Chapter 6

Cohomology

NAWD,




112 Chapter 6. Cohomology

ohomology is the mirror-image of homology, flipping geometric intuition for
algebraic dexterity. The duality implicit in this theory is a subtle and easily
underestimated tool in algebraic topology.

6.1 Duals

The first form of duality one encounters in Mathematics is combinatorial.?
The number of ways to choose k items from n > k is

° exactly the same as the number of ways to (not) choose
o o n — k items. This symmetry in counting manifests itself in
o 8§ o numerous numerical miracles, from the reflection symmetry
o 9% o of Pascql's triangle, to the fact t.hat X(Sz”“) = O_' The
©o TY ¥ o manner in which duality presents itself in Topology is best
discovered through the familiar forms of linear algebra and
o VOO V o calulus.

The dual space of a real vector space V is V7, the

vector space of all linear functionals V — R. The dual

space satisfies dim(V") = dim(V), and (V)" = V for V finite-dimensional. There is

a corresponding notion of duality for linear transformations. If f: V — W is linear,

the dual map or adjoint of f is 7 : W~ — V"~ given by (f"(n))(v) = n(f(v)). Note

how the dual transformation reverses the direction of the map: it is the archetypal
construct of this chapter.

Example 6.1 (Gradients) ©

Dual vector spaces play an important role in calculus on manifolds. The cotangent
space to a manifold M at p € M is the vector space dual TyM = (T,M)” to the
tangent space. The cotangent spaces, like their tangent space duals, fit together to
form a bundle of vector spaces over M, the cotangent bundle 7*M. The analogue
of a vector field is a 1-form: a choice of T;M continuous in p. For example, given
a real-valued function f: M — R, the gradient of f is the 1-form df which, in local
coordinates {x;}{, evaluates to

™. 8f
df = — a—XidX,', =

where dx; is the dual to the x; unit tangent vector. The e

Chain Rule implies that df is independent of the local co-

ordinates used to express it. |t is a common mistake to
conflate the gradient of a function with a vector field Vf:
this is permissible in Euclidean space, but the pairing is not
canonical. It is best to imagine a gradient df not as a vec-
tor field, but as a ruler field — a field of rulers with direction,

orientation, and scale — along which tangent vectors are measured. ©

IThat grammatical dualities cannot fail to precede even these is not a false statement.
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6.2 Cochain complexes

A cochain complex is a sequence € = (C*® d) of R-modules C* (cochains) and
module homomorphisms d*: Ck — C**1 (coboundary maps) with the property that
d**1 o d¥ = 0 for all k. The cohomology of a cochain complex is,

H*(€) = ker d*/im d* .

Cohomology classes are equivalence classes of cocycles in
ker d. Two cocylces are cohomologous if they differ by a
coboundary in im d. The simplest means of constructing
cochain complexes is to dualize a chain complex (C,, 9).
Given such a complex (with coefficients in, say, R), define CK = C}, the module of
homomorphisms C, — R. The coboundary d is the adjoint of the boundary 9, so that

dod=08"08"=(0008)" =0"=0.

The coboundary operator d is explicit: (df)(1) = f(07). For T a k-cell, d implicates
the cofaces — those (k + 1)-cells having T as a face.

Example 6.2 (Simplicial cochains) ®

Examples in the simplicial category are illustrative. Consider a triangulated disc with
a 1-cocycle on edges using F5 coefficients.

Any such 1-cocycle is the cobound-
ary of a 0-cochain which labels
vertices with 0 and 1 on the left
and on the right of the 1-cocycle,
so to speak: this is what a triv-
ial class in H1(D?) looks like. On
the other hand, if one considers
a surface with some nontrivial H;
— say, an annulus — then one can
construct a similar 1-cocycle that
is nonvanishing in H'. The astute
reader will notice the implicit relationship between such cocycles and gradients of a
local potential over the vertices, with cohomology class in H! differentiating between
those which are or are not globally expressible as a gradient of a potential. ©

Example 6.3 (Integration) ©

Consider a chain complex € with R-coefficients, freely generated by (oriented) sim-
plices {o} in a simplicial complex X. The dual basis cochains can be thought of as
characteristic functions {1,}. The obvious pairing between C and its dual €” in these
bases permits an integral interpretation: for basis elements o and T, define fg 1, to
be the evaluation taking the value 1 if and only if 7 = ¢ and 0 else.
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This notation is illustrative. By definition of the coboundary d as the dual of the
boundary 9, one has (d1,)(T) = 1,(dT). Using linearity and the integral notation,
one has for all cochains a € CP and chains ¢ € Cpy1,

/Cda:/é\ca. (6.1)

This notation should appeal to scientists and engineers who know from early education
the utility of Stokes” Theorem. The hint of differentials is no accident: calculus and
cohomology are integrally bound, see §6.9. O]

Example 6.4 (Kirchhoff’s voltage rule) ©)

Consider an electric circuit as a 1-dimensional cell complex, with circuit elements
(resistors, capacitors, etc.) located in the interiors of edges. Kirchhoff’s voltage
rule states that the sum of the voltage potential differences across any loop in the
circuit is zero. In the language of this chapter: voltage is a 1-coboundary. ©®

Example 6.5 (Cuts and flows) ©

Consider a directed graph X: a 1-d cell complex with each edge oriented. A classical
set of problems in combinatorial optimization concerns flows on X. Choose two nodes
of X to be the source (s) and target (t) nodes, and assume that the graph is connected
from s — t (respecting direction). A flow on X is an assignment of coefficients (in,

say, N) to edges of X so that, for each node except s and t, the sum of the in-pointing
edge flow values equals the sum of the out-pointing edge flow values. Motivated by
problems in transportation and railway shipping, the classical max flow problem seeks
to maximize the flow value (the net amount flowing from s or, equivalently, into t)
over all flows. The problem is constrained in that each edge is assigned a capacity
that dominates the possible flow value on that edge.

The max-flow-min-cut theorem states that the maximum possible flow value
equals the minimal cut value as follows, where a cut is a subset of edges of X whose
removal disconnects s and t (there are no longer directed paths from source to target)
and its value is the sum of the edge capacities over the cut. This theorem is a
minimax-type theorem in which a duality between flows and cuts is prominent.

In the language of this chapter, given X, s, and t, cuts and flows correspond to
various chains and cochains. For clarity, assume that X has been augmented to have
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a single feedback edge from t to s with infinite capacity. In this case, any flow is an
element of H1(X;Z), where the sign of the Z-coefficients is consistent with the edge
orientations: the condition for being a 1-cycle is precisely that of a conservative flow.
A cut gives a 1-cocycle which is nontrivial in HY(X; Z), since, with the feedback edge,
there is no way to separate vertices of X on either side of the cut. The reader rightly
suspects that flow/cut duality is at heart a co/homological duality: see Example 10.25.
®

Example 6.6 (Arbitrage) ®

Certain simple examples from economics and social networks are expressible in the lan-
guage of chains and cochains: the following is from [185]. Consider a static exchange
market on a set of N commodities, V = {v; ’1\’ Assume the existence of exchange
rates — coefficients €;; > 0 such that one unit of v; is worth €; units of v;, with the
natural symmetry that ¢;; = e;l. Build a graph X, with nodes V' and edge set equal
to all {v;, v;} such that exchange rates ¢;; are known.

There is a natural R-valued 1-cochain given by ex-
change rates as follows. Orient the 1-cells of X in an ar-

bitrary but fixed fashion, and let the 1-cochain £ evaluate

W&
/ \ on an oriented edge (v;, v;) to In€j;. In a perfect exchange
P
>

system, £ is a cocycle: any cyclic sequence of trades from
commodity v; back to v; returns the same amount (as-
suming zero transaction costs). The failure of £ to be a
cocycle indicates an arbitrage — a sequence of trades re-
sulting in net gain. It is fascinating to consider what happens when the goods at issue
are more complex financial items, whose restrictions on availability and convertibility
yield richer topological objects both noisy (edge values are uncertain) and dynamic
(time-varying). The reader may enjoy contemplating whether higher-order algebraic
coefficients and/or higher-dimensional simplicial models (say, the flag complex) yield
a useful approach to characterizing arbitrage in complex systems. ©

6.3 Cohomology

The definition of cohomology in terms of dualizing chain complexes, though less than
intuitive, is efficient. By dualizing results of the previous two chapters, one immediately
obtains the following:

1. Cohomology theories: cellular, singular, local, Cech, relative, reduced; all with
arbitrary coefficients;

2. Functoriality and the homotopy invariance of cohomology;

3. Cohomological long exact sequences of pairs; the Mayer-Vietoris sequence; ex-
cision.

To correctly interpret and use these results arrows must be reversed. For example, the
induced homomorphisms on cohomology twist composition: H(fog) = H(g)oH(f), in
keeping with the way that duals of linear transformations behave. The Snake Lemma
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(Lemma 5.5) holds, but when dualizing a short exact sequence of chains to cochains,
the sequence flips. This manifests itself in, e.g., the long exact sequence of a pair
(X, A) as follows. The short exact sequence of cochain complexes,

0— (X, A) L5 co(x) " coa) —— 0,
becomes the long exact sequence,

L HTY(A) — s Hnex, Ay 29 ey

H'(A) ——
where, in this text, the induced and connecting homomorphisms have the same nota-
tion in homology and cohomology and are distinguishable via context and direction.
The novice reader should as an exercise write out the Mayer-Vietoris sequence on
cohomology.

The beginner may be deflated at learning that cohomology seems to reveal no
new data, at least as far as linear algebra can count.

Theorem 6.7 (Universal Coefficient Theorem). For X a space with finite-
dimensional homology over a field F, H"(X;TF) = H,(X;F)".

The situation is much more delicate in Z-coefficients,
but it is nevertheless true that cohomology is determined by
knowing the homology and certain algebraic properties of
the coefficient ring. Students may wonder why they should
bother with this seemingly supererogatory cohomology, as
it alike to homology in every respect except intuition. In
the beginning, one should repeat the mantra that duality
often simplifies algebraic difficulties.

Example 6.8 (Connectivity) ©

Note that the dimension of HO, like that of Hy, vields connectivity data. The proof in
the case of cohomology is simpler than for homology, since, by definition, H° = ker d°.
There is nothing to quotient out, due to arrow reversal. In the cellular case, elements
of H(X) are functions on vertices whose oriented differences along edges (a 'dis-
crete derivative') is everywhere zero — these equate to the singular interpretation of
locally-constant functions on X. In either case, a suitable basis consists of charac-
teristic functions of connected components of X. Note the differences. In homology,
Hy determines the number of path-connected components (homologous 0O-cycles are
connected by 1-chain paths) while cohomology H® measures connected components
(as seen by functionals). ®

Example 6.9 (1-Cocycles) ©

One cartoon for understanding this distinction between local and global coboundaries
is the popular optical illusion of the impossible tribar. When one looks at the tribar,
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the drawn perspective is locally realizable — one can construct a local depth function.
However, a global depth function cannot be defined. The impossible tribar is a cartoon
of a non-zero class in H* (properly speaking, H*(S*; R™), using the multiplicative reals
for coordinates as a way to encode projective geometry [243]).

An even more cartoonish example that evokes non-
trivial 1-cocycles is the popular game of Rock, Paper, Scis-
sors, for which there are local but not global ranking func-
tions. A local gradient of rock-beats-scissors does not ex-
tend to a global gradient. Perhaps this is why customers
are asked to conduct rankings (e.g., Netflix movie rank-
ings or Amazon book rankings) as a 0-cochain (“how many
stars?”), and not as a 1-cochain (“which-of-these-two-is-
better?”): nontrivial H! is, in this setting, undesirable. The
Condorcet paradox — that locally consistent comparative
rankings can lead to global inconsistencies — is a favorite topic in voting theory. Its
best explanation, cohomology, is less popular. ®

6.4 Poincaré duality

Homology and cohomology of manifolds express duality as a dimensional symmetry.
Based on data from spheres, compact orientable surfaces, tori, and the Kiinneth
formula in §4.2, one might guess that for M a compact orientable n-manifold and
coefficients in a field, dim HM = dim H,_ M, and likewise with cohomology. This
is true and is a version of duality due to Poincaré.

At the level of cellular homology, this duality has a ge-
\7 ¥ \ .| ometric interpretation. Consider, e.g., a compact surface

\ with a polyhedral cell structure, and let C be the cellular
B Y —1 chain complex with F, coefficients. There is a dual poly-
hedral cell structure, yielding a chain complex €, where the
- dual cell structure places a vertex in the center of each orig-
~ / inal 2-cell, has 1-cells transverse to each original 1-cell, and,
/\-\ — N\ necessarily, has as its 2-cells neighborhoods of the original

/\ ] vertices. Each dual 2-cell is a polyhedral n-gon, where n
is the degree of the original O-cell dual. Note that these
cell decompositions are truly dual and have the effect of
reversing the dimensions of cells: k-cells generating Cy are in bijective correspondence
with (2 — k)-cells generating a modified cellular chain group C» . The dual complex

consisting of C* 1= C,and d =23 entwines with C, in a diagram:

0 G Gy Co 0
0 EO H El H 62 O
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The reader should check that the vertical maps are isomorphisms and, crucially, that
the diagram is commutative. The equivalence of singular and cellular co/homology,
along with Theorem 6.7, implies that, for a compact surface with F> coefficients,
Hy = H>7% = (Ho_y)" = Ho_i. Though this style of proof generalizes to higher-
dimensional manifolds, a better explanation for the symmetries present in co/homology
is more algebraic, and proceeds in a manner that adapts to non-compact manifolds as
well. To unwrap this, a modified cohomology theory is helpful.

Given a (singular, simplicial, cellular) cochain complex C® on a space X, consider
the subcomplex €2 of cochains which are compactly supported: each cochain is zero
outside some compact subset of X. (In the simplicial or cellular setting, this is equiv-
alent to building cochains from a finite number of basis cochains.) The coboundary
map restricts to d: CK — Ck*1 and d? = 0, yielding a well-defined cohomology with
compact supports, H2(X). This cohomology satisfies the following:

1. H? is not a homotopy invariant, but is a proper-homotopy (and hence a home-
omorphism) invariant.

2. HX(R") = 0 for all k except k = n, in which case it is of rank one.

H2(X) = H*(X) for X compact.

4. H2(X) = H*(X, X—K) for K a sufficiently large compact set.

w

This can be subtle: in brief, one orders compact sets by inclusion and uses
induced maps to take a limit. See, e.g., [176, 3.3]. Compactly supported cohomology
cleanly expresses manifold duality:

Theorem 6.10 (Poincaré Duality). For M an n-manifold, there is a natural isomor-
phism PD: Hy(M; o) —s H™=K(M; F,).

For M a compact n-manifold, Hx(M;F,) = H"~K(M;F,). For orientable man-
ifolds, the theorem holds with any field coefficients. Integer coefficients are more
problematic: torsional elements lag in duality [46, 176]. With a slight change of
perspective (in §6.9), a more precise form of PD will be given.

6.5 Alexander duality

Poincaré duality can be adapted to
several related settings involving manifolds.
Among the most useful is Alexander du-
ality.

O

Theorem 6.11 (Alexander Duality). Let
A C S" be compact, nonempty, proper,
and locally-contractible. There is an iso-
morphism

AD: A (S"—A) —s H™k-1(A).
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Proof. The condition on A is a form of tameness and is crucial, allowing one to choose
a small open neighborhood U of A that deformation-retracts onto A. For k > 0O,

Hi(S"—A) = H™™kK(S"—A) [Poincaré duality]
> H'K(S"—A, (S"-A)—(S"-U)) [compact supports]
= H"5(S"—A, U-A)

>~ H=k(S" ) [excision]
=~ [r=k=Ly) [long exact sequence of pair]
>~ [ kLA, [deformation retraction]

Slight modifications are required for k = 0. The theorem holds for all coefficients. ®

6.6 Helly’'s Theorem

The following theorem is a classic result in convex geometry and geometric combina-
torics. Using co/homology yields a transparent proof.

Theorem 6.12 (Helly’'s Theorem). Let U = {U,} be a collection of M > n+1
compact convex subsets of R” such that every (n+ 1)-tuple of distinct elements of
WU has a point in common. Then all elements of U have a point in common.

Proof. Induct on M, beginning at M = n+ 2. Consider the nerve N(U) of U. It is
a subcomplex of the (n+ 1)-simplex which, by hypothesis, contains all faces. If the
common intersection is empty, then N(U) = dA™! ~ S§”. As the cover U is by convex
sets, it is an acyclic cover (all nonempty intersections are homologically acyclic) and,
via Theorem 2.4,

He(U) & Ho(N(U)) = He (UgUs) -

In other words, N(U) ~ S" has the homology of a subset
of R". However, it is impossible for a subset A C R” to
have the homology type of S”, thanks to Alexander duality,
as follows. Note that the hypotheses for Theorem 6.11 are
satisfied, and therefore,

H.(A) =2 A" L(R"—A) = H7}(R"—A) = 0,

since H=! = 0 for all nonempty spaces. Thus, N(U) % S” and the cover U must
have a common intersection point. The induction step is a simple modification of this
proof. ©

The reader may have seen proofs of Helly’'s Theorem based on convex geometry
or functional analysis. One benefit of the topological approach is that extensions to
the non-compact and non-convex world are natural and easily discerned. The critical
ingredient is that the resulting cover U is acyclic.
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6.7 Numerical Euler integration

Alexander duality is a key step in developing a highly effective numerical method for
performing integration with respect to Euler characteristic over a non-localized planar
network. Recall from §3.7 that certain problems in data aggregation over a network
are expressible as an integral with respect to dx over a tame space X.

This assumption of integrating sensors over a continuous
domain is highly unrealistic; however, expressing the true
answer as an integral over a continuum provides a clue as
to how to approximate the result over a discretely sam-
pled domain. Given an integrand h € CF(RR") sampled over
a discrete set, computational formulae such as Equation
(3.10) suggest that the estimation of the Euler character-
istics of the upper excursion sets is an effective approach.
However, if the sampling occurs over a network with com-
munication links, then it is potentially difficult to approxi-
mate those Euler characteristics. Taking the flag complex
of the network can lead to the existence of fake holes — higher-dimensional spheres
(cf. §2.2) that ruin an Euler characteristic approximation.

Proposition 6.13 ([24]). For h: R? — N constructible and upper semi-continuous,
o
[ hdx=3"(Both> 5} - folh < 5} +1). (62)
R2 s=0

where the zero" Betti number By = dim Hy is the number of connected components.

Proof. Let A be a compact nonempty tame subset of R%. From the homological
definition of the Euler characteristic and compactness of A,

X(A) = (~1)kdim Hi(A),
k=0

where H, denotes singular homology in field coefficients. Since A C R?, H,(A) =0
for all k > 1, and it suffices to compute x(A) = dim Hy(A) —dim H1(A). By a slight
modification of Alexander duality,

dim Hy(A) = dim H%(S? — A) = dim Ho(R? — A) — 1,

where the last equality (if not obvious) follows from a long exact sequence on the pair
(S2—A,R?—A). Since h is upper semi-continuous, each of the upper excursion sets
A ={h > s} is compact. Noting that R?~A = {h < s}, one has:

/hdx => x{h>s}=> dim Ho({h > s}) — (dim Ho({h < s}) — 1).
s=0 s=0
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Corollary 6.14. A sufficient sampling condition to ensure exact computation of [ hdx
over a planar network is that the network correctly samples the connectivity of all the
upper and lower excursion sets of h.

This formulation is extremely important to numerical implementation of this
integration theory to planar sensor networks, which, in practice, may be both non-
localized and not dense enough to sufficiently cover regions [79].

6.8 Forms and Calculus

In the setting of smooth manifolds, cohomology flows naturally from multivariable
calculus [46, 169]. One begins with multilinear algebra. Given a R-vector space V/, let
N(V) denote the algebra of forms on V' — alternating multilinear maps from products
of V to R. Given a basis {x;}] for V, explicit generators for A(V') are given by the
dual 1-forms dx; € V¥, where dx;: V — R returns the x,th coordinate of a vector in
V. Scalar multiplication in A(V) is over R and the sum is induced by that on V.
The product in the algebra A(V) is called the wedge product and denoted A. It is
alternating, meaning, in particular, that dx; A dx; = —dx; A dx; for all i and j. The
algebra A(V) is graded:

e S
ANV) =P N()

p=0 4
where AP(V) is the vector space of p-forms, with basis 7
dx; N---Ndxj, for 1 < i <---<ip <n=dmV. A
p-form takes as its argument an ordered p-tuple of vectors >
in VV and returns a real number in a manner that is multi- k
linear and alternating, cf. determinants. The uniqueness of

the determinant implies that dim A" = 1; the alternating
property of A implies that AP =0 for all p > n=dim V.

These pointwise constructions pass to manifolds, yielding differential forms.
Recall from §1.3 that for an n-manifold M, the tangent bundle T, M is a collection
of n-dimensional vector spaces, parameterized by points in M. A (smooth) vector
field V' is a choice of elements of T, M varying (smoothly) in x, or, more precisely,
a section taking x — V(x) € TyM. In like manner, the vector spaces of p-forms,
NP (T M), collectively form a “bundle” varying smoothly with x € M, of which the
cotangent bundle T*M is the case p = 1. As with the gradient 1-forms of Example
6.1, a p-form field (shortened to p-form in practice) is a section a: M — N (T, M)
giving a, € NP(T,M) varying smoothly in x. The space of all such sections — the
p-form fields on M —is denoted QP = QP(M). On all manifolds, Q°(M) = C*(M; R),
since dim A® = 1. Likewise, QP(M) = 0 for all p > dim M. Algebraic operations
on A pass to operations on €2 := ©,2” operating pointwise. For example, the wedge
product extends to A: QP x Q9 — QPT9,

In the passage from A to 2, form fields change from point-to-point: such
changes are measured by a derivative. The appropriate differential operator for forms
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is the exterior derivative d: QP — QP! which has the following properties:

d is linear with respect to addition of forms and scalar multiplication;
d satisfies a Leibniz rule: d(a A B) = da AP+ dB A a;

on 0-forms, d is the usual differential operator d: f — df; and
d(df) = 0 for all O-forms f.

BNy

Example 6.15 (Vector calculus on R3) ®

On Euclidean R3, 1-forms a € Q! are representable as a = fidx + f,dy + f,dz,
where the coefficient functions f; are smooth. A 2-form, B € Q2 is representable
as B = gxdy A dz + g,dz A dx + g.dx A dy. Every 3-form on R3 is of the form
hdxAdy Adz for some h. The differential operator d is familiar to students of vector
calculus. Recall from Equation (5.3) how the gradient, curl, and divergence operators
tie together functions C = C*°(IR3) and vector fields X = X(R3). This is conveyed
via a commutative diagram,

Y Vx V-

T

Qo ¢ 03

(6.3)

On Q°(R3), d is the gradient operator, taking a function f not to its gradient vector
field, but to the more natural gradient 1-form df. On Q(IR®), d is the curl operator;
on Q2(R3), d acts as the divergence operator. Here, the vertical arrows identify 0- and
3-forms with functions, and identify vector fields with 1- and 2-forms in the obvious
ways:

F=Fi+Fj+Fk — Fdx+Fdy+F,dz=ag
F=FRi+Fj+Fk — Fdyndz+F,dzAdx+ F.dxndy =B

The reader should return to simplicial examples of cochains and coboundaries
and be convinced that what is measured on the algebraic level is indeed a discrete
analogue of gradients, curls, and divergences.

Example 6.16 (Maxwell’s equations) ©

The language of differential forms is ubiquitous in mathematical physics. Maxwell's
equations admit a particularly simple interpretation. The calculus version of Maxwell's
equations (on Euclidean R3, in a vacuum) are as follows:

—la—B:VxE V-B=0

c Ot

10E L 4T - .
S0C _yxB-1"j V- E = amp,
c ot c

where E, B, J. o, and ¢ are the electric field, magnetic field, current, charge density,
and speed of light, respectively. Using the Euclidean structure to convert a field F
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into a 1-form ag or a 2-form Bz as in Example 6.15, one obtains:

d(cagNdt+ Bg) =0
d(cagNdt —Bg) =4nByAdt —pdx Ndy Ndz.

These equations can be made more compact still and extended to arbitrary geometric
manifolds using some of the constructions in §6.12. ©

Example 6.17 (ldeal fluids) ©

The equations of motion for a perfect inviscid fluid are likewise lifted to forms. Let V(t)
be a time-dependent volume-preserving vector field representing the instantaneous
motion of a fluid on Euclidean R”. Volume-preserving means that for the chosen
volume form g € Q" with p # 0 nowhere vanishing, the derivative du(V,-) = 0
vanishes. Let ay be the (time-dependent) 1-form dual to V as per Example 6.15.
Then, the Euler equations become

GOL\-/*
ot

where H: M — R is a function (sometimes known as the head or Bernoulli function)
combining pressure and kinetic energy terms. This formulation permits doing fluid
dynamics on an arbitrary Riemannian manifold — a manifold M with a smoothly
varying inner product g(-,-) on tangent spaces. The dual 1-form ay to V is given
by contraction into the metric: ay = g(V,-) [16]. The vorticity of such a fluid is
usually presented as a vector field representing the curl of the velocity field: in fact, it
is more properly defined to be the 2-form day;, the derivative of the 1-form dual to

velocity. ©

+day(V,-) = —dH, (6.4)

The language of differential forms is designed for in-
tegration: a p-form is perhaps best thought of as an ob-
ject that can be integrated over a p-dimensional domain.
Specifically, given an oriented p-dimensional submanifold
with corners, S, there is an integral operator [¢: QP — R
defined by evaluating the p-form pointwise on oriented p-
tuples of tangent vectors to S and integrating on coordinate
charts using the standard Lebesgue integral. As is the case
in the more familiar setting of line integrals in vector calcu-
lus, the Chain Rule implies an invariance of the integral with
respect to local orientation-preserving coordinate represen-
tations. Modulo details about induced orientations on boundaries, the fundamental
theorem of calculus-with-forms is transparent:

Theorem 6.18 (Stokes’ Theorem). For a a compactly-supported p-form and S an
oriented (p + 1)-dimensional manifold (with boundary and/or corners),

/da:/ Q.
S as
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6.9 De Rham cohomology

The antisymmetry property of forms is reminiscent of the cancelations via judicious
choice of signs at the heart of all co/chain complexes. Thanks to this antisymme-
try and the commutativity of mixed partial derivatives, d®> = 0 always, as presaged by
Example 6.15. This prompts the interpretation of 2 as a complex: the de Rham com-
plex of a manifold M is the cochain complex jrC = (Q°, d) of forms with coboundary
the exterior derivative d. The de Rham cohomology of M, ,sH*(M), is the coho-
mology of €2°. In this theory, it is traditional to call the cocycles closed forms and
the coboundaries exact forms. A de Rham cohomology class is an equivalence class
of closed forms modulo exact forms.

Example 6.19 (Winding numbers and de Rham cohomology) ®

The reduced de Rham cohomology 4= H' (R") of R is
trivial for all n, thanks to the Fundamental Theorem of In-
tegral Calculus: closed forms are exact. On the punctured
plane R?—0, the closed 1-form,

xdy —ydx

dg =
X2 + y?

is not exact. Despite being denoted df, there is no single-
valued 0-form 6 whose gradient 1-form is d6; thus, dé
defines a non-trivial cohomology class and generator of
wrH'(R2-0) = R. The integral of dd over an oriented
piecewise-smooth closed curve -y in the punctured plane yields an integer, and this is,
precisely, the winding number of v about 0: cf. Equation (3.4). ©

Example 6.20 (Wedge product) ©

In de Rham cohomology, the wedge product for forms descends to a product on
cohomology. By defining [a] A [B] := [a A B], one notes that since a and S are
closed, d(a A B) = da AP+ dB A a = 0; furthermore, if a or B is exact, then so
isaAB. Thus, A: grHP x grH? = 4rHPT9 turns g H® into a ring. Since, locally, a
basis Fuclidean k-form measures oriented projected k-dimensional volumes, the wedge
product inherits a volumetric interpretation. On the torus T” with angular coordinates
0;, the 1-forms d6;, i = 1 ... n generate the cohomology ring 4 H*(T"). For example,
the generator for g H"(T") = R is the volume form d6; A --- A dB,. ©

It is no coincidence that the de Rham cohomology of R” and T” have the same
dimensions as in the singular theory.

Theorem 6.21 (de Rham Isomorphism Theorem). For M a manifold, ;s H*(M) =
H*(M;R).

A little more effort yields a calculus-based version of Poincaré duality. Let Q% (M)
denote the complex of compactly supported forms on M, complete with differential
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d. This yields a well-defined cohomology srH? with compact supports, which, as an
extension of Theorem 6.21, is isomorphic to the singular H?.

Theorem 6.22 (Poincaré Duality, de Rham version). For M an oriented manifold
of dimension n, wedge and integration of forms yield isomorphisms

C

/ BAL: dRHp(M) i dRHnip(/\/l)V
M

/D Hy(M;R) = srHP (M)
[ |

It is an instructive exercise to show that integration descends to homology and
cohomology. For [a] € srHP, B € QP 1, S a boundaryless p-dimensional submanifold
and T a (p + 1)-dimensional submanifold with boundary, then

/ a—l—dﬁ:/a—l—/ ﬁ+/da+/ dﬁZ/a,
S+oT s s T oT s

via Stokes’ Theorem. Thus, only [S] and [a] matter. The isomorphisms of Theorem
6.22 effect the Poincaré Duality isomorphism PD: H,(M;R) — sH2 P(M)" as in
§6.4.

6.10 Cup products

The de Rham isomorphism of Theorem 6.21 allows one to import calculus-based in-
tuition into cohomology theory. Several of the constructs that are natural and clear in
the setting of manifolds lift to the more general (cellular, singular, algebraic) cohomol-
ogy theories. This section explores the algebraic generalization of the wedge product.
Recall from Example 6.20 that the wedge product on forms, A, so implicitly familiar
to students of multivariable calculus, descends to a product on de Rham cohomology
classes, giving 4r H® the structure of a ring. What is the singular analogue?

Just as one defines the wedge A on forms and
then passes to cohomology, one defines a product
on cochains. Let a € CP(X;R) be a p-cochain
and B € C9X;R) a g-cochain. Define the cup
product, o — f € CPT9(X;R) to be the cochain
whose value on a sinqular (p+q)-simplex o: APT9 —
X is given by restriction of the canonical simplex
APTI = vg, vi, ..., Vp+q] to the ‘first’” p-simplex and
the 'last’ g-simplex:

(o~ B)o =a(ollvw, v, ..., Vol) - B(olvp, Vps1, .-, Votql) s

where the product is in the ring structure of the coefficients R. One shows that for a
and B cocycles, the cup product is a cocycle as well, therefore inducing an operation
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on H*® which gives it the structure of a ring. The cup product on H*(X;R) for R
a commutative ring is, like the wedge product, graded anti-commutative: B — a =
(=1)Pia ~ B.

If the reader finds this definition confusing, it is perhaps advisable to think of
cubes rather than of simplices. For a cubical complex with o and B cochains on
p-cubes and g-cubes respectively, then the product chain o ~— B evaluated on a
topological product (p+ q)-cube is the algebraic product of the cochain values on the
factor p-cube and g-cube. In this setting, the parallel to the de Rham wedge product
IS clearest.

Example 6.23 (Projective space cohomology rings) ©

The ring structure on P” in [F5 coefficients is particularly satisfying: it is the ring of
polynomials in one variable, x, modulo the ideal generated by x"*!:

H* (" F2) =2 Falx]/ (x™*), (6.5)

where x € HY(P" F,). This computation is not elementary (see, e.g., [176]), but
it has important consequences. For example, the ring structure reveals that P2 is
not homotopic to P2V S3, even though they have isomorphic F» cohomology groups.
Though both spaces have H* = F, for k < 3 and 0 otherwise, their ring structures
differ since the generator x € H* satisfies x> = 0 for P2V S3but x> #0 for P3.  ©

6.11 Currents

On smooth manifolds, calculus provides the convenient language of forms for coho-
mology. Duals of forms provide an extremely flexible interpolation between smooth
and discrete homological structures on manifolds that allow one to talk about, inter
alia, the homology class of a vector field. This section touches on analytic tools based
on geometric measure theory [119, 134, 234]. To avoid the numerous technicalities
involving regularity and rectifiability, let the reader assume (via restriction to the o-
minimal structure of globally subanalytic sets) sufficient (piecewise) smoothness where
needed.

Fix M an oriented manifold of dimension n. Let Q,(M) := (Q?(M))" be the
space of p-currents — real-valued functionals on compactly supported p-forms. Cur-
rents have a homological nature. Given any p-current T € €2,, the boundary of T,
OT € Qp_1, is defined via the adjoint to the exterior derivative: 0T (a) = T(da).
A cycle is a current T with 8T = 0. Clearly, 8> = 0, and there is a resulting chain
complex (Qe(M), 0) with ensuing de Rham homology ,xH,(M). The analogue of
Theorem 6.21 holds: sgrH.(M) = Ho(M; R).

The chief advantage in using currents is, as with all things homological, visual-
izability. An oriented p-dimensional submanifold in M is a p-current, since one can
integrate a p-form over it: its de Rham homology class coincides with its singular
homology class. For example, any (piecewise-smooth) oriented knot or link is a 1-
current, since one can integrate a 1-form over oriented curves. Upon fixing a volume
form on M, a piecewise-smooth vector field V is likewise a 1-current, since any 1-form
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a pairs with V pointwise as a(V'), which may then be integrated over M (to a finite
value, thanks to compact support of a). The 2-currents on a manifold with volume
form can range in shape from oriented surfaces to pairs of vector fields to a pair of
tangent vectors at a single point.

Example 6.24 (Volume preserving links) ©

One beauty of the language of currents is that it allows one to compare both knots
and vector fields on a manifold. Recall the definitions of links from Example 4.24 as
disjoint embedded loops in S3. A vector field is an entirely different class of objects;
one notes that the flowlines of a vector field have the potential to close up into periodic
orbits — a link. The similarity seems to end there.
However, it follows from a result of Sullivan [284,
Prop. I1.25] that any closed nullhomologous 1-current, such
as a volume-preserving vector field on an oriented man-
ifold, can be realized as a limit of 1-currents supported
on a compact 1-dimensional submanifold: an oriented link.
This implies that any volume-preserving flow on S3 is the
limit (in the sense of 1-currents) of a sequence of ever-
lengthening, ever-coiling links. This suggests a reformu-
lation of knot/link theory in terms of volume-preserving
vector fields on S3. ®

Example 6.25 (Helicity and fluids) ®

It has been known for a long time what is the appropriate asymptotic analogue of
linking number for volume-preserving vector fields on S3 [14, 16, 273]. The construc-
tion is as follows: given any two points x,y € S3, evolve them forward under the
flow of the vector field for times s and t respectively, until the flowlines come close
to their starting points (that this happens for almost-every x and y infinitely often
follows from the Poincaré Recurrence Theorem for volume-preserving flows [258]).
Close these curves with short paths and compute the linking number (well-defined for
almost all x and y). The limit of this linking number, normalized by st, converges
as s, t — +oc to a function £k(x, y), which, when integrated over S3 x S2 with the
conserved volume form, yields the asymptotic linking number of the flow,

Lk(V) = /S3 /S3€k(x,y)dvolx dvol,.

The techniques of forms and currents makes the computation of this seemingly-
intractable quantity elementary. A volume-preserving vector field VV on §3 is closed
and nullhomologous as a 1-current; this implies that the vector field contracted into
the volume form p yields an exact 2-form u(V, -, -) = da for some a. The helicity of
V is the integral of the wedge product of a with its derivative:

HV) = /Ssoc/\ da,
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One shows well-definedness with respect to choice of a via Stokes’ Theorem. Arnol'd
[14] (following Moffat [232] (following Calligareanti [76])) showed that the helicity is
the asymptotic linking number:

Theorem 6.26 (Helicity Theorem). H(V) = 2k(V)

As a corollary, the helicity is an invariant of V' under the action of volume-
preserving diffeomorphisms of S3, since linking numbers are unchanged by such. This
is of great significance in fluid dynamics, since the velocity field of an ideal fluid evolves
in time according to the Euler equations (Example 6.17), and the energy of the fluid
(the integral of the norm of the velocity field) is bounded below by helicity — H is a
topological measure of a fluid's inability to relax. The proof of the Helicity Theorem
in [16] uses currents on S° x S3 to capture linking behavior. ®

Example 6.27 (Normal and conormal cycles) ©

Many of the constructs of Chapter 3 concerning Euler
characteristic and intrinsic volumes have a representation
in terms of currents [234]. The normal cycle of a tame
set A C R"is a special (n — 1)-current N* on the unit
cotangent bundle UT*R"™ = §" 1 x R”. For A C R" of
positive codimension, the normal cycle is best visualized as
having support on the set of points a ‘unit’ distance from
A.

The conormal cycle of a tame set A C R” is a particular n-current CA €
Q.(T*R") on the cotangent bundle. It is, for lack of a better explanation in this
text, the cone over the normal cycle. Each of the intrinsic volumes u, of §3.10,
including Euler characteristic x = g, can be defined as the integral of a canonical
form (ax € Q7 HUT*R") or wy € Q7(T*R™)) over the appropriate cycle:

1 | | |
AllY VIIY

u = [ = [ we - 1l
T—P-L‘[‘!' ?}L’T

Additivity of the intrinsic volumes is ex-
pressed in terms of additivity of currents: | | | |
e.g., NAYB = N4 + NB — NA"B and like-
wise for C. This means, e.g., that one
can see the difference between the Euler
characteristic of a compact disc x(ID”) = 1 and of its interior x(ID" —0D") = (—1)" as
being a reflection. When subtracting the conormal cycle C?”" from C”", the support
in R" is the same, but the orientation in each axis is reversed. For n odd, this results
in an orientation-reversal, reflected in the sign change. ©
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6.12 Laplacians and Hodge Theory

With the addition of a geometric structure, there is another manifestation of Poincaré
duality in cohomology for manifolds via partial differential equations. Recall that for a
vector space V' of dimension n, the algebra of forms, A(V), displays a combinatorial
duality: dim A?(V) = (7) = dim A""P(V). Fix a geometry on V in the form of an
inner product (-, -) and choose an orthonormal basis {x;}{. Fix also an orientation on
V in the form of an equivalence class of orderings [x;]] of basis elements up to even
permutations. Define the Hodge star x: AP(V) — A" "P(V) on basis elements as
follows:
*dxiy Ndxy, Ao Ndxg, = dxi, N Ndxg, N dXx,

where the ordering [x;]’_; respects orientation. Extend to all of A(V) via linearity.
The Hodge star depends only on the inner product and the orientation, not on the
basis itself. It satisfies a signed duality xx = (—1)P("=P)|d.

If an oriented manifold M is Riemannian (see Example 6.17) then the Hodge star
extends to «: QP — Q"~P. For example, in Euclidean R3 with the standard basis as
per Example 6.15, xag = Bz. Every oriented Riemannian manifold has a well-defined
volume form p € Q" which, in local orthonormal coordinates, is dx; A --- A dx, and
which is given by u = %x1. The Hodge star yields an inner product on each QF via
integration:

(a, B) := /Ma/\*ﬁ.

With this geometry in place, one may
define a codifferential §: QP — QP~1 given

by the adjoint: (a, dB) = (6a, B); more F| |
explicitly, § := (=1)P("=P)xdx. The Lapla-
- — o

cian is the operator A: 2* — Q° given by:

A= (d+6)*>=db+éd. - L=

Note that the Laplacian is degree zero, and for p = 0 is the familiar second-order dif-
ferential operator. The Laplacian blends analytic, geometric, and topological features.
The harmonic forms are defined as A\H®*(M) := ker A, the kernel of the Laplacian.

Theorem 6.28 (Hodge Theorem). For M a compact oriented Riemannian manifold,
QP(M) has an orthogonal decomposition:

QP = dQP 1 @ AHP @ 6QPHL.

Corollary 6.29. For M a compact oriented Riemannian manifold, \H®* (M) 2 ;g H*(M).

The bother of working with geometry has the following payoff: the Hodge star
% is an incarnation of Poincaré duality. Let o € AH” be a harmonic form. Theorem
6.28 implies that da = da = 0. This implies that *x« is also harmonic, since

A(xa) = (—1)P"=P)(dxdx + +dxd)xa = (dxd + xdd)a = 0.
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Thus, one may realize Poincaré duality as the isomorphism *: sHX(M) — AH™ K(M);
cf. Theorem 6.22.

One of the benefits of using differential-topological constructs is the ability to
import and export ideas between smooth and discrete frameworks. There is a simple
simplicial analogue of the Hodge theorem which has the advantage of requiring no
forms, differentiability, or manifold structures, but merely an implicit geometry. Con-
sider a cell complex X with cellular cochain complex € = (C*, d) in R coefficients.
Choose an inner product (-,-) so that indicator functions over the cells of X are or-
thogonal. The implicit choice is in the weight of each simplex (1,,1,) = w, € R.
With this inner product structure, use the adjoint § of d to define the discrete Lapla-
cian: A = dd + 6d. As in the smooth theory, the harmonic cochains are AH = ker A.
The following discrete Hodge theorem becomes a simple exercise.

Theorem 6.30 (Discrete Hodge Theorem). For X a finite cell complex with choice
of weights, CP = dCP~1 @& z\HP @ 6CPTL.

Example 6.31 (Graph Laplacian) O

Discrete Laplacians have seen the greatest use in graph theory under the guise of the
graph Laplacian. For X an undirected graph and f: V(X) — R a function on the
nodes, the graph Laplacian of f is defined as

(AxP)(v) = > f(w)=f(v).

w: (v,w)EE(X)

The reader may verify that this agrees with the Laplacian on C°(X) under the ob-
vious inner-product structure on chains. It is clear that a harmonic 0-chain is one
in which each node’s value is the average of its neighbors’. Graph Laplacians have
found extensive use in algorithms [281], image processing [71] and much more. The
principal (smallest nonzero) eigenvalue of the graph Laplacian controls the behavior of
random walks on a graph and points to interesting generalizations in random simplicial
complexes [171]. ©

Example 6.32 (Distributed homology computation) ©

The Laplacian is a local operator and, as such, is well-suited to distributed computa-
tion. The work of Tahbaz-Salehi and Jadbabaie [267] details the use of the simplicial
Laplacian to distributed computation of the homological coverage criterion of §5.6.
By Theorems 5.10 and 6.30, verified coverage in a sensor network in R? follows from
showing that ker A = 0 on discrete 1-forms of the flag complex F of the network. It
is easy to see that the heat equation, %a = Aa, has 0 as an asymptotically stable
solution if and only if ker A = 0. Thus, by solving a heat equation with random ini-
tial conditions, one can safely (to the degree one trusts in random initial conditions)
conclude coverage if the solution converges to zero. That this equation can be solved
locally and in a distributed manner [235] should come as no surprise to the reader who
has spent time with the heat equation, though the convergence to the solution can
be slow. This can be improved by instead using a wave equation approach [265]. ®
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6.13 Circular coordinates in data sets

In §5.14 the problem of determining the topology of a point cloud was addressed by
means of persistent homology. A cohomological approach becomes the appropriate
tool for addressing a related problem of coordinatizing a point cloud.

Assume for the present that Q C R” is a point-
cloud whose topology is known or suspected to be suffi-

)
ciently circular so as to merit outfitting circular coordinates ° .'..:.'.' o..
©: Q — S'in a manner that respects the underlying topol- °:o.. ° %
ogy of the space X C R” (homotopic to S?) that Q is © o °°
presumed to sample. Many of the existing algorithms for °o o o.°
assigning circular coordinates to a point cloud [263, 288] ®o °
have implicit convexity assumptions. °o° °2

The solution of de Silva, Morozov, and Vejdemo- ° 08 o %°

Johansson [89] is a slick application of algebraic topology
that highlights the particular benefits of cohomology and
the role of coefficients. The outline of their work is as follows.

1. One begins with the following result from homotopy theory: for any space X,
the group of (basepoint-preserving) homotopy classes [X, S| of maps X — Stis
isomorphic to H'(X:Z) (see §8.6). The coordinatization function ©: X — §?
therefore is naturally approachable via cohomology.

2. To find a cohomology class for X based on a sampling of nodes Q, compute the
persistent cohomology of a sequence of Vietoris-Rips complexes, as in §5.13-
5.14. For the Structure Theorem (Theorem 5.21), field coefficients are required;
for numerical reasons (to avoid roundoff errors), coefficients in a finite field I,
are preferred.

3. A (persistent) class [a,] € HY(X:;F,) can be converted to a integral class
[a] € HY(X;Z) by means of the following process. The short exact sequence
of coefficients 0 — Z -2 7 —» F, — 0 yields a short exact sequence of
cochain complexes on X and, via Lemma 5.5, a long exact sequence on coho-
mology:

S HYX;Z) —— HY(XF,) —2 HA(X; Z) —25 HA(X; Z) ——

The kernel of -p: H?>(X;Z) — H?*(X;Z) consists of p-torsional cohomology
classes: for p > 2 these would seem to be rare occurrences in organic spaces X
living behind data sets. By exactness, ker (-p) = im §; assuming this is zero, it
implies that H1(X;Z) — H*(X;F,) is surjective, and (persistent) classes in F,
coefficients therefore lift to integral classes.

4. The resulting integer cocycle a is perhaps a poor S!-coordinatization — all the
circular motion may be concentrated over a small subset of X. To relax o to a
smooth circular coordinate system, lift to R coefficients and find a cohomologous
harmonic cocycle @ € AHl(X). Thanks to the local-averaging properties of
the Laplacian, this 1-cocycle integrates to a well-regulated coordinate function
O: X = St
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For details on computational aspects and implementation, see [89]. This work

illustrates well the utility of cohomology, while highlighting the delicate interplay be-
tween real, integral, and cyclic coefficients.

Notes

1.

10.

This chapter is woefully incomplete: a short, motivational text cannot do justice to
cohomology theory. The interested reader should resolve to learn the theory properly.
Hatcher [176] is, as ever, the best place to begin. For the de Rham theory, Bott and
Tu [46] is the classic lucid source, and Fulton [135] is more elementary still.

The conflation of objects with duals is ubiquitous and insidious. Examples include
confusing gradient 1-forms with vector fields and defining simplicial chains as functions
from simplices to coefficients.

. The idea of the impossible tribar as a 1-cocycle was suggested by Penrose [243]. One

can imagine more interesting Escherian illusions based on H?.

One of the many cohomology theories not covered in this text is related to configuration
spaces. Given X a topological space and R a ring, let C¥ be the set of functions (not
necessarily maps!) f: X*1 5 R. This gives a complex € with differential d taking
f(xo, ..., xk) to the sum Ei(—l)’f(xo ..... Xi—1, Xit1, - - - xk). The set of all functions
which vanish in a neighborhood of the grand diagonal (x, ..., x) forms a subcomplex €°.
The Alexander-Spanier cohomology of X is H*(€/C°). It is, for reasonable spaces,
isomorphic to the singular H*(X) [280]. This theory seems suspiciously relevant to
applications in configuration spaces.

Helly's Theorem is important in a wide array of combinatorics and optimization prob-
lems [9]. That is has a purely topological proof is a testament to the power of topo-
logical methods. The homological proof was known to Helly and many topological
generalizations exist. It is remarkable how many experts nevertheless consign Helly's
Theorem to convex geometry.

There is, as one might suspect, a deeper form of duality, of which Poincaré, Alexan-
der, and Lefschetz are emanations. Verdier duality for sheaves is perhaps the best
encapsulation of the scope and power of duality theorems in co/homology. Chapter 9
will provide some of the requisite background for that theory.

The cup product is more important than may at first appear. It is good to visualize it
using differential forms. Even better is its homological adjoint. Theorem 6.22 (and an
illustration or two) hints at a relationship between — and homology: the cap product
~: Hp(X) x HY(X) = Hp—q(X) is defined on a chain ¢ and a cochain o via

(0 ~a) =a(o|[v,wvi,..., val) - ollva, Va+1, - - -, Vp].

In field coefficients, ~ and — are related via (S —~ a) = (a — B)(S) for a cycle S
and cocycles «, B.

. The reader may wonder, given the utility of cohomology with compact supports, where

is the corresponding homology with compact supports? This exists and goes under the
name of Borel-Moore homology.

A very clean proof of the de Rham Theorem (6.21) uses a double complex [46] (see
the notes to Chapter 5).

Hodge theory is merely a hint at how partial differential equations (in this case,
Laplace’s equation) on geometric manifolds can lead to topological invariants. Many
subtler and deeper invariants come from other PDEs using auxiliary structures and
have implications in string theory, algebraic geometry, knot theory, and more.
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11. Simplicial/cellular Hodge theory is having significant impact in numerical analysis [12,
13, 32, 94] via discrete exterior calculus. The discretization of space and time can
destroy auxiliary structures or symmetries within the underlying differential equations:
e.g., the symplectic structure implicit in celestial mechanics. By working with simplicial
p-forms and discretizing the conservation laws and symmetries themselves, one is led
to more accurate numerical solutions: see Example 10.23.



