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he simplest and most elegant non-obvious topological invariant is the Euler char-

acteristic, an integer-valued invariant of suitably nice spaces. This chapter is

comprised of observations and applications of this invariant, meant to serve as
motivation for the algebraic tools to follow that justify its remarkable properties.

3.1 Counting

Euler characteristic is a generalization of counting. Given a finite set X, the Euler
characteristic is its cardinality x(X) = |X]|. Connect two points together by means
of an edge (in a cellular/simplicial structure); as the resulting space has one fewer
component, the Euler characteristic is decreased by one. Continuing inductively, the
Euler characteristic counts vertices with weight +1 and edges with weight —1.

This intuition of counting connected components works
at first; however, for certain examples, the addition of an edge
does not change the count of connected components. Note
that this occurs precisely when a cycle is formed. To fill in
such a cycle in the figure with a 2-cell would return to the set-
ting of counting connected components again, suggesting that
2-cells be weighted with +1. This intuition of counting with
weights inspires the combinatorial definition of Euler charac-
teristic. Given a space X and a partition thereof into a finite
number of open cells X = Uy0., where each k-cell o4 is homeomorphic to R¥, the
Euler characteristic! of X is defined as

X(X) =) (=pdm e, (3.1)

This quantity is well-defined for a reasonably large class of spaces (see §3.5) and is
independent of the decomposition of X into cells: x is a homeomorphism invariant. It
is not a homotopy invariant for non-compact cell complexes, as, e.g., it distinguishes
x((0,1)) = —1 from x([0,1]) = 1. Among compact finite cell complexes, x is a
homotopy invariant, as will be shown in Chapter 5.

Euler characteristic can determine the homotopy type

of a compact connected graph; e.g., such is a tree (a con-

OO tractible graph) if and only if x = 1. Euler characteristic is

also sharp invariant among connected compact orientable

O O <= 2-manifolds: x = 2 — 2g, where g equals the genus. Any
O Q compact convex subset of R” has x = 1. Removing k dis-
joint convex open sets from such a convex superset results

in a compact space with Euler characteristic 1 — k(—1)".

Example 3.1 (Configuration spaces of graphs) ©
Recall from Example 2.11 that the discrete configuration space D?(Ks) of two points
on a complete connected graph of five vertices is a cubical 2-manifold. Being built
from finitely many cells, it is clearly compact. It is also orientable and connected,
as the reader may check. To determine the genus of this configuration space, one

1 This is sometimes called the combinatorial, geometric, or motivic Euler characteristic.
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computes the Euler characteristic. Vertices of D?(Ks) correspond to ordered pairs of
distinct vertices of Ks, of which there are (5)(4) = 20. Edges correspond to pairs
of one closed edge and one disjoint vertex: there are (2)(10)(5 — 2) = 60 such.
Faces correspond to ordered pairs of closure-disjoint edges in K5, of which there are
(10)(3) = 30. Thus, x(D?(Ks)) = 20 — 60 + 30 = —10 and this surface has genus
g=1-— %X = 6. ©

The remainder of this chapter complements the enumerative interpretation of x
with geometric, dynamical, analytic, and probabilistic perspectives.

3.2 Curvature

A blend of Euler characteristic and integration is prevalent in geometry. The classical
result that initiated the subject is the Gauss-Bonnet Theorem. Let M be a smooth
surface embedded in R3. The Gauss map is the map v: M — S? that associates
to each point of M the direction of the unit vector normal to M in R3. The Gauss
curvature k = det(D7y) is the determinant of the derivative of the Gauss map. Note
that the curvature is a geometric quantity: rigid translations and rotations leave it
invariant, but stretching and deformation of M change . This change is local, but
not global, thanks to the classical:

Theorem 3.2 (Gauss-Bonnet Theorem). For M a com-
pact smooth oriented surface in R3, the integral of Gauss
curvature with respect to area on M equals

/ k dA =2mx(M). (3.2)
M

That this is the beginning of a much larger story is evi-
denced by the following mild generalization. Let M be a compact oriented surface in
R3, piecewise smooth over a cell structure, perhaps with piecewise-smooth boundary
curve(s). Again, 2mx(M) equals the integral of a certain curvature over M, but this
curvature measure, like M, is stratified.

1. On 2-cells of M, dx means kK dA, Gauss curvature times the area element;
2. On 1-cells of M, ds means ky ds, geodesic curvature times the length element;
3. On 0-cells of M, dk means the angle defect.

With this interpretation, the Gauss-Bonnet formula can be written as

/dm:/ d/{+/ dK,—I-/ dk = 2mx (M), (3.3)
M M(©) M M@

i.e., the integral over the 2-cells of Gauss curvature plus the integral over 1-cells of
geodesic curvature, plus the sum over 0-cells of angle defect equals 2mx(M). There
are several corollaries of this result relevant to discrete and differential geometry:



46 Chapter 3. Euler Characteristic

1. A smooth, closed surface has total (integrated) Gauss curvature constant, no
matter how the surface is deformed.

2. For a geodesic triangle, dx vanishes along the geodesic edges and the sum of
the angles of the triangle equals 7 plus the integral of Gauss curvature over
the triangle face. This recovers classical notions of angle-sums for triangles on
spheres and other curved surfaces.

3. For M the boundary of a compact convex polyhedron in R3, all faces and edges
are flat, x(M) = x(S?) = 2, and the sum of the vertex angle defects (in this
case, 21 minus the sum of the face angles) equals 4.

The reader may rightly suspect whether an embedding
in R3 is required. Recall, again, from Example 2.11, the
cubical 2-manifold built from arranging six squares around
each of 20 vertices. Placing a flat Euclidean metric on each
square yields a space with an intrinsic geometry, locally flat
except at the vertices. Since each vertex has angle defect
2w — 65 = —m, Gauss-Bonnet implies that the surface has
Euler characteristic x = 20(—m)/2m® = —10: cf. Example
3.1.

3.3 Nonvanishing vector fields

Euler characteristic has many uses, one of which is as an obstruction to the existence
of certain vector fields. Recall from §1.4 that a vector field is a continuous assignment
of a tangent vector to each point in a manifold, and that a vector field vanishes at its
Zeros.

Theorem 3.3 (Hairy Ball Theorem). A connected com-

pact manifold M without boundary possesses a nonvanish-
. . ing vector field if and only if x(M) = 0.
RO AN
\ /\f_': f\’ L. This is not terribly useful in dimensions 1 and 3, since
\\_f; 5, t ‘ all compact manifolds in these dimensions have Euler char-
= A / f t\ acteristic zero. However, since x(S?) = 2, there are no
- 7

II fixed-point-free vector fields on a 2-sphere.

~/1

Proof. (sketch) The interesting direction (only if) reveals
the obstructive nature of x. The easiest proof without in-
voking advanced tools involves imposing a dense cellular mesh and working cell-by-cell,
assuming smoothness when needed. Assume that M is a compact closed n-manifold
that admits a smooth nonvanishing vector field V. Place a smooth cell structure on M
with all cells represented in charts as convex polytopes of sufficiently small diameter.
Invoking transversality and refining as needed, perturb the cell structure so that the
vector field V is transverse to all cells. As the cells are sufficiently small and the vector
field V' is nonvanishing, V is approximately linear in a neighborhood of each cell. On
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each n-dimensional cell o, consider the collection, /(c), of open faces of ¢ on which
V points to the interior of o.

By transversality, /(o) is nonempty for each cell o and
contains both the interior cell of ¢ (homeomorphic to an
open disc D") along with some boundary faces, the union of
which (by linearity of V' and convexity of the polyhedral cell
structure) is homeomorphic to the open disc D" 1. Thus,
x(1(c)) = (=1)" + (=1)""! = 0 and, since the sets /(o)
partition all cells of M, x(M) =>"_ x(/(c)) = 0. ©

These invocations of transversality and convexity are
admittedly glib. With better tools (from Chapters 4-5), it
will be possible to drop the assumptions about smoothness,
manifold, and cell structures: see Theorem 5.19. Note, however, how the proof
constructed a type of local index, (o), and built up a global inference by means of a
sort of integration. These themes are recurrent in topology.

3.4 Fixed point index

Euler characteristic is the basis for numerous topological indices, the simplest of which
applies to vector fields. Consider a vector field V on an oriented 2-manifold . Let
p € Fix(V) be an isolated fixed point of V. Let B, denote a sufficiently small ball
about p with boundary v = dB,. The index of V at p, Jy(p), is defined to be the
following line integral:

\\\\/// | (p) = 5 ]{, do. - -
A\

where 6y is the angle made by V in local coordinates. More
specifically, if in (x,y) coordinates based at p, the vector
field is of the form V' = (v, v, ), then the integrand d6y is

X y
so that Jy(p) represents the (signed integer) number of turns the vector makes in a
small curve about p. This index is well-defined and independent of (a sufficiently small)
B,, thanks to Green’s Theorem. Among the nondegenerate fixed points, sources and
sinks have index +1; saddle points have index —1. It is clear that Equation (3.4)
extends to define an index Jy(7y) to any closed curve «y which avoids Fix(V). One
argues (in a manner not unlike that used in Green’s Theorem or in contour integration)
that index is additive. Let D be a disc whose boundary v = 8D avoids Fix(V). Then,

)= > Ivip). (3.5)

pEDNFix(V)

This important result will be revisited and reinterpreted in §5.10 and §7.7.
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Example 3.4 (Population dynamics) ©

Consider the following differential equation model of competing species with (normal-
ized) population sizes x(t), y(t) as functions of time:

dx
dt

d
=3x—x?—2xy ; d—Jt/:2y—xy—y2. (3.6)

The equilibrium solutions consist of (0,0) [mu-
tual death], (3,0) [species x survives], (0,2) [species
y survives], and (1, 1) [coexistence]. Linearization re-
veals that the coexistence solution is a saddle point;
thus, J(1,1) = —1. It is clear (from the equations and
from the interpretation) that the x and y axes are in-
variant sets. Can there be a periodic orbit? No. The
index of a periodic orbit v must by Equation (3.4) equal
Jv(v) = +1, since vy is everywhere tangent to the vec-
tor field. However, by Equation (3.5), v must surround a collection of fixed points
whose indices sum to +1. If y(t) is a nontrivial periodic solution, then it cannot
intersect the fixed point set or the (invariant) x or y axes, and the only remaining
enclosable fixed point has negative index. ©®

The additivity present in Equation (3.5) is reminiscent of the Euler characteristic.
The rationale for this equation (and the proper definition of the index of a vector field
in all dimensions) will become clearer in Chapters 4-7: see Example 4.23, §5.10, and
87.7. The following classical theorem is a hint of these deeper connections:

Theorem 3.5 (Poincaré-Hopf Theorem). For a contin-
uous vector field VV with isolated fixed points on a compact
manifold M,

> Iv(p) = x(M). (3.7)

Fix(V)

The proofs of Theorems 3.3 and 3.5 compute x lo-
cally (on cells and fixed points respectively), then add up
this local data to return the global x. This integrative tech-
nique motivates an extension of Euler characteristic from
sets to certain functions over sets: an integration theory. lts definition requires an
excursion into exactly which sets have a well-defined Euler characteristic.

3.5 Tame topology

Euler characteristic is well-defined for spaces with a decomposition into a finite number
of cells. Though an explicit cell structure is often present in, say, the simplicial setting,
not all “organic” spaces come with a natural cell decomposition: e.g., configuration
space of points in a domain, level sets of a smooth functions f: R"” — R, etc. Besides
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the lack of an explicit cell structure, worse things can occur, as with the graph of
sin(1/x) for 0 < x < 1. Though this is homeomorphic to an interval, it is a wild
type of equivalence, as the closure of this set in R? is not homeomorphic to a closed
interval. In applications, one wants to avoid such oddities and focus on spaces (and
mappings) that are for all intents and purposes tame.

Different mathematical communities focus on, e.g.:

piecewise linear (PL) spaces, describable in terms of affine
sets and matrix inequalities; semialgebraic sets, express-
ible in terms of a finite set of polynomial inequalities; or
subanalytic sets, defined in terms of images of analytic
U \/ mappings [277]. Logicians have created an axiomatic re-
duction of such classes of sets in the form of an o-minimal

structure.?
An o-minimal structure O = {O,} (over R) is a se-
quence of Boolean algebras O, of subsets of R” (families of sets closed under the
operations of intersection and complement) which satisfies certain axioms:

1. O is closed under cartesian products;

2. O s closed under axis-aligned projections R” — R"~1:

3. O, contains diagonals {(xx)]: x; = x;} for each i # J;

4. O, contains the subdiagonal {x; < x>}; and

5. Oy consists of all finite unions of points and open intervals.

Elements of O are called tame or, more properly, definable sets. Canonical
examples of o-minimal structures are semialgebraic sets and subanalytic sets. The
finiteness of the final axiom is the crucial piece that drives the theory.

Given a fixed o-minimal structure, one can work with tame sets with relative ease.
Tame mappings are likewise easily defined: a (not necessarily continuous) function
between tame spaces is tame (or definable) if its graph (in the product of domain and
range) is a tame set. A definable homeomorphism is a tame bijection between tame
sets. To repeat: definable homeomorphisms are not necessarily continuous. Such a
convention makes the following theorem concise:

Theorem 3.6 (Triangulation Theorem). Any
definable set is definably homeomorphic to a fi-

nite disjoint union of open standard simplices.
The intersection of the closures of any two of the ']m
simplices in this definable triangulation is either

empty, or the closure of another open simplex in
the triangulation.

{1}

This result implies that tame sets always have a well-defined Euler characteristic
and a well-defined dimension (the max of the dimensions of the simplices in a trian-
gulation). The surprise is that these two quantities are not only topological invariants
with respect to definable homeomorphism, they are complete invariants.

?The term derives from order minimal, in turn coming from model theory. The text of Van den
Dries [293] is a beautifully clear reference.
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Theorem 3.7 ([293]). Two definable sets in an o-minimal structure are definably
homeomorphic if and only if they have the same dimension and Euler characteristic.

This result reinforces the idea of a definable homeomorphism as a scissors equiv-
alence. One is permitted to cut and rearrange a space with abandon. Recalling the
utility of such scissors-work in computing areas of planar sets, the reader will not be
surprised to learn of a deep relationship between tame sets, the Euler characteristic,
and integration.

3.6 Euler calculus

It is possible to build a topological calculus based on Euler characteristic. The integral
in this calculus depends on the following additivity:

Lemma 3.8. For A and B definable sets,
X(AUB) = x(A) +x(B) — x(AN B). (3.8)

This additivity has been foreshadowed in the imagery
of x as counting in §3.1, in the Gauss-Bonnet Theorem
of §3.2, in the proof of Theorem 3.3, and in the additivity
of the fixed point index of §3.4. The reader may prove
(3.8) via triangulation, induction, and toil, until the more
automatic homological tools of Chapters 4-5 are available. The similarity between
Equation (3.8) and the definition of a measure is no coincidence. Following ideas that
date back to Blaschke (at least), one constructs a measure® dx over definable sets
A C X via:

/ T1adx :=x(A). (3.9)
X

Measurable functions in this integration theory are integer-valued and constructible,
meaning that for h: X — Z, all level sets h~*(n) C X are tame. Denote by CF(X)
the set of bounded compactly supported constructible functions on X. The Euler
integral is defined to be the homomorphism [, : CF(X) — Z given by:
o0 o0
[ hax= 3" sxtth=sh =Y x(th>sh-x({h<-s). (310
X s=—00 s=0
where the last equality is a manifestation of a discrete fundamental theorem of integral
calculus.* Alternately, using the definition of tame sets, one may write h € CF(X) as
h=>",cals,, where c, € Z and {0} is a decomposition of X into a disjoint union
of open cells, then

/thx = Z CaX(0q) = an(—l)dim Oa (3.11)

3The proper term is a valuation, not a measure; the abuse of terminology is to prompt the reader
to think explicitly in terms of integration theory.
4That is, a telescoping sum.
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That this sum is invariant under the decomposition into definable cells is a consequence
of Lemma 3.8 and Theorem 3.7.

3.7 Target enumeration

A simple application of Euler integration to data aggregation demonstrates the utility
of this calculus. Consider a finite collection of targets, represented as discrete points
in a space W. Assume a field of sensors, each of which observes some subset of W and
counts the number of targets therein. The sensors will be assumed to be distributed
over a region so densely as to be approximated by a topological space X.

There are many modes of sensing: in-
frared, acoustic, optical, magnetometric, and

more are common. To best abstract the idea B

of sensing away from the engineering details, [ a

the following topological approach is used. In = /

a particular system of sensors in X and targets |° ’
in W, let the sensing relation be the relation \l /

§ C W x X where (w, x) € 8 iff a sensor at SI |/
x € X detects a target at w € W. The hor-
izontal and vertical fibers (inverse images of
the projections of 8§ to X and W respectively)
have simple interpretations. The vertical fibers — target supports — are those sets of
sensors which detect a given target in W. The horizontal fibers — sensor supports —
are those target locations observable by a given sensor in X.

Assume that the sensors are additive but anonymiz-
ing: each sensor at x € X counts the number of targets in
E W detectable and returns a local count h(x), but the iden-
tities of the sensed targets are unknown. This counting
function h: X — Z is, under the usual tameness assump-
tions, constructible. A natural problem in this context is to
aggregate the redundant anonymous target counts: given
K h and some minimal information about the sensing relation
8, determine the total number of targets in W. This is not
as easy as it sounds, and it is even less easy when X is not
a continuum space, but rather a discretization thereof. It is
therefore remarkable that a purely topological solution exists, independent of knowing
a decomposition of the counting function h.

b

Proposition 3.9 ([24]). /f h: X — N is a counting function for target supports Uy
of uniform Euler characteristic x(Uy) = N # 0 for all a, then

1
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Proof.

/thx:/X<Z]1Ua> dx:Z/XIandx:Zx(Ua):N#a.

©

For contractible supports (such as in the setting of beacons visible on star-convex
domains), the target count is, simply, the Euler integral of the function.

This solves a problem in the aggregation of redundant data,
since many nearby sensors with the same reading are de-
tecting the same targets; in the absence of target identifi-
cation (an expensive signal processing task), it is nontrivial
to aggregate the redundancy. Notice that the restriction
N # 0 is nontrivial. If h € CF(IR?) is a finite sum of charac-
teristic functions over annuli, it is not merely inconvenient
that [,.hdx = 0, it is a fundamental obstruction to dis-
ambiguating sets. Given this, it is all the more remarkable
that sets with x # 0 can be enumerated easily. Since
the solution is in terms of an integral, local and distributed

computations may be used

in practice.

3.8 A Fubini Theorem

Euler characteristic is like a volume in another aspect: it is multiplicative under carte-

sian products.

Lemma 3.10. For X and Y definable, x(X xY) = x(X)x(Y).

Proof. The product X x Y has a definable cell structure using products of cells from
X and Y. Forcells 0 C X and 7 C Y, the lemma holds via the exponent rule since

dim(c x 7) = dim ¢ + dim

O [o_____o]
p=O- O

7. Additivity of the integral completes the proof. ®

The assertion that dx should be regarded as an hon-
est topological measure is supported by this fact and its
corollary: the Euler integration theory admits a Fubini The-
orem. Calculus students know that:

jf f(x,y)dxdy = jj f(x,y)dydx.

Real-analysis students learn to pay attention to finer as-
sumptions on measurability (cf. tameness assumptions).
This familiar result is the image of a deeper truth about
integrations and projections. Given F: X — Y, one can

integrate over the fibers, or level sets, of F first, then integrate the resulting function

over the projected base Y.
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Theorem 3.11 (Fubini Theorem). Let F: X — Y be a definable mapping. Then

for all h € CF(X),
[nax=[ ([, #e0dxe))axo) (312)

Proof. If X = U x Y and F is projection to the second factor, the result follows
from Lemma 3.10. The o-minimal Hardt Theorem [293] says that Y has a definable
partition into tame sets Y, such that F1(Y,) is definably homeomorphic to U, X Y,
for U, definable, and that F: U, X Yo — Y, acts via projection. Additivity of the
integral completes the proof. ®

Example 3.12 (Enumerating vehicles) ©

The following example demonstrates an application of the Fubini Theorem to time-
dependent targets. Consider a collection of vehicles, each of which moves along a
smooth curve v;: [0, T] — R? in a plane filled with sensors that count the passage
of a vehicle and increment an internal counter. Specifically, assume that each vehicle
possesses a footprint — a support U;(t) C R? which is a compact contractible neigh-
borhood of ;(t) for each i, varying tamely in t. At the moment when a sensor x € R?
detects when a vehicle comes within proximity range — when x crosses into U;(t) —
that sensor increments its internal counter. Over the time interval [0, T], the sensor
field records a counting function h € CF(R?), where h(x) is the number of times x
has entered a support. As before, the sensors do not identify vehicles; nor, in this
case, do they record times, directions of approach, or any ancillary data.

Proposition 3.13 ([24]). The number of vehicles is equal
to fR2 hdx.

Proof. Each target traces out a compact tube in R2x [0, T]
given by the union of slices (U;(t), t) for t € [0, T]. Each
such tube has x = 1. The integral over R? x [0, T] of
the sum of the characteristic functions over all N tubes is,
by Proposition 3.9, N, the number of targets. Consider
the projection map p: R? x [0, T] — R2. Since p 1(x) is
{x} x [0, T], the integral over p~!(x) records the number
of (necessarily compact) connected intervals in the inter-
section of p~1(x) with the tubes in R? x [0, T]. This number is precisely the sensor
count h(x) (the number of times a sensor detects a vehicle coming into range). By
the Fubini Theorem, [,. hdx must equal the integral over the full R? x [0, T], which
is . OJO
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3.9 Euler integral transforms

Euler integration admits a variety of operations which mimic the analytic tools so
useful in signal processing, imaging, and inverse problems.

Example 3.14 (Convolution and Minkowski sum) ©

On a real vector space V, a convolution operation with respect to Euler characteristic
is straightforward. Given f, g € CF(V), one defines

(f x g)(x) ::/Vf(t)g(x— t) dx(t). (3.13)

There is a close relationship between convolution
and the Minkowski sum: for A and B convex,
1ax1g = larp, where A+ B is the set of I:I
all vectors expressible as a sum of a vector in
A and a vector in B [297, 269]. This, in turn,
is useful in applications ranging from computer
graphics to motion-planning for robots around obstacles [168]. For non-convex shapes,
convolution of indicator functions can take on values larger than 1 in regions where
the intersections of translations of A with B are disconnected. Unlike non-convex
Minkowski sum, Euler-convolution is always invertible [27, 269]. O]

One of the most general integral trans-
forms is the Radon transform of Schapira [48,
67, 270]. Consider a locally closed definable
relation 8 C W x X (that may or may not

| e come from sensing), and let my and wx de-
‘\ note the projection maps of W x X to their
L

factors. The Radon transform with kernel 8 is
the map Rg: CF(W) — CF(X) given by lift-
I ing h € CF(W) from W to W x X, filtering
= . . .

with the kernel 1g, then integrating along the
projection to X as follows:

(Rsh)(x) := /vv h(w)ls(x, w) dx(w). (3.14)

Example 3.15 (Target enumeration) ©

Consider the sensor relation § C W x X, and a finite set of targets T C W as defining
an indicator function 17 € CF(W). Observe that the counting function which the
sensor field on X returns is precisely the Radon transform Rglr. In this language,
Proposition 3.9 is equivalent to the following: assume that § C W x X has vertical
fibers m,} (w) N 8 with constant Euler characteristic N. Then, Rg: CF(W) — CF(X)
scales integration by a factor of N: [, oRs =N [,,,. ®©
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A similar regularity in the Euler characteristics of fibers allows a general inversion
formula for the Radon transform [270]. One must choose an ‘inverse’ relation 8' C
X xW.

Proposition 3.16 (Schapira inversion formula). Assume that § C W x X and
8" C X x W have fibers 8,, and 8!, satisfying (1) x(8w, N8!,) = for allw € W and
(2) x(8wN8.,) =X forallw #w e W. Then for all h € CF(W),

(Rs 0 Rs)h = (1 — A\)h+ A (/W h> Tuy. (3.15)

Proof. The conditions on the fibers of § and 8" imply that [, $(w, x)8'(x, w')dx =
(w—X)ow—w + A forall w,w' € W, where ¢ is the Dirac delta function. Thus, for
any w' € W,

(Rsr o Rsh)(w') = /

X

= [ atw) | [ 1stw s 0, wax ax
- /W [(& = M) h(W)by—w + Xh(w)] dx

[ [ nwsw. dx] L (x, ') dx

—(u = Vh(w) 42 [ hdx,
w
where the Fubini Theorem is used in the second equality. ®

Recall that the sensor counting field h: X — Z is
equal to Rsl+, where T C W is the set of targets. If the
conditions of Proposition 3.16 are met and if A # u, then
the inverse Radon transform Rsh = RsRs1 7 is equal to a
(nonzero) multiple of 1+ plus a multiple of 1y,. Thus, one
can localize the targets by performing the inverse trans-
form. It is remarkable that enumerative data alone can
yield not only target counts but target positions as well.
By changing T from a discrete set to a collection of (say,
contractible) compact sets, one notes that Radon inversion
has the potential to not merely localize but recover shape.
This topological tomography is the motivation for Schapira’s incisive paper [270].

\

Example 3.17 (Topological tomography) ©

Assume that W = R3 and that one scans a compact subset T C W by slicing R3
along all flat hyperplanes, recording simply the Euler characteristics of the slices of T.
Since a compact subset of a plane has Euler characteristic the number of connected
components minus the number of holes (which, in turn, equals the number of bounded
connected components of the complement — see §6.5), it is feasible to compute an
accurate Euler characteristic, even in the context of noisy readings.
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This yields a constructible function on the sensor space X = AG3 (the affine
Grassmannian of all planes in R3) equal to the Radon transform of 1+. Using the
same sensor relation to define the inverse transform is effective. Since 8, = P2 and
S8, N8, =P one has u = x(P?) = 1, A = x(IP!) = 0, and the inverse Radon
transform, by (3.15), yields 1+ exactly: one can recover the shape of T based solely
on connectivity data of black and white regions of slices. ©

Example 3.18 (Fourier transforms and curvature) ©

One relationship between Euler and Lebesqgue measures is encoded in the Gauss-
Bonnet theorem of §3.2. This, too, can be lifted from manifolds to definable sets and
then to CF(R"). The mechanism is the Fourier-Sato transform. Given h € CF(R"),
a point x € R”, and a unit frequency vector £ € S"~1, the Fourier-Sato transform is
defined via:

(s ()= fim_ [  Tetyazohax(y). (3.16)

e—07t

where B. denotes the open ball of radius €. Like the classical Fourier transform, Jg
takes a frequency vector £ and integrates over isospectral sets defined by a dot product.
For Y a compact tame set, Fgly (&) is the constructible function on Y that, when
averaged over &, yields a curvature measure dky on Y implicated in the Gauss-Bonnet
Theorem (as shown by Brocker and Kuppe [48]). For any U C R” open, define the
net curvature of Y on U to be:

e o
L” N /Udlw = Vo S /SM/U(?S]IY)U(E) dx d§.

A This curvature measure has support on Y and, up to a
| constant, agrees with the three notions of curvature men-
/ tioned in §3.2. The Euler-calculus interpretation of the
/ Gauss-Bonnet Theorem says that this rescaled net cur-
vature of Y is precisely its Euler characteristic.

/ dky = X(Y). ©
Y

3.10 Intrinsic volumes

The humble combinatorial definition of x has matured in this chapter to play the role
of a measure. This has precedent in the subject of integral geometry. There is a
family of “measures” on Euclidean R" that mediate Euler and Lebesgue while entwin-
ing topological and geometric data. The k™ intrinsic volume® p is characterized
uniquely by the following: for all A and B tame subsets of R”,

1. Additivity: (AU B) = uk(A) + uk(B) — u(AN B);

5|ntrinsic volumes are also known as Hadwiger measures, quermassintegrale, Lipschitz-Killing cur-
vatures, Minkowski functionals, and, likely, a few more names unknown to the author.
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2. Euclidean invariance: i is invariant under rigid motions of R”;
3. Homogeneity under scaling: ,(c - A) = c(A) for all ¢ > 0; and
4. Normalization: u, of a closed unit ball in R” equals 1.

These measures (more properly, valuations) generalize Euclidean n-dimensional vol-
ume (4, = dvol,) and Euler characteristic (o = dx). There are several equivalent
definitions, all revolving about the notion of an average Euler characteristic. One way
to define the intrinsic volume ux(A) is in terms of the Euler characteristic of all slices
of A along affine codimension-k planes:

pk(A) = /A(G

where d is an appropriate measure® on AG” , , the space of affine (n — k)-planes in
R”. The details of this construction are not elementary [234]: the point here stressed
is that all the intrinsic volumes are certain Lebesgue-averaged Euler integrals.

These intrinsic volumes are more than isolated exam-
ples. The classical theorem of Hadwiger [174] characterizes
those Euclidean-invariant valuations which are continuous
with respect to the Hausdorff metric on compact convex
sets (the compact-continuous valuations): o

x(ANP) dA(P) = /A@,n /P]lA dx dA(P), (3.17)

n
n—k

Theorem 3.19 (Hadwiger Theorem). The space of all
compact-continuous Euclidean-invariant valuations on R"
is a vector space of dimension n+ 1 with basis {fk}}_,.

These amalgamations of Euler and Lebesgue measure
are the key to several interesting applications.

Example 3.20 (Microstructure coarsening) ©

Anyone who has observed foam in a pilsner glass knows that the cell walls of foam
evolve over time so that some cells grow, while others shrink unto disappearance
(neglecting pops). The same processes are ubiquitous in the microstructure coarsening
of froth, metals, and some ceramics. It has long been known how idealized cells evolve
and coarsen in the 2-dimensional setting. The von Neumann - Mullins formula states
that the area A(t) of a cell in an ideal dynamic 2-d microstructure evolves as:

dA |Col
gr = —21 M~y (1 - ) : (3.18)

where M is a mobility constant, -y is a surface tension constant, and |Cg| equals the
number of corners (vertices) of the cell. Thus, cells with fewer than six corners shrink:
those with more grow. The proper extension of this formula to three-dimensional cell
structures was recently discovered by MacPherson and Srolovitz [214]. The key to the

6This measure is derived from the Haar measure on the Grassmannian G)_, and Lebesgue measure
on the orthogonal R
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extension was to note that the “1" in Equation (3.18) is in fact the Euler characteristic
of the (contractible, compact) cell. To lift from 2-d to 3-d requires lifting the relevant
interior volumes from g (= x) to wi. The MacPherson-Srolovitz formula for the
volume V/(t) of a cell in a 3-d microstructure is:

dv 1G]

— = —21M - — 1
dt W’Y(ul 6). (3.19)

where py is the intrinsic 1-volume of the cell and |Cy] is the total length of all the
edges (1-dimensional boundary curves) of the cell. When contemplated in the light
of intrinsic volumes, it is clear that Equation 3.19 is in fact an elegant relationship
between us and pq. ©

3.11 Gaussian random fields

Most readers will be comfortable with the utility (if not the details) of stochastic
processes. A real-valued stochastic process is, in brief, a collection {h(x): x € X}
of random variables h(x) parameterized by points in a space X. A random field is a
stochastic process whose arguments vary continuously over the parameter space X.
For example, a random field may be used to model the height of water on a noisy
sea or the magnitude of noise in a sea of cell-phone towers, both examples having as
parameter space a geometric domain of dimension two (or three, with the addition of
time). As the simplest random variables are Gaussian (having well-defined finite mean
and variance with normal distribution), so are the simplest random fields. A Gaussian
random field with parameter space X C R" is a random field h over X such that, for
each k € N and each k-tuple {x;}§ C X, the collection {h(x;)}& of random variables
has a multivariate Gaussian distribution. For simplicity, attention will be restricted to
Gaussian distributions with the following features:

1. Centered: all h(x) have zero mean, E{h(x)} = 0;
2. Common variance: all h(x) have fixed variance 02 > 0;
3. Stationary-isotropic: the covariance E{h(x)h(y)} is a function of distance
[x = yl.
These last two assumptions imply a well-defined constant X, the second spectral
moment, which, roughly, measures the variance of directional derivatives of h with
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respect to x.

Adler [3], Taylor [5], Worsley [302, 303], and others have led in the exploration of
Gaussian random fields from a geometric perspective. There is implicit in this work no
small amount of topology, with Euler characteristic featuring prominently. Let h(x),
x € X C R", be a stationary random Gaussian field. Knowing as much as possible
about the tomography of the field h is important in medical imaging, astronomy, and a
host of other applications. For example, one might wish to know the expected number
of peaks in a field, or some other qualitative properties associated to the (upper)
excursion sets {h > s}. One of the principal results in this area is that, although
the fine details of the expected field excursion sets cannot be computed, the expected
Euler characteristics are not merely computable, but computed and commensurate
with experimental data.

The following classical result of Rice from
the 1940s [247] helped initiate the subject: for
h(x), x € [0,T], a stationary, zero mean, C!
\/\/ Gaussian process with finite variance o2 and sec-

ond spectral moment X, the expected number
of up-crossings at h = s (locations where h in-
creases past s) is given by

_1(s)? \/X
E#{h *s}=e2(2) T (3.20)

The observation that (up to a boundary correction term) #{h ,* s}, the number
of up-crossings, is in fact the Euler characteristic x{h > s} of the upper excursion set
presages the deeper work of [3] for fields over higher-dimensional domains. It appears
very difficult to understand the expected shape or even topological type of these
excursion sets; however, the simplification that x introduces and its commensurability
with integral techniques yields to computational effort. The following result is a highly
illustrative example:

Theorem 3.21 ([3, 5]). Assume that h(x), x € R”, is a centered, stationary-isotropic
Gaussian random field with common variance o?, second spectral moment A, and
sufficient reqgularity.” The expected Euler characteristic of the upper excursion set
{h > s} over a compact definable subset X C R" is

E h 1(5)2dimX 1(k+1) \/X kH S X

> = e 2\s 2m) 2 _— _ (—) . 3.21
cth > sp) =260 3 2m =) Hees (2) m(x). (3.21)
where Hey is the degree k Hermite polynomial in one variable and i (X) is the k™
intrinsic volume of X.

Equation (3.21) is a remarkable formula in that it ties together so many ideas
from integral geometry, topology, and stochastics in a package that permits honest ap-
plications to data. The ability to predict expected Euler characteristic from stochastic

"This consists of nondegeneracy assumptions on the joint distributions of the first and second
derivatives of f and regularity assumptions on the covariance functions of the second derivatives.
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data has had enormous impact in imaging, in everything from medical data to as-
tronomy. Additional work [5] allows one to relax the assumptions of the field being
stationary, isotropic, and Gaussian. In addition, expectations for intrinsic volumes i
of excursion sets are likewise derivable.

Notes

1.

The scissors equivalence implicit in Theorem 3.7 is the hint of deeper structures. Euler
characteristic and integration over CF is an elementary version of metivic integration,
of great current interest in algebraic geometry. The papers of Cluckers, Denef, and
Loeser [68, 92] detail this somewhat; the exposition of Hales [175] is a good starting
point for this theory.

. Since the Euler measure is the universal motivic measure over topological spaces, any

other scissors-invariant group-valued measure on definable topological spaces must
factor through x. One way around this depressing result is to extend x to a polynomial-
valued measure of sequences of spaces. The work of Gal [137] encodes the Euler
characteristics of UC"(X) as coefficients of a series in a formal variable t. For X
tame, the resulting series is the Taylor series of a rational function. Similar algebraic
manipulations for Euler characteristics of sequences of spaces appears in work on (-
functions from algebraic geometry [172]. It is to be suspected that a full theory of
integration with respect to dx|[t] over (say) filtered spaces awaits development.

Euler integration is here, as in [262, 268], presented as a combinatorial theory. Higher
perspectives are more illuminating. Chapter 5 will unfold the connection to homology;
Chapter 7 to Morse theory; and Chapter 9 to sheaf theory. The literature on normal
cycles [134, 234] allows, thanks primarily to results of Kashiwara [191], an approach
in terms of conormal cycles and related geometric measure theory: see §6.11.

The issue of numerical Euler integration — how to approximate an integral with re-
spect to dx based on sampled data — is extremely interesting, technical, and relevant
to applications. It appears to have received little treatment from the Mathematics
community. See §6.5 for a first step.

It is possible and profitable to perform Radon transforms (and inversion thereof) with
weighted kernels [27].

Intrinsic volumes duy are well-defined on all of CF(R") — not merely compact definable
sets — thanks to the close relationship with f dx. Continuity of these measures is
possible, but requires a more delicate function space topology, relying on currents (see
§6.11 and [28]).

Research in geometric random fields has been, sadly, largely ignored by topologists. It
may help matters to employ (1) the language of Euler integration, as it removes much
of the mystery as to the natural appearance of x in this work, and (2) the o-minimal
framework, as it would likely subsume many of the nondegeneracy assumptions. The
author has taken the liberty of invoking definable sets in the statement of Theorem
3.21: this is not quite what Adler proves. Hopefully it is a true statement.



