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ecomposing a space into cells, counting, and canceling according to parity
of dimension, is efficacious for defining one topological invariant: x. More
refined invariants arise upon lifting this enumerative data to the domain of
linear algebra. This leads to the notion of homology.

4.1 Simplicial and cellular homology

The crucial construction of this chapter is that which converts a decomposition of a
space in terms of simple pieces into a collection of vector spaces (or modules) and
linear transformations (or homomorphisms): an algebraic version of a cell complex.
The initial discussion proceeds using the language of linear algebra and passes to more
general algebraic constructs. The reader needing review in either linear or abstract
algebra is encouraged to consult the Appendix before proceeding.

|—>©—>© — O — O m——( © —( ©

For simplicity, mod-2 arithmetic is used initially. Recall that F, = {0, 1} is the
field with two elements. Counting in this field is analogous to flipping a light switch.
To build intuition, consider a cell complex X, each cell of which is outfitted with a
metaphorical light switch. The building blocks of a rudimentary homology for X are
as follows.

1. Define k-chains C, as the vector space over the field F» with basis the k-cells
of X.

2. Consider the boundary maps: the linear transformations 9, : Cx — Cx_1 which
send a basis k-cell to the abstract sum of basis (k — 1)-cell faces.

The collection of chains and boundary maps is assembled into a chain complex:

6] Ok-1 1
G 2 2 e e -2 0. (41)

Ck

The chain complex is graded, in this case by the di-
mension of the cells. It is beneficial to denote the chain
complex as a single object € = (C,, 8) and to write 0 for the
boundary operator acting on any chain of unspecified grad- f K
ing. Chain complexes are a representation of a cell complex

within linear algebra. It seems at first foolish to algebraicize J &
the problem in this manner — why bother with vector spaces
which simply record whether a cell is present (1) or absent O == =0

(0)? Why express the boundary of a cell in terms of linear

transformations, when the geometric meaning of a boundary

is clear? By the end of this chapter, probably, and the next, certainly, this objection
will have been forgotten.
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Example 4.1 (Simplices and cubes) ©)
Consider a single n-simplex A”. The resulting chain complex has C, of dimension
(ZE) The top-dimensional boundary map 8, is a 1-by-n matrix with all entries 1. In
contrast, for /7 = [0, 1]”, the n-dimensional cube with cell structure inherited from

the interval / = [0, 1] with two endpoints, the chain complex has Cj of dimension

2 (3). ©
The following lemma is deeper than it appears.
© e Lemma 4.2. The boundary of a boundary is null:
82 == Gk,l o Gk = O, (4.2)
for all k.
(o) ©| Proof. For simplicity, consider the case of an abstract
(0] (0] simplicial complex on a vertex set V = {v;}. The face
h

map D; acts on a simplex by removing the /™" vertex v;
from the simplex’s list, if present; else, do nothing. The graded boundary operator
0: Co = C, is thus a formal sum of face maps @ = €, D;. It suffices to show that
8% = 0 on each basis simplex o. Computing the composition in terms of face maps,
one obtains:

0’0 => D;Djo. (4.3)

i#j
Each (k —2)-face of the k-simplex o is represented exactly twice in the image of D;D;
over all i # j. Thanks to F, coefficients, the sum over this pair is zero.? ®

The homology of C, He(C), is a sequence of Fy-vector spaces built from the
following subspaces of chains.

Corollary 4.3. For all k, im Oxy1 is a subspace of ker Oy.

A cycle of € is a chain with empty boundary, ie.,
an element of ker 8. Homology is an equivalence relation
on cycles of €. Two cycles in Z, = ker O are said to be
homologous if they differ by an element of By = im Oky1.
The homology of X is the sequence of quotient vector
spaces Hy(X) over F, for k € N, given by:

H(X) = Zk/Bx
= ker Gk/ im 8k+1 (4.4)
= cycles/ boundaries.

To repeat: Z, = ker Ok is the subspace of cycles in Cy, and
By = im Oky1 is the subspace of boundaries. Homology
inherits the grading of € and will be therefore denoted Ho(X) when a dimension is

LIf the reader is reminded by the notation of certain calculus results that rely on mixed partial
derivatives commuting and cancelling, then the notation has done its job.
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not specified. Elements of He(X) are homology classes and are denoted [a], where
a € Zi is a k-cycle and [] denotes the equivalence class modulo elements of By.

One often distinguishes between simplicial homology, H$™?, and cellular ho-
mology, H$®'. Note that only simplicial homology has been given a proper definition
above, since Lemma 4.2 was proved only in the simplicial setting. The details of cel-
lular homology will appear in §4.3 and §5.5. Before this chapter is done, several more
homology theories will be introduced, including some that do not depend on any cel-
lular structure. It is asserted (with justification in §5.4) that these various homology
theories agree (when well-defined) except under unusual circumstances not often seen
in applications. The notation H, will therefore be used to denote whatever homology
theory is most convenient or appropriate. In the examples to follow, explicit cellular
structures may not be given: let the reader take on faith now what will be explicitly
detailed in Chapter 5 — homology is a homotopy invariant of spaces.

4.2 Homology examples
Example 4.4 (Graphs) ©

Consider X a topological graph —a compact 1-d cell complex. As §; = 0, all 0-chains
are O-cycles: Zg = Cy. The boundary subspace By C Zy consists of finite unions
of vertices, with an even number in each connected component of the graph. If one
chooses the vertex set of X as a basis for 7y, it follows that any two basis elements
are homologous if and only if they are the endpoints of an end-to-end sequence of
edges in X —that is, if and only if they lie in the same connected path-component of
X. The dimension of Hq(X) is therefore the number of such path components.

Any element of Z;(X) consists of a finite union of
cyclic end-to-end sequences of edges. As a graph is a
1-dimensional complex, there are no higher dimensional
chains with which to form homology classes: for graphs,
1-cycles are homologous if and only if they are identical.
Correspondingly, H1(X) collates the linearly independent
cyclic chains of edges, and H,(X) = 0 for k > 1. Note
that homology gives the collection of 1-cycles in X the
structure of a vector space, complete with the notions of
sums, spans, and bases. ®

Example 4.5 (Surfaces) ©)

For S4 a cell complex homeomorphic to a connected compact orientable surface of
genus g, the homology is nonzero only in dimensions less than three, since all cells are
of dimension at most two. The relation to genus is as follows:

1 k=0
dim He(S;) =4 29 = k=1

1 k=2
o k>2
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It is worth stressing that H;(X) does not measure whether any cycle in X is
contractible — whether it can be shrunk to a point in X
continuously. For example, on an orientable surface, any
simple closed curve which divides the surface into two con-
nected components is nullhomologous as a 1-cycle, even
though it may not be contractible within the surface. A few
facts may help the beginning reader build up an intuition
for what it is that homology measures. Justifications will
be filled in over subsequent chapters.

1. For X contractible, Hx(X) = 0 for all kK > 0.

2. The number of path components of X equals dim Hg(X).

3. For D? a disc in the plane with n disjoint discs removed from the interior,
dim Hq(D?2) =1, dim H1(D2) = n, and dim Hy(D?) =0 for k > 1.

4. The sphere S” has H, = 0 for all k except Hy and H,,, both of dimension one.

For a disjoint union of spaces X = AU B, Hx(X) = Hx(A) & Hi(B).

6. For a wedge sum of path-connected spaces X = AV B (obtained by identifying
a single point of A with a single point of B), Hx(X) = Hk(A) & Hx(B) for all
k > 0 and dim Hg(X) = 1.

o1

Example 4.6 (Products and Kiinneth) ©
A torus T" = (S!)” has homology satisfying

dim He(T") = (Z)

The reader will rightly suspect a relationship with polynomial algebra, via the the
coefficients of (1 4 t)": indeed, this foreshadows an algebraic result for products of
general spaces. For X a space with finite-dimensional homology, consider the Poincaré
polynomial of X, P:(X) := Y, Bxtk, with coefficients Bx := dim Hx(X) the Betti
numbers of X. For example, the Poincaré polynomial of St is 1+ t. The following is
a simplistic reduction of the classical Kiinneth Theorem:

Theorem 4.7 (Kiinneth Formula). P.(X xY) = P(X)P:(Y).

The computation for dim H,(T") above follows. The simplicity of this state-
ment comes from the linear-algebraic approach used. Complications arise when using
coefficients not in a field. ©

4.3 Coefficients

The homology defined in §4.1 is more properly called the simplicial or cellular homology
of X with F, coefficients, denoted Hq(X;F,). This additional parameter hints at other
coefficients. For example, instead of the Cy being vector spaces over a field ', other
fields may be used. For any field IF, one may construct chains C, for a cell complex X
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as [F-vector spaces. Such coefficients permit expressiveness: R is effective in describing
simplices’ intensities, in contrast to F5's involutive switch. This entails a little more
care with directions, but is a well-motivated generalization.

Example 4.8 (Kirchhoff’s current rule) O

Consider an electric circuit as a 1-d cell com-
plex (or graph), with circuit elements (resistors, ca-
pacitors, etc.) located at certain vertices. Kirch-
hoff’s current rule states that the current flowing
through the edges of the circuit satisfies a conserva-
tion principle: at each node, the sum of the incoming
currents equals the sum of the outgoing currents, 7
with directionality encoded in the + sign. In the lan-
guage of this chapter: current is a 1-cycle. Note the
unambiguous need for R coefficients, since current
is measured as a real quantity. O]

n

A crucial feature of using coefficients other than F5 is this: —1 # 1. This
algebraic unfolding necessitates an orientation associated to cells. For electric circuits,
graph cycles, and 1-chains in general, this is naturally encoded as a direction. In
calculus class, one uses a twist of the right hand for orientations on curves and surfaces:
a more principled approach is needed for the present setting. Simplicial complexes yield
the most explicit case: recall that an abstract simplicial complex on a vertex set V' has
each k-simplex specified as 0 = {vg, v1, . . ., vk} C V. To define an oriented k-simplex,
one begins with an (arbitrary) ordering of vertices, denoted [vg, v, - . ., k.

An orientation on o is a choice of equivalence class
of orderings up to even permutations; thus, [vg, vi, V2] =
—[vg, vo, v1] = [wva, vo, v1]. This yields a multiplicative ac-
tion of {—1, +1} on oriented chains: multiplication by —1is
the chain analogue of reversing orientation. In the algebra
of chains, as with contour integrals, adding two simplices
of opposite orientation cancel. For homology with coef-
ficients in a field IF, one builds C, on a basis of oriented
n-simplices. The boundary operator 8: C, — C,_1 tracks
orientation as follows, using the simplicial face map nota-
tion from the proof of Lemma 4.2:

©

2

k
90 =) (-1)'Dio. (4.5)
i=0

The reader may check that the use of (—1)’s suffices to keep Lemma 4.2 in effect.
The resulting simplicial homology with F coefficients is denoted HS™P(X:F). That
it is independent of the initial choice of orientations on the simplices is by no means
obvious. Chapter 5 will provide a reason for this invariance.

The definition of orientation for abstract simplices is a mechanical index: cellular
homology requires more machinery. In the simple setting of a regular cell complex,
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choose an “orientation” for each cell. For the moment, this requires a little imagination
— a direction for an edge, a sense of rotation for a 2-cell, a handedness for a 3-cell,
etc. The boundary of a cell inherits an orientation from the interior, in @ manner
that is used (if not understood) in calculus courses. Just as in calculus, one compares
orientations on a domain and its boundary. For o<1, with o a codimension-1 face of
T, define the incidence number [o: 7], to be +1 if the attaching map of T preserves

the induced orientation from 81 — o for orientation reversal, [c: 7] = —1. The
boundary map is then defined as
or = Z[a: T|o. (4.6)
odTt

Defining [p: 7] = 0 for all faces p of codimension greater than one allows the above
sum to range over all faces. This bookkeeping yields a chain complex €€ = (C,, d)
with homology HS®'(X:F) once it is shown that & 0 @ = 0; namely, that the signs
cancel:

> lp:ollo: Tl =0. (4.7)

plo T

The serendipitous notation of an abstract simplicial complex leads to a simplification
in that [o: 7] = (1), where o is the /" face of T: these accidents and subsequent
formulae such as (4.5) obscure the meaning of the boundary operator @ — signs are
really about orientation, as will be explained in §5.5.

Field coefficients and linear algebra are, still, not the
full story. The generalization to Z coefficients — in which
each Cx is a Z-module — is particularly relevant. One visu-
alizes chains Co(X:Z) over a cell complex X with integer | (@)
coefficients as recording a finite collection of simplices with
orientation and multiplicity. Ultimately, one works with a
chain complex over an R-module (for R a ring) with the
boundary maps module homomorphisms.

The following examples are not explicitly justified (such @ @
computations will require better methods from Chapter 5),
but are nonetheless useful for building intuition.

Example 4.9 (Coefficients) ©)

Using different coefficients can lead to genuinely different homology groups. For
example, the non-orientable Klein bottle K2 satisfies:

EQ@F f 11:(1) Z - k=0
He (K2 F)) = F2 2 Lo Ho (K% Z)={ ZDZy : k=1

2 : = .

0 ko 0 S k>1

In this example, Z coefficients yields a different rank of homology groups at
gradings one and two. The Klein bottle has no 2-cycle (a boundaryless nonzero 2-
chain) in Z coefficients, but it does in F»: thus, K? is a non-orientable surface. Note



68 Chapter 4. Homology

also the presence of torsion in Hy(K?;Z) = 7 & Z», where Z, = 7. /27 is the quotient
of Z by the subgroup of evens. This indicates that the meridian and longitudinal curves
on K2, unlike those of the torus T2, are qualitatively different: sliding a meridional
curve along a longitude reverses orientation. In general, the presence of a torsional
element in He(X;Z) is indicative of some type of twisting in X which, in surface
examples, manifests itself in non-orientability. ©

Example 4.10 (Rotations and projections) ©

Rotations in R? offer a fascinating, simple, and useful example of torsional phenomena
where coefficients matter. Consider SO3, the group of real 3-by-3 orthogonal matrices
with determinant 1. These are precisely the orientation-preserving rotations of Eu-
clidean 3-space. As one can demonstrate using a variety of physical devices (plates,
belts, fermions, etc.), there is a torsional core writhing within: H:(SO3;Z) = Z».
Since SO3; = P3, this is an example of the homology of projective spaces. In general,
dim H,(IP"; F,) = 1 for all 0 < k < n. The story for integer coefficients is quite
different:

7 - k=0 ork=n odd m
H (P 7)) =< Zo 0< k odd <n .
0 : else
(6

A definition with sufficient strength has emerged: a chain complex € = (C,,9)
is any sequence of R-modules C, with homomorphisms 9,: C, — Ci_1 satisfying
Ok © Ox+1 = 0. Though the generators of € may be simplices or cells of a space X,
there are many different objects worthy of being counted and compared. To be noted
are the commonalities (e.g., notions of dimension associated to the objects counted)
and the distinctions (e.g., auxiliary structures imposed). The next several sections
delineate a few major homology theories. The first example is singular homology —
the most common and generally useful theory.

The reader will have observed that cellular homology is, like Euler characteristic,
independent of how the space is decomposed into cells. The best method of proof
comes not from serendipitous cancellative combinatorial refinements of cell structures,
but rather by limits to uncomputable abundance.

One of the first to take such an approach was Vietoris, who introduced his
homology theory for metric spaces [296]. In this theory, one fixes an € > 0 and
considers the chain complex generated by k-tuples of distinct points in X of pairwise
distance < € (something like the Vietrois-Rips complex of all points in X). These
simplices do not fit together to form a triangulation of X: there are far too many.
However, for reasonable spaces (e.g., metric finite cell complexes), the homology of

Z

4.4 Singular homology
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the Vietoris chain complex stabilizes as € — 01, and this agrees with the cellular
homology of a cell complex. The reason that Vietoris' theory is mostly forgotten lies
in the efficacy of singular homology, which requires neither a metric space nor the
explicit limiting process.
The singular chain complex of a topological space

X is the complex €5"9 = (C,, ), where the generators of N\
Cy are continuous maps o: A¥ — X from the standard k-
simplex A¥ to X. The boundary of a singular simplex is the
formal sum of restrictions of the map to faces, using the é
orientation convention of Equation (4.5):

NN

K K
o = Z(—l)’D,-U = Z (_1)iU}D,Ak .
i=0 i=0

Notice that there is a decoupling between the grading

and the dimension of the image of the singular simplex. Indeed, the image of a singular
simplex may be very convoluted, with no sensible notion of dimension other than in its
preimage. The resulting chain complex €%"9 is enormous — certainly of uncountably
infinite dimension except in the most trivial cases. However, in this lies its flexibility.
For two spaces that are homeomorphic, there is an equivalence between their singular
chain complexes that guarantees equivalent homologies. The yet more useful and
general homotopy invariance of singular homology in §5.1 is the true reward for the
unwieldy bulk of the singular complex.

4.5 Reduced homology

It is sometimes convenient to augment a homology theory beyond grading zero. Given
a chain complex € over an R-module, define the reduced chain complex C,

Ok k-1 1))

o1
Cr—1

Ci Ca Co——R 0, (4.8)
where €: Cy — R sends each basis 0-chain to the sum of the coefficients.? It is

advantageous to write Cx for the chain groups, where k € Z and:

N Ck kZO
Ck: R tk=-1
0 :k<-1

with all boundary maps as above.

Proposition 4.11. for a nonempty chain co~mplex C with R-module coeffigients, the
reduced homology He(C) satisfies Hx(C) = Hy(C) for k > 0 and Hy(C) = Ho(C) D R.

2For [F-vector spaces, €: Cg — F. So, in the case of Fy, € records the parity of vertices in a
O-chain.
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The reader may think of the reduced complex as having a single basis element
at grading —1. Reduced homology simplifies certain results: it is convenient to have
a nonempty contractible space have H, = 0, as such an acyclic space plays the role
of a zero in homological algebra.

4.6 Cech homology

A homology theory counts objects with grading and cancelation. While the objects
and gradings are usually indicative of cells and dimensions, the correspondence may be
disquised. Consider the case of the Cech homology of a cover. Let X be a topological
space and U = {U,} a locally-finite collection of open sets whose union is X. The
Cech complex of U is the chain complex G(U) = (C,,d) generated by nonempty
intersections of the cover U. That is, the 0-chains C, have as basis the elements
U, of U. The k-chains Cx have as basis non-empty intersections of k + 1 distinct
elements of U, denoted U,, where J = (g, a1, - . ., ok ) is a multi-index, ordered up to
even permutations as per the ordered simplices of §4.3. The resulting chain complex
is outfitted with a boundary operator of familiar form:

k

3(Uy) => (-1)'Up,. (4.9)

i=0

where D; is the face map of §4.1 that deletes the /™" en-
try from the multi-index J. One checks that 92 = 0 and
thus the Cech homology of the cover, H,U = H,(C(U)),
is well-defined. The reader will be reminded of the nerve
complex of §2.6; the Cech complex G(U) is the simplicial
chain complex associated to the nerve N(U) of the cover.
A homological version of the Nerve Lemma (Theorem 2.4)

holds:

Theorem 4.12. If all nonempty intersections of elements of U are acyclic (Hs(U;) = 0
for all nonempty U, ), then the Cech homology of U agrees with the singular homology
of X: He(U) =2 He(X).

In the same manner that the cellular homology of a (reasonably nice) space
is independent of the cell structure used, the Cech homology of a (reasonably nice)
space X is well-defined, independent of the (acyclic) cover used to compute it.

4.7 Relative homology

Homology makes sense not only for spaces, but for subspaces as well. Let A C X be a
subset (or subcomplex, as appropriate) and C(X) a chain complex (singular, cellular,
etc.) on X. There are two natural chain complexes implicating A. The first, C(A),
consists of subgroups Cx(A) < Ck(X) with the obvious restriction of 8. The homology
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of this chain (sub-)complex gives, as expected, the homology of A as a space in its
own right.

There is, however, a more subtle construct involving the
collapse of the subcomplex that yields an important homology
complementary to that of A. Let (X, A) denote the quotient
chain complex (Cx(X, A),d), where Ci (X, A) := Cx(X)/Ci(A) T )
consists of chains on X modulo chains on A, with the induced
boundary maps 8 on the quotients. These relative chains do not ;
vanish on A; rather, they are equivalence classes of chains in X
which are identical off of A. The resulting relative homology =
Ho(X, A) collates homology classes of relative cycles (chains in ®
X whose boundaries vanish or lie in A). A relative 1-cycle may
therefore be either a genuine 1-cycle in X or may implicate a
chain in X whose boundary points are in A.

Example 4.13 (Reduced homology) ®

The reduced homology of a space X is isomorphic to the homology of X relative to a
basepoint p € X: Ho(X) = Ho(X, p). The only nontrivial chain in X whose boundary
is a nonzero multiple of p is, precisely, a multiple of p and a zero-cycle. Thus, by
definition, H(X, p) = Hk(X) for k > 0 and Hy(X, p) has rank one less than Hg(X),
since the subspace corresponding to the homology class [{p}] has been quotiented
out. ©

One of the foundational theorems about homology concerns relative homology.
The following is stated for the singular theory: for other (cellular, etc.) homology
theories, the hypotheses must include the relevant structures present.

Theorem 4.14 (Excision Theorem). Let U C A C X with the closure of U
contained in the interior of A. Then He(X—U, A—U) = H (X, A).

Excision implies that for the pair (X, A), what happens inside of A is irrelevant.

Corollary 4.15. For A C X a closed sub-
complex of a cell complex X, He(X, A) =
He(X/A).

The hypothesis of A a subcomplex
is usually too restrictive. In the singular
setting, it suffices to have A closed and
possessing an open neighborhood which
deformation retracts to A. This provides
a good way to visualize relative homology

and to compute the homology of quotient spaces.

Example 4.16 (Relative homology) ©
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The homology of a closed disc " relative to its boundary 8ID" has as a nontrivial
generator D" itself, as a relative n—cycINe. From Corollary 4.15 and the fact that
D" /0" =2 S”, one sees He (D", 0" ) = He(S"). ©

4.8 Local homology

The local homology of p € X is the (singular) homology He(X, X—p). This is a little
hard to visualize, given that Corollary 4.15 is inapplicable, but a moment’s thought
yields the intuition that it measures something of the features of X in an arbitrarily
small neighborhood of p. The correctness of this intuition follows from excision: local
homology is local.

Corollary 4.17. Let p € X be a (closed) point and VV an open neighborhood of p.
Then He(X, X—p) = Ho(V,V—p): that is, local homology can be computed from an
arbitrarily small neighborhood of p.

Proof. Apply Excision, with U = X—=V and A= X—p. ®

Example 4.18 (Local orientation) ®

Consider the local homology of an n-manifold M at
p: this is He(M, M—p). By excision and the definition
of a manifold as locally Euclidean, this is isomorphic to
H.(DD", D" —0). As the punctured disc deformation retracts
to the boundary, it follows from Example 4.16 that the local
homology is isomorphic to He(S") and is thus nontrivial of
rank one in dimension n. This leads to a painless definition
of orientation, a concept that usually requires recourse to a
dextrous sleight of hand. A local orientation at p € M is
a choice of generator for the n-dimensional local homology
at p (in Z coefficients). A global orientation on a compact
n-manifold M is a choice of generator for H,(M;Z). A global orientation, in keeping
with one’s experience from calculus class, is a consistent choice of local orientations.

This definition of orientation illuminates the cellular homology of §4.3. The
orientation of an n-dimensional cell ¢ is defined to be a choice of generator for
H,(0,00;7) = 7Z. The incidence number [c: 7| of a face pair o7 is 1, de-
pending on whether the orientations of ¢ and O agree or disagree. What remains
undefined (until §5.5) is how the orientation on 7 induces an orientation on 7. ©

4.9 Homology of a relation

A relation between two sets X and Y is a subset R C X x Y of their product. A
point x € X is related to a point y € Y if and only if (x,y) € R. For example, the
sensing modality used for target enumeration in §3.7 is a relation between sensors
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and targets collating which sensors detect which targets. Other relations are preva-
lent: in marketing, the puchase relation between customers and products; on Twitter,
the follows relation between individuals; or in manufacturing, the assignment relation
between workers and tasks.

It is possible and profitable to build
homologies for relations as follows. Given

R C X x Y, define the chain complex o o 28:88
C(X;R) with F, coefficients as follows: B olooiole
Ck(X; R) has as basis unordered (k + 1)- 4 b [0O@leelo
tuples of points in X related to some y € ololol0le
Y. One builds a dual complex C(Y;R) © [5)(2)(e)[e][e)
from columns of R — unordered tuples of O0000

points of Y related to some fixed x € X.
The boundary operators for C(X;R) and
C(Y; R) forget points in the tuples, mimicking the boundary operator of a simplicial
complex (the property of being related to a common element is closed under subsets).
The homology of the relation, He(R), is defined as follows:

Theorem 4.19 (Dowker’s Theorem [100]). He(R) := Ho(X;R) = Ho(Y; R).

This result was originally used to prove an equivalence between Cech and Vietoris
homology theories, in the case where X is a metric space, Y is a dense net of points
in X, and R records which points in X are within ¢ > 0 of points in Y. The nerve
of the cover of X by metric balls about Y has homology He(Y;R), and the Vietoris
homology of X is captured by He(X;R).

Instead of passing to homology, one can take the intermediate step of assigning
to R a pair of simplicial complexes — the Dowker complexes, Rx and Ry — given
by the following process. Given R, let Rx be the nerve complex of the cover of Y
by columns of R, and let Ry be the nerve complex of the cover of X by rows of
R. Otherwise said, X is the vertex set of Rx and a simplex of Rx corresponds to a
collection of points in X witnessed by some common y € Y via the relation R. The
full version of Dowker’s Theorem states that these nerves are homotopic (and, hence,
have the same homology). For example, the witness complex of §2.3 is an example
of a Dowker complex where Y (the landmarks) is a subset of X (the point cloud) and
the relation is via witnessing. There is no reason why, in general, one need constrain
landmarks in that manner: they may live in an entirely different space.

Example 4.20 (Transmitters and receivers) ©

Consider a finite set X of transmitters in some domain D which broadcast their
identities (assumed unique) through an unspecified modality (pings, continuous signals,
etc.). A distinct finite collection of receivers Y can read transmissions and discern
identities of transmitters that are within range. The resulting system of transmitters
and receivers can be encoded in a relation R C X x Y, where (x;, y;) € R if and only
if signals from device x; are heard by receiver y;. One may wish or assume or impose
that R has geometric constraints (receivers hear only reasonably nearby transmitters);
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such a case permits approximating the common domain D as a simplicial complex via
the Dowker complexes [152]. The duality theorem can assist in computation when
there is a disparity in the sizes of X and Y. For example, if there are relatively few
transmitters as compared to receivers, then the complex Ry has Y as its 0-skeleton,
and will be a lower-dimensional complex than Rx, whose 0-skeleton is X. This leads
to an a priori bound on the possible dimensions for nonzero homology classes. ©

4.10 Functoriality

Algebraic topology concerns not only features of spaces but features of maps between
spaces. This has been hinted at in §1.6 (transversality of maps being a crucial tool),
§2.9 (where a decision task induces a map between input and output complexes), and
§3.8 (where maps induce actions on Euler integrals). These hints come to fruition in
homology, which gives a natural characterization of the qualitative features not only
of spaces but also of maps between spaces. This property, at the heart of algebraic
topology, is functoriality, and it is from this principle the power of the subject emerges.
Consider, for simplicity, a cellular map f: X — Y between cell complexes. In the
same manner that X unfolds cell-by-cell into a chain complex Co(X), one can unfold
f to a graded sequence f, of homomorphisms from Cy(X) — Ck(Y'), generated by
basis cells of X being sent to basis cells of Y. If a k-cell ¢ of X is sent by f to a cell
of dimension less than k, then the algebraic effect is to send the basis chain in Cy(X)
to 0 € Ck(Y). The continuity of the map f induces a chain map f, that fits together
with the boundary maps of C4(X) and Co(Y') to form a commutative diagram:

3 Cop1(X) =2 Co(X) — 25 o (X) 2 - (4.10)

o
i Con (V) L G Y) — L ()
Commutativity means the chain map respects the boundary operation, f,0 = 9'f,.
Because of this, f acts not only on chains but on cycles and boundaries to yield the
induced homomorphism H(f): H,X — H,Y on homology. For a a cycle in X,
define H(f)[a] := [fea] = [f o a]. This is well-defined: if [a] = [@'], then, as chains,
a' = a + 9p for some B, and,

fia'=foa' =fo(a+0B)=foa+fodp="fa+d(fp),

so that [foa'] = [fecr] in He(Y). Homological functoriality means that the induced ho-
momorphisms on homology are an algebraic reflection of the properties of continuous
maps between spaces.

This definition was framed with cellular homology and cellular maps for concrete-
ness. Everything carries over naturally to the setting of singular chains and singular
homology. The other homology theories of this chapter (relative, reduced, Cech, etc.)
likewise posses well-defined induced homomorphisms for the appropriate class of maps.
The following are simple properties of induced homomorphisms, easily shown from the
definitions above:
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1. Given f: X =Y, H(f): HeX — H.Y is a (graded) homomorphism.
2. The identity map Id: X — X induces the isomorphism Id: He X — HeX.
3. Givenf: X Y and g: Y = Z, H(go f) = H(g) o H(f).

There is hardly a more important feature of homology

H(f) than this functoriality. One implication in the sciences is to
H‘Yl.___ __WH°Y2 inference. It is sometimes the case that what is desired is
H(ﬂ)"H X""H(fg) knowledge of the homology of an important but unobserved

space X; the observed data comprises the homology of a

pair of spaces Y1, Y5, which arerelatedbyamap f: Y1 = Y5
that factors through a map to X, sothat f = hofy withf;: Yy - Xand H: X = Y5,
If the induced homomorphism H(f) is known, then, although He(X) is hidden from
view, inferences can be made.

Example 4.21 (Experimental imaging data) ©

The problem of measuring topolog-
ical features of experimental data by means

old effects. Consider, e.g., an open tank
of fluid whose surface waves are experi-
mentally measured and imaged. Perhaps
the region of interest is the portion of
the fluid surface above the ambient height
h = 0; the topology of the set A= {h >
0} must be discerned, but can only be ap-
proximated by imprecise pixellated images of {h 2> 0}. Similar situations arise in MRI
data, where the structure of a tissue of interest can be imaged as an approximation.
Given a reasonably close image, is an observed topological feature (say, a hole, or lack
of connectivity) true?

of imaging is particularly sensitive to thresh- LH_}HE

If the goal is to capture the topological fea-

H() tures of an exact but unmeasurable set, functoriality
/\ may assist. Let, e.g., A= {h > 0} be the desired

but unseen set. If one can measure approximants

HoA- H.A HoAT A_ C A C AT from below and above and then
match common features of these images, then one

has a simple commutative diagram where the map

H(c) is the induced map on the inclusion ¢: A~ — A% that itself factors through
inclusion to the invisible desideratum A. Any nonzero element in the image of H(¢)
must factor through a nonzero homology class in A: one can discern the presence
of a true hole with two imprecise observations and a map between them. This sim-

ple observation is greatly extendable to the concept of persistence, as will be seen in
§5.13-5.15. ©
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4.11 Inverse kinematics

Other applications of homology are obstructive. Consider the idealized robot arm of
Example 1.5 consisting of rotational joints and rigid rods, grasping a part at the end
of the arm. In many applications in manufacturing, one must perform part placement
— manoeuver the arm so as to locate the part in the correct location and/or orienta-
tion. If the arm has, say, N rotational joints, then its configuration space is T" (as
is common when mathematicians study robot arms, the mechanisms are considered
insubstantial, and no thought is wasted on the problem of self-intersection). The
critical issue is that of understanding effect of the arm on the part grasped at the
end. Consider, e.g., the orientation problem: given a desired part orientation, is there
a sequence of rotations to realize it?

One topologizes the problem [165]: consider the kine-
matic map x: TV — SO; taking the ordered sequence of
rotations to the net orientation of the part at the end of
the arm. The critical issue is inverting the kinematic map.

"x’ Given a part orientation in SO3, is there a sequence of rota-
C tions to realize it? Certainly, k is onto for N not-too-small
and a choice of joint axes which span R3. It is the inverse
kinematic map which is problematic. Given a fixed part ori-
entation, are all nearby part orientations realizable via small changes in the rotations
required? This local problem seems to be solvable; the global version is not.

o)
O
559

R oug

Proposition 4.22. There is no continuous section to k. That is, there is no map
s: SO3 — TN satisfying ko s = Id.

Proof. Consider a putative section s: SO3 — TV with K 0o s = Id.
Then on Hy in Z coefficients one has, from Examples 4.6

and 4.10, Hi(TN) = ZN and H1(SO3) = Z». These fit to- Id

gether in a commutative diagram with induced homomor- /\
phisms H(k) and H(s) such that H(k)o H(s) = H(kos) = 7 N ,
Id, an identity map, thanks to functoriality. This yields a H(s) H(x)
contradiction: since Z" has no nonzero elements of finite

order, H(s) = 0 and H(k) o H(s) = 0. ®

This result means that a continuous assignment of robot arm rotation angles
as a function of part orientation is impossible. This decidedly non-intuitive result is a
direct consequence of the algebraic topology of configuration spaces, as revealed by
H1. Note the role of luck in the appearance of Z» in the homology with Z-coefficients:
torsion is not always available. Consider the case where the part grasped by the robot
arm is rotationally symmetric about the last axis, such as a bolt or pin to be inserted.
The desideratum is no longer an orientation in SOz but rather a point in S?, the
direction in which the last axis of the part points.

Repeating the argument of Proposition 4.22 with the modified kinematic map
k': TN — S2 leads to frustration, as H;(S?) = 0. There is no analogous contradic-
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tion in assuming that the map H(k') o H(s') is the identity, since it is the identity

homomorphism on H1(S?) = 0. Of course, one does not conclude that the inverse
kinematic map s': S? — TN necessarily exists. In fact, s’ does not exist.

To see this, build the commutative di-

Id agram on H», using H(s') and H(k'). Here,

— one notes that ' factors through the orig-

Fa(87) W Ha(T™) H(x") Ha(8%) inal kinematic map T" = SOs, since the

oD T J:oint angles gi.ve the part a true orign’Fation

in SO3. Ignoring all but the last axis in the

frame gives a projection map SO; — S2.

The top-row composition H(k')oH(s") can-

not be the identity map on H>(S?), since H>(SO03) = 0 while H»(S?) # 0. Again,

functoriality reveals what individual homology groups do not. There is no continuous

assignment of rotation angles to a directional axis for a robot arm manipulating a part.

H2(S03)

4.12 Winding number and degree

It is helpful to think of an induced map on homology
as akin to a winding or linking: to what extent are the holes
of X wound about the holes of Y via f: X — Y7 The
full complexity of homomorphisms between abelian groups
gives an algebraic picture of the wrapping and winding that S
maps can execute. Indeed, induced homomorphisms are
the right way to express the classical notion of winding
numbers.

A continuous simple closed curve : S' — R? in
the plane separates the plane into two connected regions:
dim Ho(R2—v(S!)) = 2. The mod-2 winding number of vy about a point p € R?
not in the image of « is, intuitively, the number which represents whether p is inside
(1) or outside (0) the image of y. Of the many definitions the reader may have seen
(either involving miraculous integrals or the clever counting of intersections), the best
is via homology. For v: S' — R?—p, consider the induced homomorphism:

H(y): Hi(SY) = Hi(R*—p).

Both the domain and codomain of H(-y) are of rank
one, and the map H(7y) is therefore multiplication by a
constant: that constant deg(vy) is the winding number
of «v about p (in Fy or Z depending on the coefficients
used). There is no need to restrict to smooth or non-self-
intersecting curves: any map y: S! — R?—p determines a
homology class. The winding number measures the alge-
braic number of times the image of «v wraps about p, with
a choice of orientations (both of v and R?—p) determining the sign.
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From the fact that H,S" = Z, any self-map of S” induces a homomorphism on
H, which is multiplication by an integer: this is the degree of the map. The resulting
degree theory is an important classical topic, some of the important points of which
are as follows: for maps S” — S”,

deg is a homotopy invariant;

deg(f o g) = (deg f)(deg g);

deg Id = 1;

deg a = (—1)" for the antipodal map a on S”; and

deg f = deg g if and only if f ~ g [the Hopf Theorem].

O 0N

Example 4.23 (Index theory and vector fields) ©

The index theory for vector fields introduced in §3.3 used line integrals and Green's
Theorem to obtain a definition for R%. This recourse to vector calculus is appropriate
only for beginners. Let V be a vector field on an n-manifold M with isolated fixed
point p, and let B, be a sufficiently small ball about p. The index of V at p, Jv(p),
is defined to be the degree of the map V/|sg,: B, = S"" 1 — R"—0 ~ S"71, where
V' is represented in local coordinates on B,. This index is well-defined, since p is an
isolated fixed point. The reader may easily show by the properties of degree that the
index is independent of the neighborhood B, chosen, so long as B, N Fix(V) = p. ®

Example 4.24 (Linking number) ©

One can define a degree for any map f: M — N between oriented compact n-
manifolds via H(f): H,(M) — H,(N), since, for M and N, H, = Z. One classical
application of this type of degree is in knot theory. A knot is an embedding (a smooth
injective map) S < S3. It is clear that there are many inequivalent ways to tie a
simple closed curve in R3: §8.3 will show how to distinguish some of them. Degree
can be used to characterize how two disjoint oriented knots entwine or link one an-
other. To define the linking number of two disjoint oriented knots, K; and Ky, one
can parameterize each knot in Euclidean coordinates as y1,v2: S* = R3 C S° and set
2k(K1, K») to be the degree of the map ¢: T? — S? given by:

Y2(02) — v1(61)
172(62) —¥1(01)]

The reader may observe that this quantity is invariant
of the parametrization chosen, so long as orientation

is respected. Linking number has been found useful \/
in a variety of contexts, from flowlines in fluid- and

magnetohydro-dynamics [16] to chemistry [121] and
DNA strands [285]: see §8.3. ©

¢191,92|—> (411)

Example 4.25 (Nematic liquid crystals) ©
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Liquid crystals are a mesophase of matter which interpolate between ordered and dis-
ordered structure. Besides being of great commercial interest, liquid crystals offer
fascinating observable defects whose classification is inherently topological. For con-
creteness, consider the nematic liquid crystals, composed of axisymmetric rod-like
molecules whose alignment (or director field), under a continuum assumption based
on average behavior, is a continuous function of position apart from certain defects or
disclinations [6]. A topological classification of such defects is intricate, but an initial
step uses degree as follows. Motivated by Example 4.23, one sets up a map whose
induced action on homology yields an appropriate degree.

=\
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In a nematic liquid crystal that is taken so thin as to be approximated by a plane
region to which the molecules align (a so-called Schlieren texture), the director field
¢ assigns to points in R? a planar direction in P!, well-defined and continuous off the
set of singular point-defects. Note that, although P! is homeomorphic to S, there is
no “arrow” and a half-turn suffices to match directors. To assign an index to a defect
at x € R?, choose an oriented small loop =y encircling x and consider the restriction
¢4 — PL= S The resulting index J¢(x) € Z is an undirected version of that used
for vector fields. In the literature, one often divides this integer quantity by 2 so as to
obtain agreement with the vector field index when the director field is orientable.

In the case of a nematic in R3, the director field £ takes values in P2, Following
the planar case, choose a sufficiently small ball B around an isolated point-defect x
and consider the restriction of £: B = S? — P? and its induced map H(&): Ha2(S?) —
Ho(IP?). From Example 4.10, Hy(IP%;Z) = 0, and the (integer-valued) degree is trivial;
however, passing to F» coefficients for H, yields a well-defined index J¢(x) € F», since
H> (P2, F)) = Fo.

For singularities occurring along a disclination curve, index is measured by a loop
v = St locally linking the disclination. The resulting map on homology H(¢): H.(S?!) —
Hi (P?) is again going to return a degree J¢ € 5, which, like that of a point-singularity,
is sensitive to orientability of the director field about the disclination. ©

4.13 Fixed points and prices

The following fixed point theorem was one of the earliest triumphs of algebraic topol-
0gy.
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Theorem 4.26 (Brouwer Fixed Point Theorem). Every self-map of the closed disc
D" has a fixed point.

As might be expected for so primal a result, there are numerous proofs. The
following is of the classical variety.

Proof. Assume that f: D7 — D" is continuous and fixed-
point-free. Then, since f(x) # x, for any x, there is a
well-defined point r(x) € oD given by following the ray
starting at f(x) and passing through x unto the boundary
oD". This implicitly defines r: D" — 0D". Note that r is
continuous (since f is) and that it is a retraction: r(x) = x
for all x € 8ID". Thus, denoting by ¢ : 0" — " the
inclusion, the diagram on the left commutes:

Id Id
/\l /\)
oD” . D" . on” 7 ﬁ 0 ﬁ /.

Passing to homology in degree n — 1 (on the right) reveals the contradiction, since
Hp,—1(8D") 2 Z but H,—1(D") = 0: contradiction. ®

The reader will likely have seen applications of fixed-point theorems (the efficacy
of “YOU ARE HERE" signs, perhaps). Infinite-dimensional versions (e.g., the Schauder
Fixed Point Theorem for Banach spaces) are important in proving the existence of
solutions to differential equations or the termination of certain algorithms. Fixed point
theorems for multi-valued mappings (e.g., the Kakutani Fixed Point Theorem) are
important in proving existence of Nash equilibria in game theory (see §5.11). Perhaps
the most well-known applications are in Economics.

Example 4.27 (Prices) ©

Equilibrium theory — a signature achievement of 20th century economics — asserts
that market prices exist. For a simple, explicit example, consider the following result
on the existence of equilibrium price distributions in an economy, following Arrow and
Debreu [18]. Consider an economy of N items for sale. The space of possible prices is
[0, 00)N. As a way of working with price ratios (and imposing compactness), assume
that not all prices are zero (!) and normalize the price space to the closed unit (N—1)-
simplex A C [0, 00)" by dividing each vector by the sum of its components. Thus,
any point of of A represents a complete set of price ratios in the economy.

Assume a finite set of customers, each with a fixed demand function D, : A —
RM and a finite set of suppliers, each with a fixed supply function Sg: A — R". Both
supply and demand have ranges which can be positive or negative. For each choice of
price ratio p € A, consider the excess demand function Z: A — R" given by:

Z(p):=> Dalp) = > _ Ss(p).
o B
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Positive components of Z connote an excess of demand, while negative values
connote an excess of supply. Assume (for the sake of Mathematics) that Z is contin-
uous and (for the sake of Economics) that p- Z(p) = 0: this is known as Walras’ Law
and it represents a balance between net income and net expenditure in the system.
Then, it can be shown that the system possesses a price equilibrium, meaning a point
p € A such that Z(p) < 0, meaning that all items with nonzero price have demand
equal to supply (since p- Z(p) =0 and p > 0).

This follows from Theorem 4.26. Consider the map
f: A — A given by sending p to max{0,p + Z(p)}/C,
where the denominator C := ). max{0, p+Z(p)} is chosen
to project to A. Since p- Z(p) = 0, one has p-(p +
Z(p)) = |lpl> > 0, making C > 0 and f well-defined.
There is a fixed point, p*, of f, and this satisfies p* =
max{0, p*+ Z(p*)}/C. Assume the case where p* > 0 (all
components are positive); then, since p* = (p*+ Z(p*))/C
and Z(p*) is orthogonal to p*, it follows that C = 1 and,
hence, Z(p*) = 0. On the other hand, if some items have
equilibrium price pf = 0, then, since p* + Z;(p*) < 0, it
follows that Z;(p*) < 0, and one projects to the subspace of items with nonzero price.
©

This argument is inelegant (the dot product condition is suspiciously rigid). A
more general and beautiful result on equilibria in multi-agent systems — the Nash
equilibrium theorem — will be attainable in §5.11 after learning better tools.

Notes

1. Linear algebra concerns itself very little with vectors and vector spaces: it is with linear
transformations that the subject comes to life. The homological algebra hinted at in
this chapter is the natural evolution in linear transformations from the single to the
sequential.

2. Thereader will note, perhaps with displeasure, that computational issued have not been
discussed: it is too large and fluid a topic. See [104, 186, 305] for an introduction to
the many techniques available for fast computation of homology, some of which are
distributable (a near-necessity for realistic scientific applications). The short version
seems to be that cellular homology is computable in time near-linear in the number
of cells. The curse of dimensionality (high-dimensional complexes have many, many
cells) remains a challenge in some contexts, as does the problem of storage (space
complexity).

3. Cellular homology has been treated lightly, with an implicit assumption of a regular cell
complex, such as with simplicial or cubical complexes. For a general cell complex, the
definition of incidence number [o: 7] is a bit more involved, requiring the tools of §5.5.

4. The Kiinneth formula of Example 4.6 holds for singular or cellular homology in field
coefficients, for spaces with finite dimensional homology groups. There is a more
general version which accommodates general coefficients and infinite spaces. In the
case of Z coefficients and for spaces with torsion, it is exact but algebraically delicate:
see, e.g., [176].
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10.

11.

84.5 is the first hint that taking advantage of negative-dimensional chains and homology
is permissible. There are homology theories in which He takes on significant meaning
for negative gradings: see Example 7.18.

The Excision Theorem 4.14 is more foundational than the brief treatment of this
chapter might indicate. Eilenberg and Steenrod, in their axiomatization of homology,
have the excision property as one of the five axioms of a homology theory.

. This text's treatment of winding numbers begins with an invocation of the classic

Jordan Curve Theorem: Let A be a subset of S" homeomorphic to S*. Then H,(S" —
A) =7 forp=n—k—1 and 0 else. Note that there is no assumption of tameness
in this statement.

The linking numbers of Example 4.24 are just the beginning of the algebraic topology
of knots and links — a vast and beautiful subject. Knot theory has found several
applications, notably in physics, biology, fluid dynamics, and differential equations: see
Examples 6.25, 8.10, and 8.11.

. The treatment of singularities in nematic liquid crystals in Example 4.25 is incomplete.

Very interesting phenomena occur as the field is continuously changed and disclination
lines are enticed to collide or entangle, or as point-defects move so as to encircle a
disclination line [6]. This will be revisited in §8.5.

Baryshnikov has announced applications of homology and linking numbers to problems
of caging in robotics, where, given a fixed geometric object in R? one wishes to
choose the smallest discrete set D C R? that prevents the object from being able to
be moved 'to infinity’ by means of Euclidean motions (translations and rotations) in
R?°—D [259]. The related problem of performing motion-planning in robotics about
obstacles by means of specifying homology classes leads to computable optimization
methods [35].

The applications of fixed point theorems to economics is worthy of a text in itself.
Example 4.27 is of limited value as many important considerations (time-dependence,
absolute-versus-relative price, zero-price demand, etc.) have been ignored. Nor is it to
be denied that equilibria can be proved (and in some cases computed) via combinatorial
means. The power of the fixed point method is the ability to analyze large collections
of agents with diverse goals.



