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together with diffeomorphisms to complexes assembled from a bin of simple
pieces motivates the eventual transition to algebraic assemblages of spaces
and invariants.

Parts assemble into wholes. A change in focus from smooth spaces patched

2.1 Simplicial and cell complexes

Let S be a discrete set. An abstract simplicial com-
plex is a collection X of finite subsets of S, closed under
restriction: for each o € X, all subsets of ¢ are also in X.
Each element ¢ € X is called a simplex, or rather a k-
simplex, where |o| = k + 1. Given a k-simplex o, its faces
are the simplices corresponding to all subsets of o C S.
For example, if S = {s;},, the subcollection {s,, s5, s7} is a
2-simplex with three 1-simplex faces, three 0-simplex faces,
and, of course, the empty-set face.

The most familiar simplicial complexes are abstract
graphs, simplicial complexes without simplices of dimension
higher than one. An abstract graph is often presented as a
pair (V, E), where V is the set of vertices (or O-simplices)
and E is a collection of distinct unordered pairsin V. These
edges are the 1-simplices of the graph. Abstract graphs are
ideal for expressing pairwise relations between objects. Re-
lations of a higher order point to simplicial models. One
class of elementary but illuminating examples occurs natu-
rally in the form of independence of objects. Given a finite
collection of objects O = {x,}, an independence system
is a collection of unordered subsets of O declared independent. Any such system must
be closed with respect to restriction (any subset of an independent set is also inde-
pendent) and thus defines a simplicial complex: the independence complex Jo is the
abstract simplicial complex on vertex set O whose k-simplices are collections of k + 1
independent objects.

Example 2.1 (Statistical independence) O

Independence occurs in multiple contexts, including linear independence of a collection
of vectors or linear independence of solutions to linear differential equations. More
subtle examples include statistical independence of random variables: recall that the
random variables X = {X;}{ are statistically independent if their probability densities
fx, are jointly multiplicative, i.e., the probability density fx of the combined random
variable (X1, ..., X,) satisfies fx = [[; fx,. The independence complex of a collection
of random variables compactly encodes statistical dependencies. ©

As with the setting of manifolds, one should rapidly metabolize the formal defi-
nition and progress to drawing pictures. One topologizes a simplicial complex X as a
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quotient space built from topological simplices. The standard k-simplex is:

k
AF = {x € [0, 00)* 1 Zx/ = 1}.

i=0

The faces of A are copies of A/ for j < k via restriction
of R**! to coordinate subspaces; via this restriction, one
sees how these faces are attached along the boundary of
A¥. One imagines building an abstract simplicial complex X
into a space by producing one copy of A for each k-simplex
of X, then attaching these together via faces. This ill-
named geometric realization of X is performed inductively
as follows. Define the k-skeleton of X, k € N, to be the
quotient space:

X = (X<k—1>U 11 Ak>/~, (2.1)

o:dimo=k

where ~ is the equivalence relation that identifies faces of A¥ with the corresponding
combinatorial faces of ¢ in XY for j < k.
Thus, X(© = S is a discrete

set. The 1-skeleton X is a space

/o
o \o homeomorphic to a collection of ver-
\ / tices (S) and edges connecting ver-
/o/o
|0

tices: a topological graph. By con-
struction, X D X&*=1) and one
therefore identifies X with

\

o0
k=0

The abuse of notation is intentional; X (the space)
will be conflated with X (the abstract simplicial complex).
As a space, X is given the weak topology: a subset U C X
is open if and only if U N X% is open for all k.

A simplicial complex is one of many possible struc-
tures for building a space. For example, one may take the
basic k-dimensional building block to be a k-cube /¥, where )
I = [0,1]. The faces of the cube are obviously smaller-
dimensional cubes; attaching maps between faces identify
cubes and are likewise clear. The resulting class of cubical
complexes are natural in many applications. Digital cam-
eras store data in pixels on a 2-dimensional cubical complex. Numerical analysis and
finite element methods work well on 3-dimensional cubes (or voxels) arranged in a lat-
tice. Cubes and simplices are examples of compact convex polytopes: cell complexes
built from arbitrary compact convex polytopes are likewise easy to work with.
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More general still is the class of spaces referred to as CW complexes. These
are built inductively, as per Equation (2.1) with basis cells closed balls B¥, and for
attaching maps arbitrary continuous functions from the boundary dB* to X1,
Though this tends to be among the best class of complexes for doing topology, the
reader may find it simpler to work at first with regular cell complexes, whose cells
are balls and whose boundary maps are homeomorphisms of 8B* to their images in
X (k=1),

Example 2.2 (Unstable manifolds) ©
The flexibility of a CW complex is sometimes needed. Consider the case of a smooth
vector field V on a compact 2-manifold S C R3. Assume V = —Vh is the gradient
field for some height function h: S — R (so that flowlines of V' flow downhill), and
that there are a finite number of nondegenerate critical points of h (i.e., V' is transverse
to the zero-section of T,.S), so that each is either a source, sink, or saddle of V. Recall
from §1.4 that each fixed point p has a stable (W*(p)) and unstable (W"(p)) manifold,
whose intersection is p. By nondegeneracy (and the Stable Manifold Theorem [258]),
these are in fact submanifolds of S.

Consider the collection of unstable manifolds {W*"(p) :
p € Fix(V)}. These partition the surface S into points (un-
stable manifolds of sinks), open line segments (unstable
manifolds of saddles), and open discs (unstable manifolds
of sources). These together define a CW structure on S,
where: the 0-skeleton S is the union of (unstable mani-
folds of) sinks; S() is the union of unstable manifolds over
sinks and saddles obtained by gluing intervals to the sinks
via the dynamics; and S = S glues the discs defined by
unstable manifolds of sources along the 1-skeleton. This
simple example can be greatly expanded and forms the basis of Morse theory, to
come in Chapter 7. ©

The distinction between various types of cell complexes is intricate, and the
beginner should beware getting lost at this juncture. This text uses simplicial and cubical
complexes frequently; regular cell complexes often; and general CW complexes only
occasionally. The phrase for a cell complex implies that it holds in the fully general
CW setting. The remainder of this chapter is a menagerie of interesting simplicial and
cellular complexes that have been found useful in applications to date.

2.2 Vietoris-Rips complexes and point clouds

Consider a discrete subset Q C R” of Euclidean space. If one receives Q as a collection
of data points — a point cloud — sampled from a submanifold, it may be desirable
to reconstruct the underlying submanifold from the point cloud. A graph based on a
point cloud Q can be efficacious in discerning shape (as any child doing a dot-to-dot
can attest), but a simplicial complex may improve matters.

Choose a constant € > 0. The Vietoris-Rips complex of scale € on Q, VR.(Q),
is the simplicial complex whose simplices are all those finite collections of points in
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Q of pairwise-distance < e (which is clearly closed under subsets). The hope is that
VR.(Q) gives a good approximation to the structure underlying the point cloud. Note
the difficulty in specifying what that means, as well as choosing the correct € to best
approximate. Although this complex is based on points in R”, there may be simplices
of dimension much larger than n (when sufficiently many points are crowded together).

The degree to which a Vietoris-Rips complex VR (of some
fixed but unwritten €) accurately captures the topology of the
point cloud is not obvious. Consider a point cloud Q in R” and
the projection map 8: VR — R" taking the vertices VR to Q
and taking a k-simplex of VR to the convex hull of the associated
vertices in Q. The image of § in R" is called the shadow, Sh,
of the Vietoris-Rips complex. There is no hope of VR and Sh
being homeomorphic, as the domain of the projection § is likely
to have higher dimension than the codomain. Even homotopy
equivalence is too much to ask, as it is possible to arrange data points in Q in R? so
as to have a simplicial sphere S* for arbitrary k > 1 which projects in Sh to a convex
set: such bubbles are artifacts of the Vietoris-Rips complex and not representative the
the point cloud topology. Nevertheless the Vietoris-Rips complex seems to capture
the topology of large-scale holes correctly: see [64].

2.3 Witness complexes and landmarks

The Vietoris-Rips complex of a large data set may be
too unwieldy to store and manipulate. To address this con-
cern, the witness complex constructions of Carlsson and
de Silva [86] greatly reduce size at the potential expense of
topological precision. This has become an intricate subject,
with a variety of related definitions built to suit different
data sets. The following is a elementary version, suitable
for an introduction.

Given a (large) point cloud of nodes Q in a Euclidean
space R", choose a (small) set of landmarks £ C Q. The
weak witness complex, W, is an abstract simplicial complex on the vertex set £
defined as follows. A subcollection of points S C £ is a simplex in the witness
complex if and only if for each subset T C S there is a weak witness xr € Q with
every point in T closer to xy than to any point in £ — T. Simple examples indicate
that for a reasonable choice of landmarks, the witness complex provides a decent
topological approximation to the underlying structure of the point cloud. More recent
generalizations to strong and parameterized witness complexes span the gap between
computability and rigorous recovery of the correct topological type [55].

2.4 Flag complexes and networks

The Vietoris-Rips complex is an example of a more general class of simplicial complexes
that fill a frame. One of the advantages of this construction is its parsimonious
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representation with regards to input and storage of the data. To encode a typical
simplicial complex into a form that computational software can manage, it is necessary
to list all the simplices. In contrast, note that the Vietoris-Rips complex is entirely
specified by knowing the vertices Q and the edges (depending on €). The remaining,
higher-dimensional, simplices are all accounted for: the graph determines the complex.

Given any graph, the flag complex (or clique complex) is the maximal simplicial
complex having the graph as its 1-skeleton. Otherwise said, whenever there appears
to be the outline of a simplex, one fills it in. The Vietoris-Rips complex is the flag
complex associated with the distance-¢ proximity graph of a point cloud vertex set Q.

Flag complexes also arise as higher-
dimensional models of communications
networks. Consider a collection of points
Q C R? that represent the locations of
nodes in a wireless communications net-
work. Ignoring the details of the com-
munications protocols, consider the fol-
lowing simple model of communication:
nodes broadcast their unique identities,
received by nodes which are within range; these neighbors then establish communica-
tion links and in so doing assemble an ad hoc network.

Due to irregularities in transmission characteristics, ambient characteristics of
the domain, and signal bounce, the communication links formed may not be solely a
function of geometric distance between nodes. Nevertheless, forming the flag complex
associated with these edges may recover some of the rough structure implicit in the
global network. In §5.6, a method for addressing coverage-type problems is considered
using these flag complexes.

2.5 Cech complexes and random samplings

The problem of building topologically accurate simplicial models is classical. In the con-
text of the Vietoris-Rips complexes of §2.2, it is frustrating to have higher-dimensional
features appearing. One way to circumvent this is to consider the higher-dimensional
simplices of the Vietoris-Rips complex more carefully. Given a point cloud Q in R” and
a length parameter € > 0, define the Cech complex C. to be the simplicial complex
built on Q as follows. A k-simplex of C. is a collection of k + 1 distinct elements x; of
Q such that the net intersection of diameter ¢ balls at the x;'s is nonempty. The Cech
complex is a subcomplex of the Vietoris-Rips complex VR; it is sometimes a proper
subcomplex. The disadvantages of a Cech complex are its storage requirements (one
cannot simply store the 1-skeleton and fill the rest in) and its construction (one must
check many intersections to build the full complex). These are compensated for by
a topological accuracy: the Cech complex C. is always homotopic to the union of
diameter-¢ balls about Q (see Theorem 2.4).

Niyogi, Smale, and Weinberger [241] have used this property of Cech complexes
to prove a result about randomly sampled point clouds. Consider a smooth submanifold
M C R". Let Q be a collection of points sampled at random from M. It is intuitively
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obvious that for a sufficiently dense sampling, the union of properly sized balls about
the points is homotopic to M: this union of balls can be captured by the Cech complex
of Q. The ability of the Cech complex to approximate M is conditional upon the density
of sampling and the manner in which M is geometrically embedded in R”. Let T denote
the injectivity radius of M: the largest number such that all rays orthogonal to M of
length 7 are mutually nonintersecting.

Theorem 2.3 ([241]). Assume a collection Q of points
on a smooth compact submanifold M C RN, where M has
injectivity radius T. If the density of Q is such that the
minimal distance from any point of M to Q is less than /2
fore < 'r\/%, then the Cech complex Co.(Q) deformation
retracts to M.

Additional results, such as criteria for these hypothe-
ses for uniformly randomly distributed points on M (with or
without various types of noise) are also available and rele-
vant to the statistics of point clouds. This result has been
useful in validating data analysis from experiments in, e.g., materials science [82, 83].

2.6 Nerves and neurons

As the Vietoris-Rips complex is a metric-ball version of the more general flag complex
construction, so also is the Cech complex the metric-ball version of a more general
object. Given a collection U = {U4} of (say, compact) subsets of a topological space
X, one builds the nerve of U, N(U), as follows. The k-simplices of N(U) correspond
to nonempty intersections of k 4+ 1 distinct elements of U. For example, vertices
of the nerve correspond to elements of U; edges correspond to pairs in U which
intersect nontrivially. This definition respects faces: the faces of a k-simplex are
obtained by removing corresponding elements of U, leaving the resulting intersection
still nonempty. Examples of nerves based on, e.g., convex subsets of R”, suffice to
suggest the following classical generalization of the result for Cech complexes.

Theorem 2.4 (Nerve Lemma). /fU is a finite collection
of open contractible subsets of X with all non-empty inter-
sections of subcollections of W contractible, then N(U) is
homotopic to the union Uy U, .

One of the more recent and interesting applications
of nerves is in neuroscience. The work of Curto and Itskov
[80] considers how neural activity can represent external en-
vironments. In particular, the authors consider the impacts
of external stimuli on certain place cells in the dorsal hip-
pocampus of rats. These cells experience dynamic electro-
chemical activity which is known to strongly correlate to the rat’s location in physical
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space. Each such cell group is assumed to determine a specific location in space, and
the collection of such location patches, or place fields, forms a collection U satisfying
the hypotheses of the Nerve Lemma, assuming that place fields exist and are stable,
omni-directional, and have firing fields that are convex. Curto and Itskov argue that
these assumptions are generally satisfied for place fields of dorsal hippocampal place
cells recorded from a freely foraging rat in a familiar open field environment.
In an experiment, the place cells are
- T monitored, with activity recorded as a time
% series. These time series show occasional
bursts of activity, such spike trains being

L ——— common data forms in neuroscience. Cell

e (T — groups are identified by correlating spike
M”‘”"”WM train firings that occur at the same time
| E'“"M' Wi (within a window of time based on some

== 11 parameter chosen appropriately). The cor-

relation of spiking activity provides the in-
tersection data of the place fields. This, in turn, allows for the computation of the
nerve of the place fields based on spike train correlation. These investigations suggest
that rats may build a structured representation of their external environment within
an abstract space of stimuli. Of note is the lack of metric data — the construction of
the physical environment is purely topological and can be effected without reference
to coordinates.

2.7 Phylogenetic trees and links

Mathematical biology is ripe
for topological tools, given the noisy
nature of Nature. In addition to
the neuroscience example above is
an analogue of configuration spaces
associated to genetic data in the
form of phylogenetic trees — data
structures for organizing and com-
paring taxonomic and genetic data. The relevant objects of study are rooted, end-
labeled, metric tress. A tree is a graph without cycles. The leaves of a tree are
vertices of degree 1 (only one edge is attached), and a root is a dedicated leaf. A
phylogenetic tree is a rooted tree with (1) leaves labeled by data (genes, phenotypes,
or other taxonomica), and (2) all interior edges (those not connected to a leaf) la-
beled with positive real numbers (and represented as the length of the edge). These
trees can be readily illustrated as planar graphs, but the embedding of the tree into
the plane is not part of the data.

Let T, denote the following tree space of [37]: the space of rooted metric trees
with n labeled (non-root) leaves. For simplicity, assume that the label on the root is
0 and labels on the leaves are 1,2,3, ..., n. This space has a natural cube complex
structure as follows. All non-leaf vertices of the graphs are assumed to be essential in

@ © GO @ ©® GO ®
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that the number of edges attached is greater than two.

Two such trees are equivalent if there is a mapping between them that preserves
the graph structure (takes vertices to vertices and edges to edges), the leaf labels,
and the interior edge lengths; they are isomorphic if there is a mapping between
them that preserves the graph structure and the labels. A fixed isomorphism class of
phylogenetic trees is parameterized by the interior edge lengths: this yields an open
cube of dimension equal to the number of interior edges.

To compactify this to a closed cube, reparameterize all
interior edge lengths to the open interval (0, 1) and add the
boundary faces. Those faces with one or more 0 factors may
be thought of as having the corresponding interior edges col-
lapsed (“zero length edges”). These edge-collapse faces are
identifiable as trees of a different isomorphism class. By glu-
ing together all such cubes according to isomorphism class,
a finite cube complex T, is obtained.

As topological spaces, T, may seem too simple: it is
contractible to an origin, the radial graph with no interior
edges, by shrinking each interior edge continuously to length zero. Despite this sim-
plicity, the manner in which the various cubes are assembled is topologically (and
geometrically) of interest. The best way to analyze this assembly is through a simpli-
cal model called a link. Let X denote a cell complex built from simplices, cubes, or
other simple polyhedral basis cells, and let v € X(© be a 0-cell. The link of v in X,
Lkx(v), is the simplicial complex whose k-simplices consists of (k + 1)-dimensional
cells attached to v, with faces inherited from faces of cells in X.

Example 2.5 (Tree spaces) ©)
The tree space T3 is a “letter Y.” The space T, consists of 15 2-dimensional squares
(corresponding to the 15 possible binary rooted trees with 4 labeled leaves) glued
together so as to have a common corner (corresponding to the radial rooted tree
with 4 leaves) and a link equal to the 10-vertex, 15-edged petersen graph. As one
might guess, links of tree spaces T, grow quickly in size and complexity with n; their
topology, however, is classifiable.

Theorem 2.6 ([37]). The link of the origin in T, is a flag complex that has the
homotopy type of (n — 1)! copies of S"~3 glued together at a single point. ©



34 Chapter 2. Complexes

There are numerous reasons why scientists and engineers want to work with
spaces of objects rather than merely the objects themselves. The tree spaces T,
(though arising in other contexts in topology and algebraic geometry as certain moduli
spaces) were generated in response to challenges in statistics associated to genetic
data. Experimental data is used to generate phylogenetic trees, and this data does
not spring forth fulled formed from the mind of the researcher: the data are often
noisy and not perfectly repeatable. A collection of numerical or vector-valued data
can be averaged, but what does it mean to average a sequence of phylogenetic trees
in a scientifically meaningful manner? This requires a geometry (and thus a topology)
on the space of all possible phylogenetic trees.

2.8 Strategy complexes and uncertainty

Many of the complexes of this chapter approximate manifolds or provide models of
data; however, complexes also have broad applicability in engineering systems as spaces
that collate states. Consider a transition graph, a directed graph X whose vertices
V represent states of an abstract system, and whose edges E represent deterministic
actions. For concreteness, consider the example [109] of a transportation network,
where vertices are locations and edges represent flights, freeways, subways, trains,
or other discrete enter-exit modes of transport. Other examples include motion-
planning in robotics with discrete states (robots move from landmark to landmark) or
manufacturing processes (states are subassemblies; edges are assembly steps).

Planning on the transition graph is straightforward: find a directed path from
initial to goal vertices, then execute the appropriate actions sequentially. However,
stepping onto a flight bound for Chicago at noon does not guarantee arrival, either
at Chicago or at noon. Worse still are the kinds of uncertainties precipitated by
an adversary. Il weather and air travel does not exactly fit that scheme, but other
situations do exhibit adversarial forms of uncertainty for which, if something may go
amiss, it must be mitigated.

Erdmann [108, 109] models adversarial uncertainty in
the transition graph via branched edges. Actions are deter-
ministically chosen, but once chosen, the outcome is one
of several possibilities, out of the control of the chooser.
These possibilities are not necessarily chosen probabilisti-
cally; an adversary may determine any outcome among the
terminal edges. The state chosen by the adversary is known
to the game-player, but only after the nondeterministic ac-
tion has been executed. In such a setting, the notion of a
guaranteed strategy for reaching a goal state despite ad-
versarial meddling seems difficult if not impossible.

The question of path-planning within a nondeterministic transition graph is one
amenable to simplicial data structures. Given a nondeterministic transition graph X,
define the strategy complex, Ax, as the abstract simplicial complex defined on the
set of actions E(X), in which a k-simplex is a collection of k + 1 disjoint actions
whose unions (including all branches of any chosen nondeterministic action) contain
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no directed cycles. This relation is closed under restriction (a smaller collection of
such edges clearly also contains no directed cycle), and is sensible, as a directed cycle
means that a skilled adversary can cycle the player through states ad infinitum. The
intuition is that Ax consists of frap-free strategies: each simplex of Ax is a strategy
for progressing to one or more states.

For g € V(X) a goal state, say
that X has a complete strategy for
attaining g if there exists a mapping @ %
from V(X) to E(X) which associates
to v an action based at v, so that
one attains g with the execution of at
most N actions for N sufficiently large. o
Note: the goal is certain, but the path
is not. The obstruction to attainability
lies in the strategy loopback complex:
denote by Ax. 4 the strategy complex of X augmented by deterministic arrows from
g toeach v eV(X)—g.

Theorem 2.7 ([108, 109]). A nondeterministic transition graph X possesses a com-
plete strategy for attaining a goal g € V(X)) if and only if

Dxe g~ S* 2

Otherwise, it is contractible.

The proofs of this and related theorems use nerves extensively. Additional results
include realizability of simplicial complexes as strategy complexes, incorporation of
stochastic nondeterminism, and decompositions of strategy complexes by means of
deterministic subsystems.

2.9 Decision tasks and consensus

A related use of simplicial structures assists in multi-agent decision-making. Consider
the problems of consensus or distribution among collaborative agents, a common
scenario in biology (animal flocking), sociology (voting, beliefs), engineering systems
(synchronized network clocks), and robotics (cooperative action). The problem of
collaborative consensus has a large literature: mathematical approaches depend sensi-
tively on the modeling assumptions. Most work on distributed consensus phenomena
[227, 287] focuses on graph-theoretical methods. Hidden beneath these 1-dimensional
models is a rich higher-dimensional topological structure underlying influence, consen-
sus, and division.

Example 2.8 (Allocation) ©

Consider the problem of N transmitters attempting to broadcast without interference
over a frequency spectrum with C distinct, non-interfering channels. How may these
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channels be assigned? What if certain transmitters have frequency constraints? What
does the space of solutions to this problem look like?

Build a simplicial complex
on a vertex set of choices: ver-
tices correspond to transmitter
n choosing channel ¢, for each
allowable assignment (n,c). A
k-simplex consists of k+1 trans-
mitters having made compati-
ble (distinct channel) choices,
and the other transmitters having unassigned frequencies. This is closed under re-
striction, since letting one or more assigned transmitter release a frequency leaves
the remaining transmitters still compatible. The resulting simplicial complex is rightly
viewed as a configuration space of solutions to the allocation problem. For example,
three transmitters choosing from four channels gives rise to a simplicial 2-torus T2. ©®

Work of Herlihy and Shavit [178] pioneered a topological approach to consen-
sus/decision problems in the context of distributed, fault-tolerant computation. In
this setting, it is presumed that there are N independent processors £ who share a
common read/write memory element for communication purposes. For simplicity and
concreteness, assume that there are M > 1 possible labels or states and that each
processor has an initial preference. The problem is whether there exists an algorithm
for the processors, via read/write communication to the common memory, to come
to deterministic finite-time consensus. The interesting catch is that all computations
are asynchronous (each processor works at its own speed) and faulty (sometimes, a
processor crashes and can engage no further in communication). The problem in rea-
soning about such systems is that processors which take a very long time to reach
decisions are not readily distinguished from processors which have failed and will never
respond. A fault tolerant distributed algorithm is one which will terminate in finite
time even in the event that some (but not all) processors fail irrevocably.

The approached used in [178] be-

gins with a simplicial model of the prob-

A lem. Given N processors with M possi-

ble initial states, define the input com-

—> plex J to be the abstract simplicial com-
plex whose k-simplices are labelings of
v the states of k 4+ 1 distinct processors.
The output complex O is the abstract

simplicial complex whose k-simplices are

labelings of the states of k + 1 distinct processors which are consistent with a desired
output. The intuition behind a k-simplex is that k + 1 of the processors exhibit a legal
system state and the N — (k + 1) remaining processors have failed to report. Because
of this, the topology of the complexes (encoded by the simplex faces) correlates with

failure of processors. A decision task consists of the input and output complexes,
along with a set of constraints. For example, if all N processors begin in consensus
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with the same label, then the putative consensus algorithm must of necessity output
that precise label as the consensus state. Because of the relationship between faces
and failures, it is possible to reduce questions of existence of distributed fault-tolerant
consensus algorithms to the existence of certain maps from the input complex to the
output complex.

Example 2.9 (Consensus) ©

In the case of N processors trying to come to binary consensus (i.e., two labels, zero
and one), the input complex J ~ SN=1is a simplicial sphere and the output complex
O = AN=1 U AN~ is a disjoint pair of simplices: all zeros and all ones. The decision
task is to come to consensus, with the proviso that initial consensus terminates the
program immediately. Thus, any wait-free fault-tolerant protocol would have to induce
a surjective continuous map from J to O. This is impossible, since J is connected and
O is not. Thus, there is no distributed asynchronous fault-tolerant solution to the
problem of binary consensus. That in itself is no surprise; yet this approach has
resolved more complex consensus problems for which other solutions were unknown.
These deeper examples rely not on common-sense notions of connectivity but rather
on holes of higher order — the homology of Chapter 4. ©

One of the key theorems [178] gives necessary and sufficient conditions for
consensus stated in terms of existence of maps (with details concerning simplicial
subdivisions and colorings). The salient feature of the result is that the topology of
the decision task can determine whether an algorithm exists. This type of implicit
inference is a hallmark of topological methods.

2.10 Discretized graph configuration spaces

The strategy complexes of §2.8 and the allocation, input, and output complexes of
§2.9 are all viewable as a simplicial sort of configuration space. The types of configu-
ration spaces used in robotics (from §1.2 and §1.5) are neither simplicial nor cellular
complexes. One can, however, approximate such spaces with cell complexes. This is
most easily done on the already-discrete structure of a graph.

Consider a finite graph X, now thought of not as an abstract system of states,
but rather as a physical, geometric highway of paths. Keeping track of vehicles or
robots (or tokens) on X leads, as in §1.5, to configuration spaces. The configuration
space of n labeled points on X, C"(X), is relevant to motion planning in robotics when
the automated vehicles are constrained by tracks, guidewires, or optical paths [149];
however, C"(X) is in general neither a manifold nor a simplicial/cell complex. The
following constructions [2] are approximations to these spaces by cubical complexes.

Define the discretized configuration space of X as:

DUX) 1= (X x -+ x X) —A, (2.2)

where A denotes the set of all open cells in X whose closures intersect the topological
diagonal A. Equivalently, D"(X) is the set of configurations for which, given any two
tokens on X and any path in X connecting them, the path contains at least one entire
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(open) edge. Thus, instead of restricting tokens to be at least some intrinsic distance
€ apart, one now restricts tokens on X to be at least one full edge apart. Note that
D"(X) is a subcomplex of the cubical complex X" and a subset of €"(X) (it does not
contain partial cells that arise when cutting along the diagonal), and is, in fact, the
largest subcomplex of X" that does not intersect A.

With this natural cell structure, one can think of the
0-cells of D"(X) as discretized configurations — arrange-
ments of labeled tokens at the vertices of the graph. The
1-cells of D"(X) indicate which discrete configurations can
be connected by moving one token along an edge of X.
Each 2-cell in D"(X) represents two physically independent
edges: one can move a pair of tokens independently along
disjoint edges. A k-cell in D"(X) likewise represents the
ability to move k tokens along k closure-disjoint edges in
X in an independent manner.

Example 2.10 (Digital microfluidics) ©

An excellent physical instantiation of the discretized
configuration space appears in work on digital microflu-
idics [111], in which small (~1mm diameter) droplets of [--
fluid can be quickly and accurately manipulated in an in-
ert oil suspension between two plates. The plates are em- e —_
bedded with a grid of wires, providing discrete localization
of droplets via electrowetting — a process that exploits
current-induced dynamic surface tension effects to propel and position a droplet. Ap-
plying an appropriate current drives the droplet a discrete distance along the wire grid.
The goal of this and related microfluidics research is to create an efficient lab on a
chip in which droplets of various chemicals or liquid suspensions can be positioned,
mixed, and then directed to the appropriate outputs. Using the grid, one can ma-
nipulate many droplets in parallel. The discretized configuration space of droplets on
the graph of the electrical grid captures the topology of the multi-droplet coordina-
tion problem. Note, however, that collisions are not always to be avoided — chemical
reactions depend on controlled collisions. ©

Example 2.11 (A nonplanar graph) O]

Discretization can untangle a complex-looking configuration space. One interesting
example is the configuration space of two labeled points on a complete connected
graph of five vertices, Ks. The discretized configuration space, D?(Ks), is a 2-
dimensional cube complex.

Fix a single vertex v € D?(Ks): this corresponds to a pair of distinct labeled
tokens on vertices of Ks. From this state v emanate six edges in D?(Ks): each token
can move to any of the three open vertices of Ks. For each edge e incident to v,
the token not implicated by e can move to two of the three available vertices without
interfering with e; thus, e is incident to exactly two 2-cells of D?(Ks). There are a
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total of six such 2-cells incident to v, arranged cyclically. Thanks to the symmetry
of Ks, the complex looks the same at each vertex, and D?(Ks) is thus a topological
2-manifold: a compact surface. With the tools of the next chapter, it will be shown
that this surface is of genus six. ©

The discretized configuration
space is an accurate cubical model
of the configuration space.

Theorem 2.12 ([2, 245]). Let X
be a finite topological graph (with
no edges connecting a vertex to it-
self) and let X be the subdivision
of X that inserts vertices so as to
split each edge of X into n — 1
edges. Then D"(X) is homotopic
to C"(X).

2.11 State complexes and reconfiguration

Discretized configuration spaces of graphs are generalizable to a very broad class
of systems — including metamorphic robots, protein chains, and more — which are
reconfigurable based on local rules. The resulting configuration spaces, called state
complexes, are cube complexes with interesting topological and geometric properties.

Fix a graph X and an alphabet A, used to label the vertices V/, each such labeling
u:V — A comprising a state u. A reconfigurable system is a collection of states
{uy}, closed under the actions of a fixed set of local reconfigurations, or generators.
Each generator ¢ consists of a support subgraph supp, C X and an unordered pair
of local states, labelings of the vertex set of supp, by elements of A. A generator
is admissible at a given state v if one of the generator’s local states matches the
restriction of u to supp,. The trace of a generator is the (nonempty) subset of the
support traceg C suppy on which the local states differ.

A simple example comes from discretized configu-
ration spaces of a graph from §2.10. An alphabet A =
{0,1,..., N} labels the vertices of X as empty (0) or oc- ¢ o
cupied with one of N (labeled) tokens. Local reconfigura- l—t

O ,

tions are supported on the closure of an edge in X; each
of the N generators ¢ has suppy = trace, equal to a single
closed edge with local state a labeling of one vertex with 0
and the other 0 < / < N for some /, the other local state
reversing these labelings. Applying a sequence of admissible generators is identical to
moving labeled agents discretely along X. This system has a well-defined notion of
a configuration space, DV(X), in which k-dimensional cubes correspond to k local
moves that can be executed in parallel: this generalizes to any reconfigurable system
as follows.
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A collection of generators {¢,} admissible at a given state v is said to commute
if their supports and traces are pairwise non-intersecting:

traceg, Nsuppy, = & Va # B.

This means that the changes implicated by a
generator (its trace) do not impact the applicabil-
ity of the other generators (their supports): com-
mutativity encodes physical independence. Define
the state complex of a reconfigurable system to
be the cube complex 8§ with an abstract k-cube for
each collection of k admissible commuting genera-
tors. That is, the O-skeleton consists of the states
in the reconfigurable system; the 1-skeleton is the graph whose edges pair two states
which differ by the local states of a single generator; 2-cells correspond to commuta-
tive pairs of generators acting on a state, etc. For reconfigurable systems that admit
only finitely many admissible generators at any given state, the state complex 8 is a
locally compact cubical complex.

Example 2.13 (Articulated planar robot arm) ®

A reconfigurable system models the position of an articulated robotic arm with one
end fixed at the origin and which can (1) rotate at the end and (2) “flip” a 2-segment
corner from up-right to right-up and vice versa. This arm is positive in the sense
that it may extend up and to the right only. A grammatical model is simplest: states
are length n words in two letters. Specifically, let X be a linear graph on n vertices
with an alphabet A = {U, R} encoding up and right respectively. Generators are of
two types: (1) exchange the subwords UR and RU along an edge; (2) change the
terminal letter in the word. Supports (and traces) are (1) a closed edge, and (2) the
terminal vertex, respectively. Generators commute when the associated subwords are
disjoint. The state complex in the case n =5 has cubes of dimension at most three.
In this case also, although the transition graph (the 1-skeleton of 8) for this system
is complicated, the state complex itself is contractible. ©

- (il

PL2N

Example 2.14 (Robot path coordination) ©®
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The following example is inspired by robot coordination problems. Consider a collec-
tion of n graphs (X;)7, each embedded in the plane of a common workspace (with
intersections permitted). On each X;, a robot R; with some particular fixed size/shape
is free to translate along edges of X;. The coordination space of this system is de-
fined to be the space of all configurations in []; X; for which there are no collisions —
the geometric robots R, have no overlaps in the workspace.

To model this with a recon-
figurable system, let the underlying
graph be the disjoint union X = A _F
LI; X;. The generators for this sys- —|— <=
tem are as follows. For each edge =
a € E(X|), there is exactly one f E;j
generator ¢,. The traceis the (clo- \
sure of the) edge itself, trace(¢y) =
a, and its generator corresponds to
sliding the robot R; from one end of the edge to the other. The support, supp(¢s)
consists of this trace union any other edges B in X; (j # i) for which the robot R;
sliding along the edge B can collide with R; as it slides along a. The alphabet is
A = {0, 1} and the local states for ¢, have zeros at all vertices of all edges in the
support, except for a single 1 at the boundary vertices of a.. Any state of this recon-
figurable system has all vertices labeled with zeros except for one vertex per X; with
a label 1. The resulting state complex is a cubical complex that approximates the
coordination space. In the case where X; = X is the same for all / and the robots R;
are sufficiently small, this reconfigurable system has 8§ = D"(X). ©

N

State complexes encompass a wide variety of different systems and can appear
to be full of holes, as seen in Examples 2.11 and 2.14 Nevertheless, the types of holes
that arise are unusually restricted:

Theorem 2.15 ([153]). Every state complex 8 is aspherical: any map f: S" — 8§ for
n > 1 is homotopic to a constant map S" — *.

Note the recurring theme: state complexes, strategy complexes, tree spaces, and
more all seem to be characterized or clarified by the absence of presence of spheres,
leading one to wonder if these are not the primary building-blocks of topology.

Notes

1. A cell complex structure is a type of finite approximation to a space and, as such, is
central to the ability to do computation. However, the type of cell structure matters.
An n-dimensional sphere S” has a CW structure with exactly two cells (dimensions 0
and n). As a regular cell complex, 2n cells suffice. As a cubical or simplicial complex,
the minimal total number of cells is exponential in n.

2. One virtue of topological methods is their coordinate-free nature: it is not necessary to
know exact locations. If, however, one does possess strong geometric data in the form
of coordinates, there are numerous ways to improve on the Vietoris-Rips construction.
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One popular approach is the alpha complex of Edelsbrunner [104] which restricts a
Cech complex by a Delaunay triangulation to produce a topologically accurate simplicial
model with computationally small footprint.

. Theorem 2.3 is of interest primarily for its explicit computation of density bounds — it

was previously known [204] that a sufficiently dense sampling recovers the topology of
the submanifold.

. The Nerve Lemma is ubiquitous in topology and its applications. It is often attributed

to Leray [206], whose version, concerning sheaves, is much deeper than that stated.
It echoes antecedents in the (independent) work of Cech [63] and Alexandrov [8]. The
version stated is for open covers, but covers by compact contractible sets also suffice.
It is often stated that U be comprised of convex sets, as these and all nonempty in-
tersections thereof are contractible. It will sometimes be mentioned that the Nerve
Lemma breaks down if the sets involved are not contractible. This statement is accu-
rate but should propel the reader to more sophisticated methods (such as the Leray
spectral sequence) rather than to despair.

. The survey article [242] gives a broad treatment of applications of geometric and

topological combinatorics to a broad class of problems in phylogenetics. This is a very
active branch of applied topology and geometry.

. Many results about the topology of state complexes are highly dependent on their

geometric features [153]. There is a precise sense in which these complexes are devoid
of positive curvature, and it is this property that most influences their global topology.

. State complexes are undirected versions of the high-dimensional automata of Pratt

[244]. They may also be viewed as weaker versions of the very interesting class of
combinatorial cell complexes known as hom complexes. The monograph of Kozlov
[198] has a wealth of information on this latter class of spaces.



