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omology takes as its input a chain complex — a hierarchical assembly line of

parts — and returns its global features. The elemental tools for analyzing

homology are likewise linelike devices: exact sequences. When outfitted with
functoriality, these sequences assemble into the homological engines of inference.

5.1 Homotopy invariance

Homology begins by replacing topological spaces with complexes of algebraic objects
(vector spaces, abelian groups, or modules, depending on one’s preferences). Other
topological notions — continuous functions, homeomorphisms, homotopies, etc. — also
have analogues at the level of chain complexes. Generalizing from the pattern set
in §4.10, define a chain map to be any graded homomorphism @,: € — €' between
chain complexes that respects the grading and commutes with the boundary maps.
This is best expressed in the form of a commutative diagram as per (4.10):

6} 6} 1o}

"'—>Cn+1 Ch Cho1 (51)
- FL R
N P o R Y

Commutativity means that homomorphisms are path-independent in the diagram:
Yo 00 = & o, Chain maps are the analogues of continuous maps, since, via
respect for the boundary operators, neighbors are sent to neighbors. The appropri-
ate generalization of a homeomorphism to chain complexes is therefore an invertible
chain map — one which is an isomorphism for all C, — C/,. Clearly, a homeomorphism
f: X — Y induces a chain map f,: Gi”g — Gfl”g which is an isomorphism. As such,
HSn9(X) = HSMI(Y).

The extension to homotopy is more subtle. Recall that f,g: X = Y are homo-
topic if there is a map F: X x [0, 1] — Y which restricts to f on X x {0} and to g on
X x{1}. A chain homotopy between chain maps @,, ¥s: € — €' is a homomorphism
F: € — €' sending n-chains to (n+ 1)-chains so that 'F — FO = e, — s:

1é] 6] o

RN C, Ch s (5.2)
o | Po o | Peo o | Po
F
s O o G G

One calls F a map of degree +1, indicating the upshift in the grading.! Note
the morphological resemblance to homotopy of maps: a chain homotopy maps each n-
chain to a n+ 1-chain, the algebraic analogue of a 1-parameter family. The difference
between the ends of the homotopy, 8'F — F9, gives the difference between the chain
maps.

Lemma 5.1. Chain homotopic maps induce the same homomorphisms on homology.

1 The overuse of the term degree in graphs, maps of spheres, and chain complexes is unfortunate.
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Proof. Consider [a] € H.(C). Assuming @, and 1, are chain homotopic maps from

Cto ¢,
H(pa)[a] = H(%e)la] = [(we — o)l
=[(8'F + F9)a]
=[0'(Fa)] + [F(0a)] =0,
since a is a cycle and &'(Fa) is a boundary. O)

The following theorem is proved by constructing an
explicit chain homotopy [176]:

Theorem 5.2 (Homotopy Invariance of Homology). Ho-
motopic maps f,g: X =Y induce chain homotopic maps
fo, e from C3' to 9.

The idea behind the proof is simple. For each singular
n-simplex @, one considers the F-image of ¢ x [0,1] as a
family of singular n-simplices parameterized by the homo-
topy. This prism is then triangulated into singular (n+ 1)-
simplices that encode the homotopy. It is shown that this chain map P (called a prism
operator) is a chain homotopy.

Corollary 5.3. Singular homology is a homotopy invariant of topological spaces.

5.2 Exact sequences

In the analogy between topological spaces and algebraic complexes, there is a special
class of complexes that are elementary building blocks. A complex € = (C,,9) is
exact when its homology vanishes: ker 8, = im 0,41 for all n. Exact sequences are
as useful and primal as the nullhomologous spaces they mirror.

Example 5.4 (Exact sequence) ©

The following simple examples of exact sequences help build intuition:

1. Two groups are isomorphic, G = H, iff there is an exact sequence of the form:

0 G H 0
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2. The 1% Isomorphism Theorem says that for a homomorphism ¢ of G, the fol-
lowing sequence is exact:

0 ker @ G2 imp ——0

Such a 5-term sequence framed by zeroes is called a short exact sequence. In
any such short exact sequence, the second map is injective; the penultimate,
surjective.

3. More generally, the kernel and cokernel of a homomorphism ¢: G — H fit into
an exact sequence:

@

0 ker @ G H coker p —— 0

4. Consider C = C*(R?), the vector space of differentiable functions and X =
X(IR3), the vector space of C> vector fields on R3. These fit together into an
exact sequence,

\Y VX V-

0 R C X X

C 0, (5.3)

where V is the gradient differential operator from vector calculus, and the initial
R term in the sequence represents the constant functions on R3. The exactness
of this sequence encodes the fact that curl-of-grad and div-of-curl vanish, as well
as the fact that, on R3, all curl-free fields are gradients and all div-free fields
are curls. This one exact sequence compactly encodes many of the relations of
vector calculus.

©

The most important examples of exact sequences are those relating homologies
of various spaces and subspaces. The critical technical tool for the generation of such
weaves an exact thread through a loom of chain complexes.

Lemma 5.5 (Snake Lemma). /f A= (A., 0), B=(B,., 9), and C = (C,,0) form a
short exact sequence of chain complexes,

O A. BO CO O
then this induces the long exact sequence:
H(i H(j H(i
— HA) 2 By Y He) =5 H (A 2 (5.4)

Moreover, the long exact sequence is natural: a commutative diagram of short exact

sequences and chain maps
A B, Ce
o - -
As B. C.

0
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induces a commutative diagram of long exact sequences

s Hp(A) —— Hp(B) —— Ha(C) —— Hpoq (A) —— (5.5)

LH(f) [H(Q) JH(h) JH(f)

3 Hp(A) —— Ha(B) —— Ha(€) — Hpoa (A) ——

An exact sequence of chain complexes means that there is a short exact sequence
in each grading, and these short exact sequences fit into a commutative diagram
with respect to the boundary operators. The induced connecting homomorphism
0: Hy(C) — H,-1(A) comes from the boundary map in € as follows:

Fix [v] € H,(C); thus, v € C,.

By exactness, v = j(f) for some § € B,,.
By commutativity, j(88) = 0(jB) = 0y = 0.
By exactness, 06 = ia for some a € A,_1.
Set 6[v] := [a] € H,-1(A).

R wN e

Every topologist, no matter how wed-
ded to geometric intuition, must possess a
thorough understanding of the connecting ho-

momorphism. This is perhaps best grasped 1 1 1

via ahlmatlon; a static illustration is a po.or o —> R IEI .
substitute, but nevertheless conveys the crit-
ical shift in grading that exactness and weav-
ing enacts. The reader should demonstrate that § is well-defined and that the resulting

long exact sequence is indeed exact. Doing so solidifies the invaluable technique of
diagrammatic argument.

o—»D—»—» — @

5.3 Pairs and Mayer-Vietoris

Of the many exact sequences that a topologist must master, two are central: the
long exact sequence of a pair, and the Mayer-Vietoris sequence. The former unwraps
the relative homology of §4.7. Given A C X (a subset in the singular case, or a
subcomplex in the cellular), the following sequence of chain complexes is exact:

00— Co(A) — 5 Co(X) —25 Co(X, A) —— 0,

where i: A — X is an inclusion and j: (X, @) < (X, A) is an inclusion of pairs. This
yields the long exact sequence of the pair (X, A):

 H A 2 00 2 (XA =S Hy (A —— . (5.6)

The connecting homomorphism ¢ takes a relative homology class [a] € H,(X, A)
to the homology class [0a] € H,_1(A). This is an excellent sequence for decomposing
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homology of quotient spaces in terms of the homological analogues of images and
kernels of a projection.

Example 5.6 (Spheres) ©

Computing the homology of the sphere S¥ is a simple application of the long exact
sequence of the pair (ID¥, 8D%), made simpler still by using reduced homology:

H{) H(i)

s H(DF) L5 Ho (DK, ODF) —2— [, 1 (OF) — H g (DF) ——

By definition, 8% = S¥~1 By excision, H,(DX, oIF) =

Ho(D¥ /ODK) = H,(S¥). For all n, H,(D¥) = 0. As the first
and last terms in the sequence above vanish, exactness yields
the recurrence relation

Aa(S%) 2= Hyoa (857D,
for all n. Beginning with the explicit and trivial computation

of H,(S®) = 0 for n > 0 and & Z for n = 0, one inducts via
the above to show that H,(SX) = Z for n = k, and = 0 else.

©

The second key sequence is derived from a decomposition of X into subsets (or
subcomplexes) A and B. In the singular setting, one requires X = int(A) U int(B); in
the cellular case, subcomplexes suffice. Consider the short exact sequence

00— CANB) —2 Co(A) @ Co(B) —V = Co(A+ B) —— 0,

with chain maps ¢.: ¢ — (¢, —c), and 9,: (a,b) — a+ b.
The term on the right, Co(A + B), consists of those chains
which can be expressed as a sum of chains on A and chains on
B. In cellular homology with A, B subcomplexes, Co(A+ B) =
Ce (X); in the singular category, one shows (via the techniques

of Cech homology) that He(A+B) = H.(X). In both settings,
the resulting long exact sequence yields the Mayer-Vietoris
sequence:

S HANB) 2 A e Ha(B) 2 H () — S H, (AN B) ——

The connecting homomorphism decomposes a cycle in X into a sum of chains in A and
B, then takes the boundary of one of these chains in AN B. This sequence captures
the additivity of homology, cf. Lemma 3.8.

Example 5.7 (Spheres, redux) ©)



5.4. Equivalence of homology theories 89

The computation of H.(S¥) can be carried out via Mayer-Vietoris as follows. Let
A and B be upper and lower hemispheres, homeomorphic to DX, intersecting at an
equatorial S¥1.
~ ~ H ~ ~ H ~ ~

A @A) P s s A s X A e A, (D) ——
As H,(D¥) 22 0, one obtains by exactness that §: H,(S¥) = H,_1(Sk1) for all n and
all k. Thus, again, via H,S° one has immediately that H,(S¥) = 0 unless n = k,
where it equals Z. ©

There are many other exact sequences, only a few of which this chapter will
unfurl. For future use, note the existence of relative versions of the two sequences
above. The long exact sequence of a triple (X, A, B), where B C A C X, is derived
from the short exact sequence of chains:

00— Co(A B) —" 5 Co(X, B) —2 5 Co(X, A) —— 0,

where, as before, i, and j, are induced by inclusions on pairs. In the case of Mayer-
Vietoris, if one decomposes the pair (X,Y)forY Cc Xas X =AUBandY = CUD,
with C C A and D C B, then the following is exact:

0 — Co(AN B, CN D) 25 Co(A C) ® Cu(B. D) 25 Cu(A+ B.C + D) — 0,

As before, when X lies in the union of interiors of A and B (likewise with Y in the
union of C and D), then the penultimate term in the sequence becomes Ho(X,Y)
when passing to homology. Section 5.12 will put this relative tool to use.

5.4 Equivalence of homology theories

This chapter slowly builds the argument that even elementary homological algebra
is a powerful upgrade to the basic linear algebra so useful in applied mathematics.
Exactness and commutativity are two such simple tools: much more is available.
Consider the following diagrammatic lemma from homological algebra.

Lemma 5.8 (The 5-Lemma). Given a commutative diagram of abelian groups of the

form

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]
whose top and bottom rows are exact, and whose four outer vertical maps are iso-
morphisms; the middle vertical map is an isomorphism as well.

(5.7)

IR
IR

This lemma is extremely useful: one example suffices. This text handles com-
peting homology theories glibly, with the justification that they usually agree.? This
almost always can be shown using the 5-Lemma and induction.

2Exotic spaces on which they disagree are not of primary importance in most applications.
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Theorem 5.9. On simplicial complexes, singular and simplicial homology are isomor-
phic.

Proof. Choose a filtration X; C X;1; C --- for X that adds one simplex per step
and induct on this sequence order. On the 0-skeleton of X, the isomorphism is clear.
Assume that ¢ is the k-simplex which when added to X; yields X;y1. This ¢ is glued
to X; along its boundary 9o, homeomorphic to the sphere S¥~1. The Mayer-Vietoris
sequences for (X, o) in simplicial and singular homology fit together in a commutative
diagram,

simp SIMp \ . simp SIMp \ . simp SIMp y/ simp
HYMPOo — HYMPX; & HYM™Po — H)™P Xy — H D700 — H T X, @ H T o

I

H5M980 — HIM X, @ HiMo — HI™ X 11 — Hi"00 — H"9 X & HIo

1%

with vertical arrows induced from the map interpreting a simplicial chain as a singular
chain. By induction and previous computations of the homologies of balls and spheres,
four of the five vertical maps are isomorphisms. The 5-Lemma completes the induction
step and the proof. O]

The same result holds for other homology theories, such

as Cech and cellular, assuming the appropriate defining struc-
tures (covers, cell structures, etc.) exist. The proof of Theo-

H(f)
er”X erlly

rem 5.9 works for cellular homology of a regular cell complex. lg El
In the general case, more care concerning the definitions is _ _
required. In all these cases, the isomorphism is natural, mean- ~ HJ"9X T HJ"MY

ing that, as in the case of the long exact sequences of §5.2, a

map f: X — Y between spaces induce the same homomor-

phisms on homology, independent of which theory (singular, cellular, etc.) is used, so
long as these homologies are well-defined. This sameness is expressed as a commu-
tative diagram.

5.5 Cellular homology, redux

The treatment of cellular homology in Chapter 4 was incomplete, especially in regards
to defining the incidence number [o: 7] for a pair of cells o7, and showing that the
boundary operator in Equation (4.6) yields a chain complex. Moreover, the boundary
operator was only defined for regular cell complexes, and a formal definition of induced
orientation was never given at all outside of the simplicial setting. These issues can
now be rectified.

Let X be a finite-dimensional cell complex. Choose an orientation for each cell
7: recall from Example 4.18 that this is a choice of generator for H,(T,0T;7) for
n = dim 7. To define the induced orientation on the boundary of the cell (without
using one’s right hand), use the connecting homomorphism é: H,(T,0T) = H,_1(0T)
from the long exact sequence on the pair (7,97). Recall from §4.3 that the incidence
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number [o: T] of a face o7 records (for a regular cell complex) whether the orien-
tations on 7 and ¢ agree (+1) or disagree (—1). This can now be both interpreted
and extended to the general cellular setting as a degree:

[0: 7] := deg (HH(T, or) - H, 1 (a1) 1% Hnl(a/aa)) , (5.8)

where for T an n-cell, g: 7 — ¢ /00 is the map that quotients out the complement
of o in X("=1_ In short, incidence number is the degree of the attaching map on the
boundary. For a non-regular cell complex, this number may be nonzero: witness the
cell structure on P? that has one cell in each dimension 0, 1,2, and an attaching map
from the 2-cell to the 1-skeleton of degree 2.

What remains is to show that the incidence numbers
cancel to give the cellular boundary operator as per Equa-
tion (4.7). This requires a deeper look at what the quo-
tient map in (5.8) is. Consider X" C X the n-skeleton
comprised of all cells of dimension less than or equal to
n. To analyse how the n-cells are glued onto the (n — 1)- ‘ l
skeleton, one focuses on the long exact sequence on the W

pair (XM, X(=1)Y in singular homology near grading n:

H() H(i)
—

S HX O Ho(X, x0=10y &y x -0 2y x|

The critical observation is this: H,(X( X(=1y = H (x(/x (=1 = ceel(x),
since the quotient is a wedge of spheres of dimension n, one for each n-cell of X.
This allows for a definition of the cellular chain complex via weaving together the long
exact sequences of incident skeletal pairs:

an(n) Hn_zx(n—2)

e, N e A

cell cell cell
Cn+1 N Cn Cnfl

H(j)/ T \5 H(j)/\ T

Hpy1 X (1) H,_ 1 X (1)

One defines the cellular boundary operator 8" from this diagram as the composition
0%l .= H(j) o 6. This gives an immediate proof that 8> = 0 in cellular homology,
since 82 = H(j) o (6 o H(j)) o 6, and the middle two terms vanish due to exactness.
That this definition of cellular homology agrees with that of §4.3 follows from a close
examination of 8¢, which takes X (" /X(=1) to X (=1 /X (=2) by means of § and
quotients. On an n-cell T, the n-sphere 7/9T is sent to the wedge of (n — 1)-spheres
0/0c for each o<JT. This map, coming from ¢, yields precisely the incidence number
[c: 7] on each face. Compared to juggling the combinatorics of incidence number
cancellation, this exploitation of exactness is incisive.
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5.6 Coverage in sensor networks

Sensors — devices which return data tied to a location — are ubiquitous. The problem
of collating distributed pieces of sensor data over a communications network is an
engineering challenge for which the tools of topology and homological algebra seem
strangely fitting.

One simple-to-state problem is that of coverage. Fix
a domain D C R? and consider a finite collection Q of
sensors nodes in the plane with two tasks: they (1) sense
a neighborhood of their locale in D; and (2) communicate
with other sensors. Both of these actions are assumed to
be local in the sense that individual nodes cannot extract
sensing data from or communicate data over all of D. The
problem of coverage, or more precisely, blanket coverage,
is the question of whether there are holes in the sensor
network — are there any regions in D which are not sensed?
Other important coverage problems include barrier coverage, in which one wants to
determine whether a sensor network separates D or surrounds a critical region, and
sweeping coverage, the time-dependent problem familiar to users of robotic vacuum
Sweepers.

When the coordinates of the sensors are known, computational geometry suffices
to determine coverage. For non-localized sensors, the following simple application of
homology gives effective criteria. Specific assumptions are kept to a minimum, for
clarity and ease of proofs:

1. Sensors are modeled as a finite collection of nodes Q C R?.

2. Each sensor is assumed to have a unique identity which it broadcasts; nearby
neighbors detect the transmission and establish a communication link.

3. Communication is symmetric and generates a communications graph, X, on Q
with corresponding flag complex F = F(X).

4. Sensor coverage regions are based on communication proximity: for any subset
of sensors S C Q which pairwise communicate, the union of coverage regions of
S contains the convex hull of S in R?.

5. One fixes a ‘fence’ cycle C C X whose image in R? is a simple closed curve
bounding a domain D C R? of interest.

One wants to know whether D is contained in the coverage region of the net-
work. The critical assumption is the fourth, connecting the communications and
sensing of the network by means of the flag complex F. It is satisfied by systems
with radially-symmetric communications networks (or unit disc graphs) and radially
symmetric sensing regions with the proper ratio between sensing and communication
[87, 88], but asymmetric systems are permissible in this framework.

Theorem 5.10 ([87]). Given Q, X, F, C, and D as above, then all of D is contained
in the sensor-covered region if, equivalently:
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2. There exists [a] € H»>(F, C) with 0a = C.

Proof. Equivalence of the two conditions comes from the long exact sequence of the
pair (F, C) induced by the inclusion i: C < F,

e Ho(F, C) — s Hy () Y () ——

since ker H(i) = im & by exactness. Consider (from §2.2) the shadow map §: F — R?
which sends vertices of the flag complex F to the physical sensor locations Q C D
and which sends a k-simplex of F to the (potentially singular) k-simplex given by the
convex hull of the vertices implicated. By construction, 8 takes the pair (F,C) to
(R?,8D), acting as a homeomorphism on the second terms of the pair. This map
induces the following diagram on the long exact sequences of the pairs:

JH(S) ~JH(5)

o Hy(R2,0D) —2 H1(8D) —— -+ -

By assumption, da = C # 0; hence, H(8)d[a] = H(8)[0a] # 0. Naturality im-
plies that the diagram is commutative: dH(8) = H(8)6. Commutativity implies that
OH(8)[a] # 0, and thus H(8)[a] # 0. If the sensors do not cover some point p € D,
then p does not lie in the image of §; thus, the map 8§: F — R? is a composition of
maps F — R?—p < R2. Diagram (5.9) is restructured as:

Ho(F, C) —>— H;(C) (5.10)

Ho(R2—p, D) ‘H(S) %lH(S)

\ .
HQ(RQ, 8@) e H1 (6@)

However, H,(IR?—p,dD) = 0, as the long exact sequence of the pair (R?—p, D)
reveals:

L Hy(R2—p) —— Hy(R2—p, 8D) —— Hy (8D) = Hy (R2—p) ——

The first term in this sequence is zero since R?>—p ~ S, which has vanishing H,. The
two last terms are H1 (D) = H;(R?—p), and, moreover, H(i): H1(8D) — H;(IR?>—p)
gives the winding number (§4.12) of @D about p € R?. Since p lies in the interior of
D, the winding number is +1, and H(/) is an isomorphism. Exactness then implies
that Hy(R?—p, D) = 0. Commutativity of (5.10) completes the proof. ®

The assumption on sensor coverage specifies that certain regions are guaranteed
to be covered while passing no information about lack of coverage elsewhere. As such,
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the homological coverage criterion cannot be if-and-only-if. It, like the assumptions on
which it is built, is a conservative criterion. However, when the homological coverage
criterion fails, choosing a basis for H;(F) which is sparse (implicating few nodes and
edges) gives information about where the coverage holes may reside. Finally, any
relative cycle a € Z,(F,C) with da = C suffices to cover D: only those nodes
implicated in a are required to be actively sensing/communicating. This allows one
to conserve power or establish a sleep-wake cycle by homological means.

5.7 Degree and computation

The crucial step in the proof of Theorem 5.10 used a winding number (degree) whose
computation was, fortunately, obvious. More difficult degree computations are often
possible by means of local formulae. For example, given a point p € R? and a closed
curve v: St — R?—p, the winding number of v about p is easily computed as follows.
Draw a ray from p and perturb it to intersect the image of -y in a finite set of points
Q= {q,}f. At each intersection point g;, the curve kisses or crosses the ray; either the
curve traverses (left-to-right or right-to-left, since both are oriented) or it osculates,
touching the ray and immediately turning back. Each action contributes a local degree:
+1 if crossing and 0 if kissing. The net winding number of v about p is the sum of
these local contributions to degree.

This simple example of a local computation rewards
rumination. What happens if, instead of a curve in the
plane, one needs to know whether a cycle in an ad hoc
non-localized network surrounds a node (as in, e.g., a net-
work of security cameras [151])7 To know whether a curve
surrounds a point in the plane, it suffices to know the local
behavior of the curve at a (small) finite number of points.
What the curve does elsewhere is irrelevant. This has the
pattern and stamp of topology. This intuitively simple pro-
cedure has a rigorous footing in transversality [169]; better
still is the use of local homology. Assume f: S" — S" and g € £ 1(p) is an isolated
point in the inverse image. Define the local degree of f at g to be

deg(f; q) :=deg H(f): H,(U, U-q) = H,(V,V—p), (5.11)
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for U and V sufficiently small neighborhoods of g and p satisfying f(U) C V. The
local degree is an integer since H,(S",S"—p) = Z for any point p € S". The validity
of local computation can be shown using basic tools:

Proposition 5.11. Assume that forf: S™ — S", p has discrete inverse image f ~1(p) =
Q =1{q;}i. Then
deg f = Zdeg(f, qi)- (5.12)

Proof. From Lemma 5.5, the long exact sequences of the pairs (S”,S"—Q) and
(S",S"—p) form a commutative diagram:

Ho(S"=Q) —— Ho(S™) 29 H, (S, §"—Q) —— H, 1(S"—Q)

JH(f) \H(f) \H(f) \H(f)

Hp(S7—p) —— H,(S7) Hi@ H,y(S™ S"—p) —>— H,_1(S"—p)

The first terms in both rows and the last term in the bottom row vanish. By exactness,
the lower map H(j) is an isomorphism. Thus, by commutativity

deg f = deg <Hn(S”) ) Hn(S™, S"-Q) lle H,(S", Sn_P)) :

Choose a small neighborhood V' of p so that f1(V) = U,;U; is a disjoint collection of
neighborhoods of the g;. It follows that

Hn(S",8"=Q) =) H, (f~1(V), F1(V)-Q) =@ & Ha(Ui, Ui—a),

where the isomorphisms come from (1) excision, and (2) additivity. The local degree
at g;, deg(f, g;), is by definition the degree of the induced map H(f): H,(U:, q;) —
H,(V,p). Thus, by additivity,

deg f = deg <HH(S”) — @ Hn (Ui, Ui—qi) = Ha(V, V—p)) = Zdeg(f, qi)-

Corollary 5.12. /ff: S" — S" is not surjective, then deg(f) = 0.
Proof. If not surjective, apply (5.12) to an empty inverse image. ®
The long exact sequence of the pair also permits computation of degree in

slightly different settings. For example, consider the case of a map of the form
f:(D",0D") — (D",0D") that maps a closed disc to itself, restricting to a map
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on the boundary sphere. It is sensible to speak of the degree of f by using relative
homology: deg(f) := deg (H,(ID",0D") — H,(D",8D")). This is well-defined since
H,(D", o)) = Z. Moreover, it is easily computed in terms of what f does either on
the boundary or on the interior, as follows. There is both an induced map f: S” — §”
on the quotient sphere, given by collapsing the boundary to a point, and a restriction
map f: S"~t — §"~1 given by restriction to the boundary.

Lemma 5.13. For the above, deg(f) = deg(f) = deg(f).

Proof. That deg(f) = deg(f) follows from naturality. The equivalence of this to
deg(f) comes from the long exact sequence applied to f: (D", 9D") — (D", 8D"):

0 = Hy(D") —— H (", 8D7) —— H, 1 (aD") —— H, 1 (D7) =0 ,

JH(f) \H(f)

0= Hy(D") —— H, (D", 8D") —— H,_1(8D") —— H,_1(D") = 0

By exactness, the connecting homomorphisms 6 on top and bottom are isomorphisms.
Thus, by commutativity, deg(f) = deg(f). ©

Example 5.14 (Colorings) ®

There are numerous results in combinatorics that are inherently topological, several
of which involve colorings. The following is a classical example implicating degree.
Consider a 2-simplex T with vertices labeled by {0, 1,2}. Let T’ be a subdivision of
T. Label all the new vertices of T’ using any label {0, 1,2} subject to the following
boundary condition: on dT', each vertex must not be labeled by the label of T on the
vertex opposite that edge. Hence, on the portion of the boundary of T’ connecting
the {0} and {1} vertices of T, the label {2} must not be used.

Lemma 5.15 (Sperner’'s Lemma). Any{0,1,2}-
labeling of the vertices of T' obeying the boundary
condition must possess at least one triangle with
all three labels at vertices.

Proof. Consider the piecewise-linear simplicial map
f: T' — T that sends each simplex in T’ to the
unique simplex in T determined by the convex hull
of the labels in T'. Note that the conclusion of
the theorem holds if and only if f is surjective. The
boundary coloring condition implies that f: 87" —
OT with degree +1. Thus, by Corollary 5.12 and
Lemma 5.13, f is surjective. ®

From this proof, one sees clearly that the boundary condition can be relaxed to
allow for any coloring of the vertices on the boundary that imparts a nonzero degree.
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Furthermore, it is clear that the proof holds for a subdivided n-simplex with n + 1
distinct colors. With the appropriate homological restrictions, other cellular spaces
are likewise admissible: everything hinges on homology. Sperner’'s Lemma can be
viewed as a discretized version of the Brouwer fixed point theorem of §4.13; as such,
it is useful in discrete versions of fair-division and consensus problems [283]. ©

Sperner’s Lemma can also be restated as saying that any (n+ 1)-coloring of the
vertices of a simplicial S” must have an even number of (n + 1)-colored simplices. In
this setting, the proof above reduces to an examination of a simplicial map " — A”.
The topological features of such maps are covered by another classical theorem from
algebraic topology implicating degrees and exact sequences.

5.8 Borsuk-Ulam theorems

There are a number of results which fall under the names Borsuk-Ulam; all orbit about
spheres and the antipodal map a: S” — S” that sends x — —x. The following is the
key step in these results, written in the language of degree theory.

Theorem 5.16 (Borsuk-Ulam Theorem). Odd maps of
S™ have odd degree; even maps of S” have even degree.

Proof. The proof in the (harder) odd case is sketched, the
key to which is a long exact sequence to track antipodes.
Assume that f is odd, so that f o a = ao f. Recall from
Example 1.2, the quotient space S”/a consisting of equiva-
lence classes of antipodal points is one definition of the real
projective space P". Let m: S” — P" denote the quotient
projection map; this map is a 2-to-1 local homeomorphism.
Let f: P2 — P2 be the induced map. There is a commu-
tative diagram of short exact sequences of chain complexes in [F» coefficients,

00— Co(P") — 1= Co(S™) —— Co(P") —— 0,

00— Co(P") — 25 Co(S") —=— Co(P") —— 0

where T is the transfer map, lifting a chain in P” via a to an antipodal pair of chains
in S”. The 5 coefficients ensures that the sequence is exact. The corresponding long
exact sequences yield:

0 —— Hy(P7) 22 Hosmy 27 ey S H, (P —— 0

JH(f) JH(f) J{H(f) JH(f)
H(T) H()

0 —— Hy(P") 2 Ho(S™) 2 Ho(P?y —2 s Hyy (P7) ——— 0



98 Chapter 5. Sequences

By exactness and knowledge of He(IP"), one argues that in the above diagram, 6 and
H(T) are isomorphisms, while H(m) = 0. By inducting on the dimension n and using
the commutative square penultimate to the right, one shows that H(f) is an isomor-
phism. By commutativity (or the 5-Lemma), this implies that H(f): H,(S", F2) —
H,(S™ F5) is an isomorphism. This, in turn, is the mod 2 reduction of H(f) from
H,(S™7Z)— H,(S", Z); i.e., deg(f)mod 2 = 1. ®

77 /o
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There are a number of famous corollaries of Theorem 5.16:

1. Borsuk-Ulam: Any map S” — R"” must identify some pair of antipodal points.

2. Radon: Any map A™! — R” of an n + 1-simplex has a pair of disjoint closed
faces (simplices of 9A"t1) whose images in R” intersect.

3. Stone-Tukey: Given a collection of n Lebesgue-measurable bodies in R”, there
is a hyperplane which bisects evenly the volume of each body.

4. Lusternik-Schnirelmann: Any cover U = {U;}{ of S” by n+ 1 open sets must
have at least one element U; containing an antipodal pair of points.

Several of these theorems have physical interpretations. For example, it is common to
express the first corollary above as saying that (assuming meteorological continuity)
some antipodal pair of points on the earth have the same temperature and barometric
pressure. Applications more relevant to this text lie in economics and fair division
problems; for applications to combinatorics, see [219].

5.9 Euler characteristic

Sequences solve the mystery of the topological invariance of the Euler characteristic.
In what follows, use field coefficients. The subtle step, following the theme of §5.1,
is to lift the notion of Euler characteristic from a cell complex to an arbitrary (finite,
finite-dimensional) sequence C, of vector spaces:

X(Ca) := Y (~1)*dim Cy. (5.13)
k
The alternating sum is a binary variant of exactness. A short exact sequence of
vector spaces 0 -+ A - B — C — 0 has x = 0, since C = B/A. By applying
this to individual rows of a short exact sequence of (finite, finite-dimensional) chain
complexes,
0 Ae B, Ce 0
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one sees that x of this sequence also vanishes: x(As) — X(Bs) + x(Ce) = 0. This,
then, provides the key to understanding why the Euler characteristic is a homological
invariant. The following lemma is the homological version of the Rank-Nullity Theorem
(Lemma 1.10):

Lemma 5.17. The Euler characteristic of a chain complex C, and its homology H,
are identical, when both are defined.

Proof. From the definitions of homology and chain complexes, one has two short
exact sequences of chain complexes, arranged like so:

Here, B, is the shifted boundary complex: B, := By 1. By exactness, the Euler
characteristic of the sum of these two sequences is zero. The Z terms cancel. The
B terms cancel, since x(B, ) = —x(B.). This leaves x(H,) — x(Cs) = 0. ®

Corollary 5.18. For a compact cell complex X with subcomplexes A and B,

X(X) = _(=1)*dim Hy(X)

k
X(AUB) = x(A) +x(B) - x(ANB)
X(X=A) = x(X) — x(A)

Furthermore, x is a homotopy invariant among this class of spaces.

These results follow from applications of Lemma 5.17 to (1) the chain complex
for cellular homology; (2) the Mayer-Vietoris sequence; and (3) the long exact se-
quence of the pair (X, A) respectively, the last requiring a little excisive effort to relate
Co(X, A) to X—A.

5.10 Lefschetz index

There is a generalization of Euler characteristic from spaces to self-maps. For any
chain map @,: Co — C, 0n a finite-dimensional chain complex € over a field ', define
the Lefschetz index as the graded alternating sum of the traces of chain maps
T(pe) := >, (= 1) trace (we: Cx — Cy).

The analogue of Lemma 5.17 holds: the alternating sum of traces of H(f) equals
the alternating sum of traces of f, via the same argument. This index, like the Euler
characteristic which it mimics, is intimately connected to the question of fixed points,
not of vector fields, but of self-maps in general. For a self-map f: X — X of a space
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X, one defines its Lefschetz index as, equivalently:

Tr=1(R) =Y (—=1)*trace (H(f): HeX = HiX). (5.14)
k

Theorem 5.19 (Lefschetz Fixed Point Theorem). For X a finite (thus, compact)
cell complex, any map f: X — X must have a fixed point if T+ # 0.

——9-

Proof. The technical portion of the proof
(omitted) is to show that f may be approx-
imated by a cellular map (also labeled f) =ﬁ ﬁ ?

for a suitably subdivided cell structure on X o ] ._

in such a way that the approximation also (1] m & O B
has empty fixed point set. By compactness =& & _g_ % JL:
and the lack of fixed points, this subdivided

cellular map sends each n-cell to a different

cell. Thus, the trace of the chain map fo: Co — C, vanishes and 7+ = 0. The approx-
imation step does not change the action on homology or (therefore) Lefschetz index.
®

The theorem can be extended greatly. Assuming that the image f(X) is con-
tained in a compact subset of X, the theorem holds for any X homeomorphic to a
neighborhood retract in some Euclidean space. 3 Moreover, the theorem holds not
only for maps but for multivalued maps F : X = X with the appropriate modifications:
see §5.11 and §7.7. Finally, the computation of the Lefschetz index can be reduced
to a sum over the fixed point set of f: see §7.7. This hints at a different proof of
Theorem 5.19, since the sum over the empty set vanishes.

The Lefschetz theorem provides a simple proof of Theorem 3.3, that any vector
field on a manifold M with x # 0 has at least one fixed point. If a nonvanishing vector
field existed, the time-¢ map of the flow (for € sufficiently small) would be a map of M
without fixed points that is a small perturbation of the identity map. The Lefschetz
index of this map is 7(Id) = x(M), since the identity map on H, has trace equal to
the dimension of H,. Indeed, it follows that for any Euclidean neighborhood retract
X with x # 0, any map f: X — X homotopic to the identity has a fixed point.

5.11 Nash equilibria

Among the many applications of fixed point theorems, few are as celebrated as that
of the existence of Nash equilibria in multiplayer games. The following is a terse
rendition.* Consider a collection of N players, each of whom can choose from a
finite set A;, of pure strategies in, say, a game or an economy. The payoff function,
f LA — R", records the numerical return to each of the N players upon executing

3Specifically, Y C R" is a neighborhood retract if there is a retraction r: U — Y for U an open
neighborhood. Any X homeomorphic to such a Y is called an ENR, or Euclidean neighborhood retract.
“Nash' 1950 article — less than a page — is terser still.
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the strategies chosen in each A;. Naturally, each player wishes to maximize payoff.
A Nash equilibrium for this game is a choice of strategies x* such that for each 1/,
fi(x*) is maximal with respect to varying all inputs except x* — that is, each player has
chosen an optimal strategy with respect to fixing everyone else’s [known] strategies.
The existence of a Nash equilibrium means, in principle, that everyone is content.
Such an equilibrium may or may not exist.

The insightful step is to allow for mixed or probabilistic strategies. Each player
chooses from his set of strategies A; according to some fixed probability distribution,
playing repeatedly. This has the effect of generating a strategy space, X;, for each
player, corresponding to the space of probability distributions on A;: each X; is a
simplex. The payoff function extends by linearity to a continuous map f : [[, X; — RV,
recording the expected return to each of the N players. Nash showed that for mixed
strategies, an equilibrium always exists [239]. His initial proof used the Brouwer fixed
point theorem (Theorem 4.26) in a manner not unlike that of Example 4.27; he quickly
converged to a simpler proof via a better fixed point theorem for multivalued functions.
The Kakutani fixed point theorem [187] states that for F: )" = D" a multivalued
map whose graph is closed in D” x D" and has F(x) convex for each x, then there
exists a fixed point — some x satisfying x € F(x).

Nash's proof follows. For mixed strategies x, x' €

[T, Xi. one says that x’ counters x if, for each i, the /™ [o— m—
strategy of x’ is f-optimal with respect to all the not-/ f*gx\\\\\ N
strategies of x: that is, the player-/ payoff, _—_J\/K
i X1, X, Xix1, ), 2777 ML X;
I( i—1y Ajs A1 ) 1\\\::_—’///// / )"
. . . . ] . N5~ __// /N //
is maximal with respect to varying only x;. Consider the L7552 //////////
multivalued map F: [[; X; = [, X; which sends x to LSS XK
the set of countering strategies {x'}. This satisfies the {\\5:5:——:/://://
criteria for the Kakutani theorem, since the domain is | °o °

homeomorphic to some )", the images of F are convex,
and the graph of F is closed (via continuity of f). The existence of a self-countering
strategy — a Nash equilibrium by definition — follows via Kakutani.

The classical Nash theorem has been extended in numerous ways. One such
extension is to more general strategy spaces X;. It is possible to handle this setting
with the Lefschetz Theorem [289], relaxing the conditions on the strategy space and
on images of F. Let X = [[, X; be a product of reasonable spaces such as cell
complexes.® Assume F: X = X a multivalued map whose graph is closed in X x X
and whose images F(x) are acyclic (have H, = 0). It follows that the two factor
projection maps p1, po: X x X — X can be used to define a Lefschetz index for F via
1 = T(H(p2 o py 1)), since H(p1) is an isomorphism. A multi-valued extension of the
Lefschetz Theorem [106, 164] states that F must have a fixed point when 7¢ # 0.
This implies the existence of the classical Nash equilibrium (in that case, 7 = 1), but
it also allows for strategy spaces which are noncontractible, if the conditions on 7¢ are
met.

5The technical conditions can be relaxed to an ANR — absolute neighborhood retract — and can
be made to work even in infinite-dimensional settings.
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The lesson here — not for the last time — is that a qualitative theorem which re-
quests convexity or piecewise-linearity can be persuaded to relax given the appropriate
invocation of homology.

5.12 The game of Hex

Nash equilibria arise frequently in the context of mathematical games, itself a fruitful
field of topological intricacies. The game of Hex is a classical game of topological
type. The traditional version of the game is played on a rhombus-shaped board with a
uniform hexagonal tiling. The two players (traditionally black and white, representing
colors of markers used in the game) alternate laying down one marker of their color
on an open hex cell on the board, filling that cell.
The player goals are, respectively, to build
a connection from the top-to-bottom (black) or
left-to-right (white) of the board, each player try-
ing to win while blocking the other. Note that
the corner pieces of the board border two sides.
It is a classical result that this game always ends
with one and only one winner. While it is obvious
that this is a topological result, a clear topologi-
cal proof is a worthy exercise. The Brouwer fixed
point theorem was initially used by Nash and then
Gale [138] to prove existence of a winner (Gale gave also a converse proof of the fixed
point theorem via the Hex Theorem). The following is a different approach that may
help the beginner learn to work with diagrams and exact sequences. It has the virtue
of permitting very general (though not arbitrary) playing boards.
Let D = [0, 1] be a Euclidean square, outfitted
with a definable cell decomposition satisfying the fol-
‘ -. lowing: (1) there are a disjoint pair of (black) 2-cells,
' By, containing the top and bottom edges, and another

‘ ‘ (white) disjoint pair, Wy, containing the left and right
he edges; (2) each vertex in the cell structure has degree
'.“ .. exactly three — there are three edges that terminate at
"‘. eagh vert.ex. thg that the four corners of t.he square

“‘- sat.lsfy this condition. Players alternate choos.lng 2-cells
which are then colored white-or-black depending on the
player. Since the cell decomposition is finite, each game
must terminate, and it suffices to consider what hap-
pens when all 2-cells are thus colored. Let B denote the union of the closure of each
black 2-cell (including boundary cells By), and let W be the corresponding white sub-
set. The classical Hex Theorem translated into this setting states that either there is
a path in B connecting the two components of By or a path in W connecting the two
components of W, but not both.

Theorem 5.20 (Hex Theorem). This game of Hex has one and only one winner.



5.12. The game of Hex 103

Proof. Clearly, BUW covers D and S = By U W, deformation retracts to 9D.
The pairs (B, By), (W, W), and (D, S) fit together via the relative Mayer-Vietoris
sequence and the long exact sequences of pairs (§5.3) into a commutative diagram:

HQ(D, S) — Hl(B N W, BO M Wo) — Hl(B, Bo) ¢ Hl(W, Wo) — Hl(D, S)

| |

OZHl(BoﬂWO) O:Hl(BO)@Hl(Wo):O

Horizontal rows are Mayer-Vietoris; vertical columns are sequences of pairs; field
F coefficients are used. Only the relevant portions are displayed. The entire right
column is zero, as is Ho(D) in the lower-left entry. All vertical maps are injective by
exactness. Note the lone copy of F in the upper-left corner, due to Ho(D, S): this
is the source of the unique solution to the game. To explain: the goal is to prove
the existence of either a path in B connecting By or a path in W connecting W.
Such a path is precisely a relative homology class in one of the factors of H; (B, By) ®
Hy (W, W) which is not in the image of the absolute homology H1(B) & Hi(W)
(necessarily injective, by exactness of columns). From exactness of the middle row,
Hi(BNW) = Hi(B) & Hy (W).

The crucial observation is this: BNW is a 1-manifold with boundary, since each
point of BN W is either (1) along a 1-cell of D; (2) at a degree-three vertex of D
with two-out-of-three cells of one color and the third another; or (3) one of the four
corners of D. The only boundary points of BN W are these four points. Therefore,
B NW consists of N circles and exactly two compact intervals, with endpoints the
four corners of D. The homology Hi (BN W) = FN injects into Hy(BNW, By N W),
which must have dimension N 4+ 2, since the two intervals become relative cycles. By
reducing the above diagram to dimensions of the homologies and adding one more
(vanishing) term to the left of the top row, one obtains:

0O——1—N+2 M 0,
0 N N—>50

with vertical maps injective. The top row is short-exact and implies that M+1 = N+2;
thus M= N+1, ie.,

There exists exactly one relative homology class for either H1(B, By) or Hy (W, W)
which is not an absolute homology class: the winner. ®
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5.13 Barcodes and persistent homology

The capstone applications of this chapter comprise a short survey of the exciting work
being done in topological data analysis using sequences and homologies. The mo-
tivation is that, for a parameterized family of spaces (e.g., Vietoris-Rips complexes)
modeling a point-cloud data set, qualitative features which persist over a larger pa-
rameter range have greater statistical significance. This branch of applied topology
is advancing very rapidly; see [105, 306] for initial primary works, [55, 103, 144] for
surveys, and [104, 305] for texts. The work described here spans contributions of
Carlsson, de Silva, Edelsbrunner, Harer, Zomorodian, and many others, viewed from
a representation-theoretic aspect.
Consider a sequence of spaces X; with maps:

Xo—>X1—>---—>X,V_1—>XN. (5.15)

The sequence may be finite, as shown, or infinite. This is motivated by a sequence
of Vietoris-Rips complexes of a set of data points with an increasing sequence of radii
(e,-),’io, in which case the maps are inclusions. This topological sequence is converted
to an algebraic sequence by passing to homology and invoking functoriality:

Hk(Xo) — Hk(X1) — -+ — Hk(Xn-1) — Hi(Xn). (5.16)

The induced homomorphisms on homology encode local topological changes in the X:
the question is, what are the global changes? A homology class in He(X;) is said to
persist if its image in Hqe(X;11) is also nonzero; otherwise it is said to die. A homology
class in He(X;) is said to be born when it is not in the image of He(X;—1). This is
most easily seen in the context of Hg, classifying connected components of a space.
In the context of increasing Vietoris-Rips complexes of a point cloud this sequence of
homologies in grading zero gives information about clustering of points.

(o)
()
(3
[}
(3
(3
(3
(3
[}
(3
(o)

j==tx

This language of birth, death, and everything-in-between is convenient, but sus-
piciously informal for mathematics. The injection of a little representation theory yields
a principled approach that fulfills intuition in a manner consistent with the themes of
this chapter. Consider the generalization of (5.16) to an arbitrary Z-graded sequence
of IF-vector spaces and linear transformations:

Vo= - — V. —V —V, — . (5.17)
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Two such sequences V, and V/ are said to be isomorphic if there are isomorphisms
Vie 2 V| which commute with the linear transformations in V4 and V, as in Equation
(5.1). The simplest such sequence is an interval indecomposable of the form

le = 30— 0—FSF S N 00—

where the length of the interval equals the number of nonzero terms minus 1, so that
an interval of length zero consists of 0 — F — 0 alone. Infinite or bi-infinite intervals
are also included. Intervals — indeed, arbitrary linear sequences — can be formally added
by taking the direct sum, @, term-by-term and map-by-map. Interval indecomposables
are precisely indecomposable with respect to & and cannot be expressed as a sum of
simpler sequences.

The following result is a simple version of a deeper decomposition theorem from
representation theory:

Theorem 5.21 (Structure Theorem for finite linear sequences). Any linear se-
quence of finite-dimensional vector spaces and linear transformations decomposes as
a direct sum of interval indecomposables, unique up to reordering.

> ©Q = @ =0 QO => Q@ => @ =—> @ =—> @ = © —> @ = @ —> © =
I

This prompts a graphical language for interpreting basic lin-

. . A
ear algebra. For example, any linear transformation F" — [F™ © > ©
extends to a linear sequence with two nonzero entries. According
to the Structure Theorem, such a sequence may be decomposed I

in precisely min(m, n) 4+ 1 different ways, depending on the num- 0O =
ber of interval indecomposables of length 1. The student of linear ] ]
algebra knows this number of indecomposable intervals of length O

1 under the guise of rank(A).

Applying the Structure Theorem to a sequence of homolo-
gies (as in Equation (5.16)) in field coefficients yields a pictograph that is called a
homology barcode. The phenomena of homology class birth, persistence, and death
corresponds precisely to the beginning, middle, and end of an interval indecomposable.
The barcode provides a simple descriptor for topological evolution: the shorter an in-
terval, the more ephemeral the hole; long bars indicate robust topological features
with respect to the parameter. This is salient in the context of point clouds Q and
Vietoris-Rips complexes VR.(Q) using an increasing sequence {¢;} as parameter. For
€ too small or too large, the homology of VR.(Q) is unhelpful. Instead of trying to
choose an optimal €, choose them all: the barcode reveals significant features.
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There is no need to restrict to the case of metric-based simplicial complexes
or spaces at all. One can begin with a persistence complex: a sequence of chain
complexes P = (C;), i € Z, together with chain maps x: €; — €;1. (For notational
simplicity, suppress the index subscript on the chain maps x.) Note that each G, =
(G, 0) is itself a complex. The persistent homology of a persistence complex P on
the interval [/, j], denoted Ho(P[F, J]), is defined to be the image of the homomorphism
H(x' ™) : He(C;) — He(C;) induced by x/~'. The homology barcode is an infographic
of persistent homology: dim H,(P[i,/]) is equal to the number of intervals in the
barcode of Hx(P) containing the parameter interval [/, J].

5.14 The space of natural images

The number, scope, and impact of examples of persistent homology and barcodes
are too many to encapsulate: to date, example applications include computer vision
[120, 173], Gaussian random fields [4], genetic markers [93], hypothesis testing [43],
materials science [199, 213], molecular compression [139], sensor coverage [88], signal
processing [107], and much more. One of the first examples of discovering subtle
topological structure in a high-dimensional data set came from an examination of
natural images. A collection of 4167 digital photographs of random outdoor scenes
was assembled in the late 1990s by van Hateren and van der Schaaf [294, 236].
Mumford, Lee, and Pederson [237] sampled this data by choosing at random 5000
three-pixel by three-pixel squares within each digital image and retaining the top 20%
of these with respect to contrast. The full data set consisted of roughly 8,000,000
vectors in R® whose components represent grey-scale intensities. By normalizing with
respect to mean intensity and high-contrast images (those away from the origin),
and by utilizing a certain norm for contrast, the data set M was fit on a topological
seven-sphere S7 C R&.

A cursory visualization reveals points distributed seem-
ingly densely over the entire S7, prompting judicious use of
density filtrations. A codensity function is used in [59] as
follows. Fix a positive integer k > 0. For any point x4 in
the data set, define dx(x,) as the distance in R” from x,
to k™ nearest neighbor of x, in the data set. For a fixed
value of k, 0, is a positive distribution over the point cloud
which measures the radius of the ball needed to enclose k
neighbors. Values of d, are thus inversely related to the
point cloud density. The larger a value of k used, the more
averaging occurs among neighbors, blurring finer variations.
Denote by Mk, T] the subset of M in the upper T-percent of density as measured by
0x. This is a two-parameter subset of the point cloud which, for reasonable values of
k and T, represents an appropriate core.

The first interesting persistent homology computation on this data set occurs at
the level of H;. Taking a density threshold of T = 25 at neighbor parameter k = 300,
with 5000 points sampled at random from M[k, T], computing the barcode for the
first homology H; reveals a unique persistent generator. This indicates that the data
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set is diffused about a primary circle in the 7-sphere. The structure of the barcode
is robust with respect to the random sampling of the points in Mk, T]. In practice,
witness complexes from §2.3 provide small enough spaces for computations to be done
quickly.

A closer examination of the data corresponding to
this primary circle reveals a pattern of 3-by-3 patches with

E one light region and one dark region separated by a linear
E transition. This curve between light and dark is linear and

appears in a circular family parameterized by the angle of
5 W the transition line. As seen from the barcode, this gener-

ator is dominant at the threshold and codensity parame-

m E ters chosen. An examination of the barcodes for the first

3 homology group H; of the data set filtered by codensity

parameter k = 15 and threshold T = 25 reveals a different

persistent Hy. The reduction in k leads to less averaging
and more localized density sensitivity.

The barcode reveals that the per-
sistent H; of samples from M|k, T]

has dimension five. This does not ﬂ ﬂ 5 E W
connote the presence of five dis-

joint circles in the data set. Rather, m ﬂ 5 W
by focusing on the generators and

computing the barcode for Hy, it is E ﬂ m m
observed that, besides the primary E m

circle from the high-k H; compu-
tation, there are two secondary cir-
cles which come into view at the lower density parameter. A close examination of these
three circles reveals that each intersects the primary circle twice, yet the two secondary
circles are disjoint. As noted in [59], each secondary circle regulates images with three
contrasting regions and interpolates between these states and the primary circle. The

difference between the two secondary circles lies in their bias for horizontal and vertical
stratification respectively.

N - E
m D
7\
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The barcodes for the second persistent homology H> are more volatile with
respect to changes in density and thresholding. This is not surprising: the lowest
order terms in any series expansion are always most easily perceived. However, there
is indication of a persistent H, generator (in F, coefficients) at certain settings of k
and T. Combined with the basis of H; generators, one obtains predictive insight to
the structure of the space of high-contrast patches. At certain density thresholds,
the H, barcode suggests a two-dimensional completion of the low-k persistent H;
basis into a Klein bottle K2. The primary and secondary circles appear with the
appropriate intersection properties. A comparison of homology computations in F»
and IF5 coefficients resolves the ambiguity that Ho(K?;Fy) & Ho(T?; Fy) and verifies
that the persistent surface found is K2 and not T?.

5.15 Zigzag persistence

The icon of persistence is the monotone sequence, -+ — ¢ —> ¢ —> ¢ — - -+,
where arrows connote maps of spaces or chains or the induced homomorphisms on
homology. However, other non-monotone sequences are possible and relevant to data
management [56]. For example, sequences of the form--- — e «— ¢ —> e «— -,
arise in consistency tests for sampling point clouds as follows.

Given a large set of nodes Q,
as in §5.14, it may be infeasible
to construct the full Vietoris-Rips
complexes and compute persistent
homology. A small sample of points
is taken (perhaps at random) and a
witness complex is constructed as
in §2.3: this is indeed the method
used for the natural images exam-
ple in the previous section. To check
for accuracy of the sampling, one
could compare the homologies resulting from a pair of samples. However, it is not
the dimensions of the homology that matter, but the correspondence. Assume that
several samples of the data all detect the presence of a single hole. Is it the same hole?
Or are there many holes in the true data set, each sampling detecting a different one?
Given an ordered sequence of small subsamples, build simplicial complexes X; based
on them. One means of performing comparisons is to build an alternating sequence
of spaces and inclusions:

An increase in the com-

X1 U X5 Xo U X3 X3 U X, plexity of a diagram prompts
/ \ / \ / '\ a concomitant increase in
the sophistication of alge-

X X2 X3 X brought to bear. Note
that, although not mono-

tone, this sequence is linear. A little deeper into representation theory (the classi-
fication theorem of Gabriel [136] for quivers of type A,) reveals that the Structure
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Theorem classifies indecomposables of any linear sequence,

A
~
[ ]
A
~
[ ]
A
~
[ ]
A
~

where each e is an [F-vector space and each «+— is a linear transformation going either
to the left or to the right. An indecomposable interval, as before, is a sequence of
copies of F with identity maps, in this setting respecting the directions of arrows in
the original sequence. In classical persistence, all arrows go to the right. In consis-
tency tests, the arrows alternate. The resulting zigzag persistence and associated
barcodes exist, are computable [61], and are extremely useful. In the context of con-
sistency checks, a long bar in the barcode means that a homological feature is sampled
consistently over the sequence.

The moral of these latter sections and of this chapter is that the homology of a
sequence is worth more than a sequence of homologies.

Notes

1. The Snake Lemma and 5-Lemma are two of many wonderfully useful general results
in homological algebra: for others, see [142, 193, 300]. The subject of homological
algebra does not exactly make for colorful reading, but [142], combined with the mantra
that complexes are algebraic representations of spaces, is a good place to start.

2. This chapter on exact sequences is just the beginning of a diagrammatic calculus. The
next step is to build a double complex, a bi-graded 2-d array of chains Ce.s with hor-
izontal & and vertical & chain maps satisfying 88’ + &8 = 0. Such techniques lead
quickly to a spectral sequence, a structure reminiscent of a book whose pages are dou-
ble complexes, outfitted with homomorphisms that turn the pages. Such structures,
though notationally intricate, are quite powerful.

3. The Radon Theorem (in the corollaries of Theorem 5.16) is usually stated in terms of
convex hulls of points in Euclidean space, and its proof is often by means of convex ge-
ometry. The deeper meaning of the Radon Theorem is, like that of the Helly Theorem
in §6.6, topological in nature. All the Borsuk-Ulam type results are greatly generaliz-
able, with the Colored Tverberg Theorem being one of the most general [41, 219]. It
is to be suspected that such generalizations of the Borsuk-Ulam Theorem are useful —
perhaps to economics most readily [33, 180].

4. One should not underestimate the utility of local degree computations as in §5.7; the
ability to infer global features from a small number of local measurements is greatly
desirable in the sciences.

5. The Cellular Approximation Theorem casually alluded to in the proof of Theorem 5.19
is deep and significant: any map between cell complexes can be homotoped to a cellular
map relative to a subcomplex on which the map is already cellular [176].

6. Every proof of the Hex Theorem the author has seen uses two different strategies for
the existence and uniqueness of the winner. The (new) proof presented here — though
not the simplest or most direct — is pleasant in that a single diagram yields both.

7. The extension of the coverage criterion to higher-dimensional networks is possible,
but less clean than the 2-d case presented here. The difficulty resides in specifying
the boundary of the domain in question. For regions in the plane, it is not difficult to
imagine choosing a cycle or even establishing a fence of sensors. In R”, one must specify
a triangulated n — 1 cycle: this seems awkward to the author, but some applications
may permit this condition, in which case a simple modification of the existing proofs
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10.

11.

12.

13.

suffices. A persistent homology approach is given in [88].

. Why was the Cech complex of the sensor cover not used to obtain a coverage criterion?

Determining the depths of overlaps of coverage sets requires explicit distances, hence,
coordinates; cf. the use of Vietoris-Rips complexes versus Cech complexes in point
cloud data.

As stated, the criterion for computing homological coverage in sensor networks is
centralized, in the sense that nodes must upload connectivity data to a central com-
puter. More desirable is a decentralized or distributed computation, performable by
nodes communicating with neighbors. Algorithms for decentralized computation of
homology have just recently emerged [30, 97, 209, 210, 267].

The available perspectives on persistent homology for an author to choose from are
daunting, and the treatment in this chapter is necessarily elementary. See the books by
Edelsbrunner-Harer [104] and Zomorodian [305] (and, eventually, the book by Blum-
berg, Carlsson, and Vejdemo-Johansson) for more details from several perspectives.
In particular, there are different conventions for representing persistence information
beyond the barcodes of §5.13.

Since the core idea of persistent homology is little more that iterated functoriality,
it is difficult to declare when it was discovered. Early formulations of the notion of
persistent homology appear independently in the work of Frosini and Ferri [53, 132,
133], the thesis of Robins [251], and the paper of Delfinado and Edelsbrunner [91].
The subsequent history is one of simultaneous crystallization of theorems, algorithms,
and applications about this notion of persistence.

From the classification theorem of Gabriel [136], it is shown that not only linear se-
quences, but certain Dynkin diagrams (of types A, D, and E) have a nice structure
theorem classifying indecoposables. Other results from representation theory are poised
to impact persistence (such as the Auslander-Reiten quiver [110]). This is especially
salient in the context of multi-dimensional persistence — an algebraically challenging
scenario [62].

Besides being a clear and convenient descriptor for topological data analysis, barcodes
possess a very useful stability in the context of point-cloud data — nearby point-clouds
return barcodes which are close in a certain (interleaving) distance: see §7.2 for an
example and §10.6 for details. It is this stability that makes barcodes useful in describing
noisy point-cloud approximations.



