 < k < n—1, then Hur,
is an isomorphism and Hur 11 is
surjective.

When a mapping between spaces is involved, the Hurewicz theorem pairs well
with an extremely powerful result for proving homotopy equivalence of spaces.

Theorem 8.15 (Whitehead Theorem). /ff: X — Y is a map of cell complexes with
w(f) : m(X) = 7, (Y) an isomorphism for all n, then f is a homotopy equivalence.

Since homotopy equivalences are difficult to construct by hand, it is helpful to
have implicit tools. One must be careful not to misread the result as saying that
spaces with isomorphic homotopy groups are homotopic: it is the mapping and the
induced homomorphisms that carry the theorem.

Example 8.16 (Eilenberg-MacLane spaces) ©

In homotopy theory, there are numerous approaches for decomposing spaces. One
type of building block is an Eilenberg-MacLane space. Denoted, K(G, n), this is a
(connected) space, unique up to homotopy type, whose homotopy groups are trivial,
with the lone exception that 7,(K(G, n)) = G. For example, St is a K(Z, 1) since
the circle has contractible universal cover and all higher homotopy groups vanish. It is
not so easy to find Eilenberg-MacLane spaces within the class of finite cell complexes:
existence results, though constructive, yield infinite-dimensional spaces as examples.
The easiest-to-find finite-dimensional Eilenberg-MacLane spaces are of type K(G, 1).
These include:

1. All knot complements in S3;
2. Configuration spaces C"(R?) of points in the plane;
3. All state complexes (§2.11); hence, configuration spaces of graphs.

These spaces serve as the bridge to a surprising relationship between cohomology and
homotopy. It is a theorem that the cohomology of a cellular space X is expressible
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in terms of homotopy classes of maps of X into Eilenberg-MacLane spaces; specifi-
cally, H(X; G) =2 [X, K(G, n)], where [X, Y] denotes a group of basepoint-preserving
homotopy classes of maps X — Y (where the group structure is not entirely ob-
vious: see [176, §4.3]). This is the first hint of the depth of the relationship be-
tween co/homology groups and homotopy groups. One simple example of this is that
m(X) =[S, X] while HY(X; Z) = [X, S1], thus revealing a type of duality linking 7
and H'; cf. §6.13. ®

8.7 Topological social choice

All of the applications to Economics in this text have thus far relied upon homological
tools. Homotopy theory has something to contribute. Economists have long consid-
ered the problems associated with social choice and preferences. The following is a
topological version of a classical social choice problem. Consider a set of preferences
that is topologized as a space, X; examples include preferred prices, budget allocation
ratios, or relative rankings of politicians. Given a population of n agents, each with
a fixed preference, the state of that population’s preferences is an n-tuple of points
& € X". The conversion of individual (local) preferences into a single (global) choice
is via a social choice map =: X" — X. To reflect reasonable conditions, such a map
is required to satisfy the following properties:

1. Continuity: = is continuous, so that small shifts in local preferences have small
impact on the aggregate preference;

2. Unanimity: = is the identity on the grand diagonal in X", so that a unanimous
vote is accepted; and

3. Anonymity: = is invariant under the action of a permutation on the factors of
X"

The question of existence of a choice map sounds
suspiciously like that of existence of an equilibrium in price-
or game-theory. Here, instead of universal existence, there
is a near-universal non-existence. The following theorem

provides the basis for a nonexistence result. G :o
0~ @1 o
Theorem 8.17 ([102]). /f X admits a social choice map ) D

for some n > 1, then for each k > 0, w,(X) is abelian and .
uniquely divisible by n. o

Corollary 8.18. If X is homotopic to a cell complex with
finitely-generated Ho(X; Z) and has a social choice map for some n > 1, then X must
be contractible.

Proof. (assuming Theorem 8.17) As m; is abelian, it is
isomorphic to H; via the Hurewicz theorem. Finiteness and divisibility imply both
are zero. By Hurewicz again, m» = H> = 0. Induct to show that m, = 0 for all
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higher k. Since X is (homotopic to) a cell complex and the trivial map X — x
induces isomorphisms on homotopy groups, the Whitehead theorem implies that X is
contractible. ®

The reader familiar with Arrow’s Impossibility Theorem for voting will note the
similarities: the Arrow theorem is in the case where X is a finite set of rankings and the
anonymity is not enforced (allowing for dictatorial outcomes) [22]. It is interesting to
note that there are non-contractible spaces which do admit social choice maps. They
are necessarily infinite-dimensional and algebraically subtle: Weinberger [301] shows
that the infinite-dimensional real projective space X = P> admits a social choice map
for any n odd, but never for n > 0 even. It would also be interesting to connect
this work with certain difficulties associated with managing swarms of mobile robots
by generating a consensus in subspaces of the individual robot configuration spaces
(e.g., bearing or pose) [287].

8.8 Bundles

In linear algebra, a surjective linear transformation of vector spaces is characterized by
the kernel and the image. Surjective maps f: X — Y between spaces are potentially
wilder. The nicest type of nonlinear surjection has a homogeneity not unlike the linear
case: the fiber [kernel] and the base [image] tell all, locally.

A (fiber) bundle is a space E together with a projec-
tion map p: E — B to a base space having fibers p=1(b)
all homeomorphic to some fixed F, so that, on sufficiently
small open sets U C B, p 1(U) & U x F. One thinks of
the total space E of the fiber bundle as a family of F pa-
rameterized by B. In the case where E = F x B, one says
the bundle is trivial. Trivial bundles are all alike: every non-
trivial bundle is nontrivial in its own way, bound up in the
topology of the base and fiber. Simple examples include:

1. Covering spaces p: X — X are fiber bundles in which E = X is the cover,
B = X the base, and the fiber F is discrete.

2. A Klein bottle is a nontrivial bundle over S with fiber St. The difference between
this and the trivial bundle T? lies in a flip of the fiber.

3. The configuration space C"(M) of n points on a connected manifold M is a fiber
bundle over base M with fiber C"~1(M—x) for x a point.

4. The 3-sphere S® is a nontrivial bundle over S? with fiber S'. This elegant
structure is called the Hopf fibration and is important in integrable Hamiltonian
dynamics [45] and more. Each pair of fibers in S has linking number 1.

5. The unit tangent bundle, UT.M, of a manifold M is the collection of unit
tangent spheres in T, M, expressed as a bundle over M with fiber F = Sdim M—1,
This bundle yields the Hopf fibration for M = S2.

A vector bundle is a bundle p: E — B whose fiber F is a vector space such that
addition and scalar multiplication on the fibers extend to continuous maps on all of
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E. Examples of vector bundles include tangent and cotangent bundles of a manifold,
but others also exist.

For example, there are, up to a natural equivalence,
exactly two vector bundles over S* with 1-dimensional fibers:
one (the trivial R-bundle) is equivalent to T,S! = S! x R1;
the other (non-trivial) one is the twisted bundle with £
homeomorphic to a Mdbius band without boundary. Note
that both these examples are homotopic to the base S?.
Many of the constructs of this text take on richer mean-
ings in the context of the cohomology of vector bundles
[226]. For example, the Euler characteristic of a oriented
connected compact n-manifold M lifts to an Euler class —
a particular cohomology class e € H"(M;7Z) = Z. This is
a generalization of Euler characteristic in that the pairing of e with the fundamental
class, the generator of [M] € H,(M;7Z), yields e([M]) = x(M).

Example 8.19 (Fibered knots and magnetic fields) ©
A knot K C S2is said to be fibered if the complement is a bundle over St with fibers
of p: S3°—K — S! the soap-film-like Seifert surfaces of Example 8.8. The unknot
is fibered (with fibers homeomorphic to a disc). Trefoil knots, as well as the classic
figure-8 knot, are also fibered, though in general fibered knots are not common.
Fibered knots may be related to electromagnetics. A
wire bent into a knot K in S emits, upon passing a current
through it, an induced magnetic field on the complement.
The magnetic vector field coils about the wire. For a fibered
knot K, the magnetic field is transverse to the fiber bun-
dle near K — the magnetic flowlines cross the fibers. One
guesses [40] that the magnetic field is everywhere trans-
verse to the fibers; this seems a reasonable conjecture for
relaxed embeddings of K. If this is true, then any (fiber-
transverse) magnetic field induced by a current through a
figure-8 knot [143] (and many other fibered knots [148])
possesses closed field lines spanning all possible knot and link types. ©

Nontrivial bundles are globally so: by definition,
every bundle is locally trivial. What is the measure
of nontriviality of a bundle? Euler characteristic is
not a good invariant of the bundle structure, since
X(E) = x(B)x(F) for all bundles E over B with fiber
F. whether trivial or not. Homology and cohomol-
ogy of E can sometimes distinguish between bundles
(cf. T? and K?), but not always; e.g., a vector bundle |
is homotopic to its base. The question of triviality is
related to that of the existence of sections. Recall
from §1.4 that a vector field on a manifold is a section of the tangent bundle. For a
general bundle p: F — B, a section is a map s: B — E satisfying pos = Idg. Not
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all bundles have sections: for example, the existence of a non-vanishing vector field
on a manifold M is equivalent to the existence of a section of the unit tangent bundle
UT.M, and this does not exist if x(M) # 0. Trivial bundles always have sections.
The degree to which sections fail to exist provides a measure of complexity relevant
to applications.

8.9 Topological complexity of path planning

Recall from §1.5 the importance of configuration spaces in motion-planning problems
for robotics: a configuration space converts the problem of physical motion planning to
topological path planning. The insight of Farber [112] is to consider motion planning
as a problem parameterized by the start and end configurations, and to crystalize
this parametrization in terms of fiber bundles and invariants thereof. Given a path-
connected configuration space X, consider the path space P(X), the space of all
maps v: [0, 1] — X with the usual (compact-open) topology. There is a projection
mapping p: P(X) — X2 taking a path « to its ordered endpoints (y(0),v(1)). With
respect to this projection, the path space P(X) is a fiber bundle (assuming X is locally
homogeneous, as in the case of a manifold — else it is a fibration: see §8.10). A path
planner is a section of the path bundle: a continuous map s: X? — P(X) satisfying
pos = Id. The following result echoes the obstruction to the inverse kinematic map
in §84.11.

Lemma 8.20 (Farber [112]). The bundle p: P(X) — X2
possesses a section if and only if X is contractible.

/ £\ ® Proof. If s: X2 — P(X) is a section, then to each pair
N / (xg.x1) € X? is associated a path s(xg,x1): [0,1] — X

connecting xp to xi, continuous in these parameters. Fix
/ \/ ® x; € X a basepoint, and consider s(-, x;): X x [0, 1] = X,
© / which is a homotopy from Id: X — X to the constant map

X — {x1}. The argument is reversible: a deformation to

a fixed basepoint can be unwound to yield a path planner
(with all paths passing through the basepoint). ©

This initially discouraging result says that there are, in general, no stable motion-
planning algorithms; fixing a motion-plan and varying the endpoints can lead to a
discontinuous change in the plan, much in the same way that a portable GPS trip
planner exhibits instabilities with respect to small changes in point-of-origin. However,
similar negative results for the kinematics of a robot arm (§1.5) have not prevented the
ubiquitous use of coupled rotation joints: lack of a continuous section simply means
that the problem is more complicated and may exhibit instabilities. To what degree?

Bundles prompt a parametric version of the LS category of §7.9, yielding a
notion of complexity relevant to the path-planning problem. The sectional category,
secat, of a fiber bundle is the minimal number of open sets U, covering B such that
p 1(Uy) = Uy, x F. This records the minimal number of trivial bundles needed to
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cover E. As with LScat, secat is difficult to compute, but can be bound by algebraic-
topological invariants in the manner of Theorem 7.27. In the context of path-planning,
sectional category is the degree of instability of the problem. After the initial question
of obstruction — can or cannot do — there remains the issue of complexity. If one
were to solve the stable path-planning problem piece-wise, how many pieces would be
required? Farber defines the (reduced) topological complexity of the motion planning
problem on X as:

TC(X) :=secat(p: P(X) = X x X) — 1. (8.2)

Example 8.21 (Topological complexity) ©

The following examples of TC computations are surveyed in [113]:

1. Spheres: TC(S") equals 1 for n odd; 2 for n even.

2. Surfaces: For a closed orientable surface S, of genus g, TC(Sy) = 2 for g < 1;
TC(Sy4) =4 for g > 1.

3. Rotations: TC(SO3) = 3.

4. Graphs: For X a graph, TC(X) equals 0 (if X is a tree), 1 (if X ~ S1), or 2

(else).
5. Projective space: TC(IP") is known only for n < 24. In general, it is very hard
to compute [116]. ®

Theorem 7.27 can be used to give bounds on TC: upper bounds are regulated by
dimension, and lower bounds are regulated by cohomology: for X a reasonably tame
space, the topological complexity satisfies cup(X x X) —1 < TC(X) < 2dim X.

Example 8.22 (Configuration spaces) ©

Those examples of TC that come closest to being relevant to robotics are for con-
figuration spaces of points C"(Y) or UC"(Y'). In particular, for a fixed space Y the
computation of lim,_,. TC(C"(Y')) gives a measure of asymptotic difficulty of collision
avoidance. This is in general difficult to compute, as can be guessed from previous
examples. It has been shown [115] that for labeled configuration spaces,

2n — 2 . Y =Rt
TC(C(Y)) = 2n—3 .Y =R27 . (8.3)
2#VeE(Y) Y = atree

Here, in the case of Y a tree, #V = stands for the number of essential vertices —
vertices of degree strictly greater than two. These results are notable: (1) the lack of
dependence on m for TC(C"(R™)) means that the ambient space is largely irrelevant
to collision-avoidance complexity; (2) the lack of dependence on n for TC(C"(Y')) for
Y a tree means that the critical lack of room on a tree collapses the complexity of
collision avoidance to what happens at the essential vertices. ©



8.10. Fibrations 175

8.10 Fibrations

There is a far-reaching generalization of fiber bundles befitting homotopy theory. In

spirit, a fibration is a surjective map p: E — B with the property that (for B path-

connected) all fibers p~1(b) are homotopy equivalent, as opposed to homeomorphic.

The proper definition does not reference the fibers at all but is founded in behavior of
homotopies in manner not unlike covering spaces.

A [Hurewicz] fibration is an onto map p: E — B with

the following homotopy lifting property: for any homotopy

Y4>E h: of aspaceY in B and a lift ho: Y — E of hy to E, there is a

Idxol [ liftted homotopy hi: Y — E. In other words, in the appropriate

commutative diagram, the dotted lift exists. At first glance,

B this definition seems obtuse: where is the fiber, F, and why

does it have a well-defined homotopy type?

Y x [0, 1]—>

Lemma 8.23. Fibers of a fibration over a path-connected base have constant homo-
topy type.

Proof. Pick a basepoint by € B and let F = p~!(by). Let B: [0,1] — B be a path in
B from by to b;. Define h: F x [0, 1] — B via B on [0, 1] and via collapse-to-a-point
on F. This has a lift hy = Id: F x {0} = p~!(by). Thus, by homotopy lifting,
hy = p~1(B(t)) is a homotopy from F into p~'(b1). Reverse the path and repeat to
show a homotopy equivalence between fibers. ®

The idea of defining a fibration not in terms of explicit topological features of F,
but rather in terms of implicit response of p to homotopy-lifting, is deep and presages
the use of homotopy testing as a means to define and extend other notions. Indeed,
this is the pattern for defining cofibrations — a dual notion that characterizes maps
t: B — E in terms of possessing the homotopy extension property — see [176]
for details. These ingredients — fibrations generalizing projection and cofibrations
generalizing inclusion — form the basis for the abstraction of homotopy theory to
model categories [246, 101]. Upon first pass, the reader should note merely that
such generalizations exist and flow from the use of commutative diagrams.

One simple example suffices to demonstrate the power of this approach. The
reader may wonder why exact sequences have not made an appearance in the context
of homotopy groups: they are very important, but come with concomitant subtlety
(cf. the difference between the Mayer-Vietoris and Van Kampen theorems). The
definition of a fibration allows for inference of fiber behavior via the long exact sequence
associated to a fibration. Given p: E — B with fiber homotopy type [F], the following
sequence is exact:

(1) 7(p) (1)

e o (F) /5 1 (E) —25 m,(B) —2 o 1 (F) ——5 (8.4)

The maps are constructed as follows. Let by € B be a basepoint, with F = p~*(hy).
The inclusion ¢ : F — E sends a basepoint fy € F to ey € E. The maps 7(¢) and w(p)
are clear: it is the connecting homomorphism ¢ that is subtle. Consider the diagram
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whose top row is inclusion of the boundary (n—1)-sphere followed by collapse of same.
The rightmost vertical arrow represents a class [a] € m,(B). Commutativity and the
homotopy lifting property are used to generate the dotted vertical arrows and to show
that the induced class §([a]) € m,—1(F) is well-defined.

As a simple example, this sequence yields a direct

proof that covers induce isomorphisms on 7, for n > 1. gpnc " S
since the fiber is discrete, every third term of the se-

quence vanishes, yielding isomorphisms of the remaining JO‘
pairs. More subtle is the example of the Hopf fibration F_* F_* R

p: S — S? with fiber F = S%; this induces the long
exact sequence:

coo = (81 — my(8%) — (8 — 1 (ST — -

which, since m,(S) = 0 for all n > 1, implies that 7,(S%) = 7,(S?) for all n > 2.
Thus m3(S?) =2 73(S3) = Z.

8.11 Homotopy type theory

This text has largely avoided the (many and fruitful) applications of topology in the
areas of logic and computer science, in part because of the significant overhead of
definitions and formal structures required for a proper exposition. Some of the most
recent activity in these domains is, however, too compelling not to limn. Let the
reader beware that what follows is a severe redaction of a highly intricate and rapidly
advancing research program.

Computer programmers use types to distinguish different classes of data: the
reader may have seen A-calculus or other systems that use formal rule systems to
define functions from base or constant types. If this is not familiar, the reader may
recall the difficulties stemming from Russell’s paradox in set theory® and the resolution
through distinguishing different types of objects (sets, classes, universes, etc.).

In (intensional) type theory, there are collections of terms, to which can be
associated a type within a universe of types; these can range from variables to logical
operators to functional types and more. There is a loose correspondence between
type-theoretic constructs, logical constructs, and set-theoretic interpretations thereof.
The novel ingredient in the recently-christened homotopy type theory is an injection
of homotopy-theoretic perspectives. Beginning with the observation that a type is
something like a space, as opposed to a set, and a term of a certain type is something
like a point in said space, a homotopy-theoretic sensibility can inform and expand type
theory. With the adjunction of one key axiom — the univalence axiom* of VVoevodsky —
one can construct a well-defined correspondence of the classical interpretations to the
homotopy-theoretic constructs touched upon in this chapter. It is worth reproducing
the table of correspondences from [291], which serves as a Rosetta stone for the

3“The set of all sets that do not contain themselves...” caused no small amount of trouble.
4The univalence axiom is about a universe U of types; it states that types which are formally
equivalent in U are identical.
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type-theoretic, logical, set-theoretic, and homotopy-theoretic views:

| TYPES | LOGIC | SETS | HOMOTOPY |
A proposition set space
a:A proof element point
B(x) predicate family of sets fibration
b(x) : B(x) | conditional proof | family of elements section
0,1 1.7 @, {@} @,
A+ B AV B disjoint union coproduct of spaces
Ax B ANB set of pairs product of spaces
A— B A= B set of functions function space
> (xa) B(X) 3y.aB(x) disjoint sum total space
H(X:A) B(x) Vy:aB(x) product space of sections
Id equality = {(x,x): x € A} path space P(A)

This table is meant to inspire rather than to define: proper definitions are more

involved and require the categorical language of Chapter 10 that is the focus of the
remainder of this text.

Notes

1.

. The Whitehead theorem has a computationally-friendly corollary:

Knot theory began in earnest with the work of Kelvin and Tait as a problem in fluid
dynamics. It was conjectured that atoms were knotted vortex tubes in the ather,
and that a classification of knot types would reproduce and refine the periodic table.
Poincaré's initial work on algebraic topology was likewise motivated by the desire to
understand the dynamics of fluids. It is remarkable how much the field of topology
owes to fluid dynamics. (The author, too, came to topology via fluids and dynamics.)
a map between
simply-connected CW complexes that induces isomorphisms on all homology groups is
a homotopy equivalence. Simply-connectivity is the key to this result.

Homotopy and homology are fundamentally entwined via configuration spaces. For a
connected CW complex X, consider the unlabeled singular configuration space X"/S,
of n unlabeled not-necessarily-distinct points on X. The Dold-Thom theorem states
that in the limit as n — oo, the resulting configuration space has w, isomorphic to
Ha(X;Z). This is very deep and seems to presage a topological version of statistical
physics.

Corollary 8.18 on topological social choice was discovered by Weinberger, [301] see also
Chichilnisky et al. [66], and Baryshnikov [22]; however, in the process of publication,
it was realized that the result is implicit in the 1954 paper of Eckmann, who was not
motivated by social choice at all, but rather by problems of generalized means and
homotopy theory.

Section 8.8 hints at the theory of characteristic classes. Given a vector bundle
w: E — M, a characteristic class is an element of H*(E) carrying data about the
bundle. Among the more interesting characteristic classes besides the Euler class are
the Stiefel-Whitney, Chern, Pontryagin, and Thom classes [226]. The application of
homotopy groups to classifying defects in liquid crystals in §8.5 is just the beginning
of a number of exciting instances of algebraic topology in condensed matter physics,
recent examples of which use characteristic classes to explain experimentally observed
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10.

phenomena. This text has skipped most of the applications of topology to physics and
fields, not because of lack of interest, but because of the requisite depth: bundles and
characteristic classes are the starting point for modern approaches to quantum field
theory.

It is hard to overstate the importance of fibrations and cofibrations within homotopy
theory. For a proper treatment, see, e.g., the excellent text of May [221].

. The antecedent to the work described in §8.9 is the insightful work of Blum, Shub,

and Smale on topological complexity of computations [42, 278]. This work defines
a topological complexity for computing roots of a complex polynomial of degree k in
terms of the section category of the bundle €%(C) — UC¥(C): see also, [17, 85, 295].
The cohomology computations hinted at in §8.9 go much deeper than explained in
this text. See, e.g., [112, 113, 114] for relations to cohomology operations, Steenrod
squares, and the like. The topological complexity of the real projective spaces P" is
equal to its immersion dimension except for n = 1,3,7 [116] — this is a notoriously
subtle and difficult to compute quantity.

The critique that TC does nothing to help with realistic motion-planning problems is
perfectly true and perfectly ignorant of the illumination an obstruction theory brings.
The tablein §8.11 is reproduced from [291] with some slight notational changes (legally,
under their Creative Commons license). The reader is encouraged to see the source
for more and better explanations.



