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athematics is the science of patterns. As mathematicians have unraveled

the patterns comprising algebra, analysis, topology, and more, certain meta-

patterns have emerged. Notions of equivalence, limits, duality, and transfor-

mation have taken shape and precipitated a unified theory. It has been noted repeat-

edly that the power of topological invariants lies not only in their ability to characterize

spaces, but maps as well. The oft-invoked functoriality and naturality of co/homology

and homotopy groups are crucial ingredients of topology, pure and applied. The study
of functoriality and its generalizations leads to category theory.

10.1 Categories

A category C consists of: (1) a collection! of objects O; (2) for each ordered pair

(a, b) in O, a set of morphisms M(a, b); and (3) for each ordered triple (a, b, ¢) in O
a composition operation o: M(a, b) x M(b, ¢c) = M(a, ¢). In addition, these satisfy
the following:

1. Associativity: Composition of morphisms is associative.
2. ldentity: For each a € O, there exists an identity morphism Id € M(a, a) with
fold=f forall f € M(a,b)and Idog =g forall g € M(b, a).

The word category is so generic and ubiquitous
as to be uninformative. The above definition is un-
related to the LS category of Chapter 7; this precise
word was chosen to evoke an Aristotelian organization.
This definition is, like all else Aristotelian, deceptively
unexciting. A more transparently beautiful definition
is possible when the category is sufficiently small, say,
when objects and morphisms are countable. It is pos-
sible to represent such a category as a diagram of
points (objects) and arrows (morphisms). A category
C is visualized as a directed graph of vertices (O) and,
for each oriented pair of vertices a, b, a set M(a, b) of arrows from a to b (the direc-
tion is important). To each vertex is attached a loop-like identity arrow. Composition
of arrows can be visualized by a 2-simplex whose boundary is the commutative trian-
gle. The associativity of composition likewise has an arrow diagram best represented
as the wireframe of a 3-simplex. This encapsulates an Apollonian® approach to cate-

LA class as opposed to a set, but the initiate should not worry about such things.
2This deity connotes reason and order, and he keeps a full quiver of arrows.
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gories. Very small categories are easily visualized (cf. the chain complex of a finite cell
complex); categories with large sets of objects and morphisms (e.g., singular chain
complexes) demand too much of the Apollonian seer. Viewing the algebraic laws of
composition and associativity in their simplicial guise is this subject’s first hint at its
relevance to topology.

The most common examples of categories are not small enough to be so illus-
trated; these include:

Vector spaces (over a field F) and linear transformations Vect;
Groups and homomorphisms Grp;

Abelian groups and homomorphisms Ab;

Graded abelian groups and graded homomorphisms GrAb;
Topological spaces and continuous maps Top;
Topological spaces and homotopy classes of maps hTop.
Manifolds and smooth maps Man;

Sets and functions Set;

Finite sets and functions FinSet;

Chain complexes and chain maps ChCo; and

. Posets and order-preserving functions Pos.
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Other examples are less sweeping, though still useful:

1. Given a topological space X, the category Opy has objects equal to the open
sets of X (including the empty set!), with inclusions V C U defining morphisms
vV — U.

2. A regular cell complex X is a category Facex whose objects are cells with mor-
phisms ¢ — 7 iff o is a face of 7, odT.

3. Any poset (partially ordered set) (P, <) is a category with objects elements of
P and morphisms a — b iff adb. The previous two examples are special cases
of a poset category.

4. A group G can be defined as a category with one object » and with morphisms
* — x corresponding to elements of G, the composition being the group oper-
ation. The identity of G is the identity morphism, and each morphism must be
invertible (where invertible hopefully means what you think it means: see §10.2).

5. A groupoid is, despite the grotesque name, easily defined: it is a category with
invertible morphisms (a group being a single-object groupoid). A monoid is a
category with a single object (a group being a monoid-with-inverses).

The reasons for wanting to use categorical language take time and space to
fully unfurl. It is perhaps best to internalize some examples of categories that have
appeared implicitly in other portions of this text.

Example 10.1 (Simplices) ©)
The definition of the standard n-simplex in Chapter 2 was explicitly geometric. A
categorical n-simplex is the category

[\ = 0—1—02—---—n—-1—n,
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whose objects are the ordinals through n and whose morphisms are induced by the
total order <. Of course, there are more morphisms than the generators displayed
above, as composition must be applied: for example, drawing the picture associated
to [3] (without drawing the identity morphisms) should reveal a familiar picture. In
§10.3 it will be shown how to build complexes (in a category) from such simplices by
building a larger category, Simp, whose objects are the n-simplices above. ©

e T
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Example 10.2 (Temporal dynamics) ®

Dynamics bifurcates into continuous-time and discrete-time. Continuous-time dy-
namics (such as, solutions to differential equations) involves a flow on a space X —
an action of R on X via homeomorphisms. In contrast, discrete-time dynamics in-
volves an iterated homeomorphism h : X — X, interpretable as an action of Z on
X. Both settings are interpretable as a space X acted on by a category — in these
cases, the totally ordered groups R and 7Z, with objects interpretable as time and
morphisms determined by the total ordering. With a categorical perspective, it be-
comes clear how to investigate dynamics with more subtle temporal features, such
as irreversibility, multi-dimensional time, locally-orderable but not globally-orderable
time, and branching timelines: one simply replaces time with a different category. ®

Example 10.3 (Boolean logics) ®

Logic gates and circuits are built on a Boolean foundation, expressed as a ring {1, T}
(or, often, {0, 1}) connoting false/true, along with the operations of disjunction (A,
i.e., AND), conjunction (V, i.e., OR), and negation (—, i.e., NOT). These are greatly
generalizable. A Boolean algebra is a set B with a pair of distinguished members: 0,
the minimum; and 1, the maximum; having commutative, associative, and distributive
binary operations A, V, as well as a unary operation = which relate to the min/max
values as follows:

bvO=b=bA1l ; bV-b=1 ; bA-b=0.

A Boolean algebra forms the objects of a category whose morphisms are a — b iff
aV b = b (or, equivalently, a A b = a). It helps to read this out loud using logical
terminology. Boolean algebras form the objects of a category, Bool, whose morphisms
are functions preserving 0, 1, A, V, and —=: f(aA b) = f(a) A f(b), etc. Boolean
algebras are a first hint at the utility of categories in logic, as commutative diagrams
in Bool yield equations inside each Boolean algebra. ©®

Example 10.4 (Flow category) ©
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It is not the case that morphisms need to encode something explicitly algebraic or set-
theoretic: dynamics is another source of morphisms. Consider the following category
Cj, associated to a smooth function h: M — R on a manifold M [69]. The objects of
Cp, are the critical points of h. Morphisms are flowlines of the gradient flow of h, up
to time-reparametrization.

To allow for composition, flowlines are interpreted as
broken flowlines with critical points in the interior allowed.
This forms a category with some additional structure — each
set of morphisms M(p, g) can be given the structure of a
topological space. For example, the round sphere S? C
R3 with the simple linear height function yields a category
with two objects (the two critical points a and b). The
morphisms are spaces: M(a, a) and M(b, b) are each a
single point (the identity, corresponding to the invariant
fixed point as a flowline); M(a, b) is homeomorphic to S!
and represents all possible flowlines from top-to-bottom; M(b, a) is empty. ©

10.2 Morphisms

The beauty of category theory is the ability to work with mathematical operations in
a platform-independent manner. As a sample of what is possible with these very basic
definitions, consider the following constructs, interpretable as lifting basic ideas from
the algebraic to the categorical. All of the following demonstrate the difficulties and
opportunities implicit in working with morphisms.

Monic: What does it mean to have a mor-
phism in a category C that is injective? One
is not permitted to discuss the inverse image @\/—\*/@——_,@
of an arrow; kernels, images, and all other

linear-algebraic thinking requires a reforma-
tion. The categorical analogue of an injection
is @ monic morphism: a morphism f is monic if it is left-cancellative, i.e., whenever
fog="foh, then g = h. This is perhaps best digested in diagrammatic form. It
is a delightful exercise to convince oneself that this is, indeed, the proper definition
of injective when one has no recourse to sets, but only to morphisms, identities, and
composition.

Epic: The associated notion of an onto mor-
phism — epic — is pleasantly symmetric to
@—‘»@O@ the monic case. A morphism f is epic if

whenever go f = ho f, then g = h (right-
cancellative). The symmetry between epic
and monic is manifest and is not the last time
that initially disconnected notions (into, onto) are revealed as dual under the appro-
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priate categorical lift.

Iso: The reader might guess that an iso-morphism would be any morphism that is
both epic and monic. This is not equivalent to the true definition of an isomorphism
— a morphism f that has an inverse f such that fof and f o f are both identities (on
potentially different objects). For example, the inclusion N < Z is epic and monic in
the category of monoids®, but is not an iso. In sufficiently nice categories, such as
Set, iso is equivalent to epic-plus-monic. Isomorphic objects in a category are ones
which have an isomorphism between them. In Set, isomorphic objects are equicardinal
(via a relabelling of elements); in Top, isomorphic objects are homeomorphic spaces; in
hTop, isomorphic objects are homotopic spaces; in Grp, isomorphic means isomorphic.

Initials and terminals: The simplex category [n]
has two distinguished objects: 0 and n, at the
beginning and end of the category. In a general
category, an initial object is one with a unique
® morphism from it to every object in the category

(cf. 0). A terminal object is one with a unique
//l‘\\ morphism from every object in the category to it

(cf. n). Initials and terminals are easily shown to

be unique up to isomorphism. Not all categories
possess initial or terminal objects; even those derived from a total order (like (Z, <))
do not necessarily contain their /imitsin this sense. Examples of categories with initials
or terminals include the following:

1. Opyx has @ as initial and X as terminal objects.

2. The empty set & is the initial object of Set: any 1-point set is a terminal object
(unique up to isomorphism).

3. In Grp and Vect, the singleton object is both initial and terminal.

In a given Boolean algebra, 0 is initial and 1 is terminal.

5. In Bool, the 2-element algebra {0, 1} is initial, and the single-element algebra
{0} is terminal.

e

Equalizers: In linear algebra, one cares about the kernel of a transformation; in
calculus, one defines level sets as kernel-like objects. The category-theoretic analogue
is an equalizer.

Given a pair of morphisms f, g € M(a, b), the equalizer

® is defined to be the universal object-morphism pair e : @ — a
B X _f such that f oe = goe. That is, given any morphism x with
Y / ° — ® fox = gox, there exists a unique morphism u by which x
o ~ factors through e. Note how everything is defined in terms

of morphisms — the objects are implicit. The connection to

kernels and level sets is discernable when working in the appro-
priate categories. The diagram implies that equalizer is the solution to the equation
“f — g = 0" when such is sensible.

3A category whose objects are monoids and whose morphisms are monoid homomorphisms that
respect multiplication and identities.
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10.3 Functors

By this point, the reader will not be surprised to learn that in category theory, it is not
the objects that matter so much as the morphisms. However, the delimited purview
of a single category is too weak: vim resides in structure-respecting transformations
between categories. A functor is an assignment F: C — C’ taking objects to objects
and morphisms to morphisms in a manner that respects composition and identities:
identity morphisms are sent to identity morphisms and likewise with composed mor-
phisms. Some readers will find it helpful to write out all the equations implicit in this
formulation.

The simplest functors are the forgetful functors, which
simply remove structure from a category. For example, the
removal of a (topological, group, differential, order) struc- ©0— —0©
ture from a (space, group, manifold, poset) is a forgetful
functor from the category (Top, Grp, Man, Pos) to Set.
Homology and homotopy groups are at the heart of alge- (\é—— Y Y
braic topology: these are functors and convert topological O >
data to algebraic data in a manner that is functorial. The
reason for that particular word choice should now be clear.
Homology H, is a functor from Top to GrAb, since a map f: X — Y has induced
homomorphism H(f): He(X) = He(Y). Cohomology H* is not quite a functor from
Top — GrAb, since the induced homomorphism goes from H*(Y) to H*(X): how-
ever, the induced maps behave as a functor would, but backwards. The language of
an older dispensation distinguished covariant and contravariant functors — homol-
ogy is covariant; cohomology, contravariant. Contemporary fashion keeps functors
face-forward and expresses cohomology as a functor on a flipped category.

Example 10.5 (Duality & opposites) ©)

Duality is seen to live in many forms throughout mathematics, hinting at a general
construct. Given a category C, the opposite category C° has the same objects, but
reverses the direction of all arrows: M°(A, B) := M(B, A).

For example, given a poset (P, <), thought of as a
category with a unique morphism a — b iff ab, the dual
?’ "ﬁ’) category is the poset (P, =) which reverses the partial order.

“ Opposites can also be used to set aright those functors that
” J ” do things in reverse. While homology H(+) gives a functor

Y Y from Top — Ab, cohomology H*(-) yields a functor from
© © Top® — Ab. The operation of passing to the opposite
category is, like other forms of duality, involutive: (C°)° =

C. ©

Example 10.6 (Simplicial sets) ©)

The treatment of simplicial complexes in Chapter 2 conflated geometric things (spaces,
gluings) with algebraic data (simplices, orderings, faces). This mixture of the geomet-
ric and the algebraic is best viewed via functors. Recall the definition of an n-simplex
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[n] from Example 10.1. One can build a larger category, the simplex category, Simp,
whose objects are [n] for n € N and whose morphisms are functors [n] — [m], that
is, order-preserving functions. These morphisms are generated by the face maps,
Dy [n] — [n — 1], and degeneracy maps, S : [n] — [n + 1], which respectively skip
or repeat the k™ index:

Dii0=1—...-nN=(0—-1—=...25 k1= k+tl— ... > n)
Ss\(0=21—>...omM=0—-21>...5k12k—>k—=>k+l—...—>n)

These do not freely generate the category — there is a list of relations that these
morphisms must satisfy in order to mimic the network of faces of simplices [158,
220]. As indicated by the terminology, there are degenerate simplices in this theory.
For example, a morphism [3] — [1] given by (0,1,2,3) — (0,0,1,1) resembles a
degenerate 3-simplex with projected image a 1-simplex.

It is easy to use such a structure as a model
onh which to build representations that capture the

combinatorics of oriented simplices. For example, a
f j Ai E simplicial set is a functor X: Simp® — Set. This

functor associates a set to each object in Simp and

glues them together along all faces. Simplicial sets
A A are ideal for keeping track of the combinatorics of an

oriented simplicial complex in a unified package, and

are an especially nice class of structures on which to
é ® A do homotopy theory: one has the freedom of work-

ing in infinite dimensions (note that Simp contains
simplices of all dimensions) while maintaining an ef-
ficient bookkeeping. One thinks of a simplicial set
as a single infinite-dimensional Platonic simplex outfitted with a list of folding instruc-
tions sufficient to produce the (potentially finite) output. To complete the intuition
back to the topological, any simplicial set can be converted into a topological space by
means of another functor, the geometric realization functor, | e |, which, in one in-
stantiation, results in a CW complex with one n-cell for each nondegenerate n-simplex
[158, 220]. These are not the best spaces for computation, since the data structure
is prodigal: each nondegenerate 2-simplex comes with 9 degenerate 2-simplices and
an infinite number of higher-dimensional degenerate cousins. ©

Example 10.7 (Nerves, redux) ©

The complexity implicit in the definition of simplicial sets induces elegance elsewhere.
Nerves of covers can be lifted to more general settings, to great effect. The nerve of
a small category, N(C), is the simplicial set whose n-simplices are ordered sequences
of n composable morphisms in C — a chain of n arrows. Thus, the objects of C are
the vertices of N; the arrows of C form its edges; pairs —— of incident arrows are
2-simplices, etc. Such a formal 2-simplex really does look like a 2-simplex, since the
two arrows can be composed to obtain a third edge. This hints at how to specify
the face and degeneracy maps, as must be done for a simplicial set. The degeneracy
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map Dy removes the (k + 1)t arrow and replaces the k™" arrow with the composition
(or eliminates the first/last arrow if kK = 0,n resp.). The face map Sk inserts an
additional arrow by using the identity arrow at that object in C. One checks that
the relations hold and that the result is a simplicial set. In the case of C(U) the
poset induced by intersections of elements of a finite cover U = {U;} of a space, the
nondegenerate simplices of N(C(U)) are precisely the simplices of the classical nerve
complex N(U) as in §2.6. The categorical nerve, being a simplicial set, has a great
many more degenerate simplices. These all collapse out, and the geometric realization
of the categorical nerve is homotopic to the classical nerve. ©

10.4 Clustering functors

Categorical language has found its way into a few disciplines outside of Mathematics,
with Computer Science being chief among them. At first glance, such applications
might seem like a translation to a foreign language: intricate, symbol-ridden, and un-
readable. The following application to statistics should convince an otherwise sceptical
reader of the utility of categorical thinking.

Sections §2.2, §2.5, and §5.14 have discussed methods for

Y R approximating the topology of a cloud of data points via homol-
o . . . .

°°‘;f° og%°°g°° ogy. The first-order term of this sequence is the computation
o ° °e of the number of connected components. Though this problem
LY % . ) e . o
°° o oo of clustering is easily stated, its importance in statistics and

0, . . . . .

o°o§ °o§,°°° the natural and engineering sciences is immense. The subtlety

° °°3 o ©° ° of partitioning a discrete set Q C R” into clusters is evidenced

both by the enormous literature and by results like the following.

Consider a clustering algorithm as a function which takes
as input a finite metric space Q (thus, pairwise distances between points are known,
but placement up to rigid Euclidean motions is irrelevant) and returns a partition into
clusters. Desirable properties for a clustering algorithm to possess would seem to
include the following:

1. Scale-invariance: Clusters are invariant under rigid rescaling of the metric.

2. Surjectivity: For any partition of a finite set Q, there exists a metric on Q which
yields that partition as the clusters.

3. Consistency: Given an input Q with resulting cluster, move the points of Q
so that within clusters, distances between points do not increase, and between
clusters, distances between points do not decrease. The resulting input Q' has
clustering identical to that of Q.

The consistency property, though hardest to state, is no less desirable than the
others: indeed, it seems vital. The following theorem of Kleinberg asserts the mutual
incompatibility of all three conditions, in a manner not unlike the Arrow impossibility
theorem in voting.



216 Chapter 10. Categorification

Theorem 10.8 ([194]). There does not exist a clustering algorithm which is scale-
invariant, surjective, and consistent.

The critical observation of Carlsson-Mémoli is this: clustering can be functorial.
A classical clustering algorithm takes an object from a category of finite metric spaces
and returns an object in the cluster category, Clust, whose objects are pairs (Q, P?)
consisting of a finite set Q and a partition P2 thereof. The morphisms in Clust consist
of functions f: Q — Q' that send points-to-points and partition elements to partition
elements in such a manner that f=1(P2') is a refinement of P2 — a cluster morphism
can coalesce clusters but not break them up.

A clustering functor is a functor from a

category of finite metric spaces to Clust. It S o O ps

not only assigns clusters to a point-cloud, it % oo% o 80%
converts morphisms between point-clouds into 0®

correspondences between and refinements of o ©

the resulting clusters. The desired properties 0% o °o 0% So
for a clustering algorithm — e.g., consistency or ° °

scale-invariance — should be built into the mor-

phisms of the categories chosen. Consider the category FinMetS whose objects are
finite metric spaces Q and whose morphisms are distance non-increasing. That is
f1Q— Q with d(f(x), f(x")) < d(x, x'"). With this structure for FinMet=, a cluster-
ing functor to Clust must of necessity satisfy a property like consistency. The other
conditions of Theorem 10.8 can be likewise programmed into the categories in such
a manner that the proper interpretation is that there exist no nontrivial onto functors
from FinMet= to Clust: see [60] for details.

What is the good of this? Category theory is criticized as an esoteric language:
formal and fruitless for conversation. This is not so. The virtue of reformulating (the
negative) Theorem 10.8 functorially is a clearer path to a positive statement. If the
goal is to have a theory of clustering; if clustering is, properly, a nontrivial functor; if no
nontrivial functors between the proposed categories exist; then, naturally, the solution
is to alter the domain or codomain categories and classify the ensuing functors. One
such modification is to consider a category of persistent clusters.

Define PClust, the category of per-
sistent clusters, to be the category whose

- R objects are pairs (Q, P2), where P2 is
[,

P SE——

O

P S—

a persistent partition: a family of par-
— titions of Q depending on t € [0, c0)
such that P2 is a refinement of PZ for
t < t'. The morphisms are t-dependent
morphisms from Clust — a t-dependent family of refinements of clusters. Such a
persistent clustering is related to the notion of a dendrogram: one thinks of t as
something like a decreasing resolution of the clustering.

Theorem 10.9 ([60]). There exists a unique functor FinMet> — PClust which takes
the input {e —e} consisting of two points at distance R to the persistent cluster having
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one cluster for t > R and two clusters for0 <t < R.

This provides a resolution to the conundrum of Theorem 10.8:
it is surjective and consistent, and the persistent clustering scales
with metric scaling in a clear manner. Not surprisingly, this cluster-
ing method is well-known: it is called single linkage clustering and
is equivalent to saying that the clusters are given by mo(VR:(Q)) —
the connected components of the distance-t Vietoris-Rips complex
of Q. The appearance of the Vietoris-Rips complex here is not un- o—
expected, but pleasant nonetheless. Functoriality of the clusters is
captured in the appearance of the functor mg.

10.5 Natural transformations

The reader for whom this material is an introduction F(h)
may suspect that a joke is being played when it is asserted F(a) —— F(b)
that the truly interesting objects of study in category theory
are neither morphisms nor functors, but rather correspon- n(a)l 4 Jn(b)
dences between functors. Nevertheless, this is asserted in all F'(a) —— F'(b)
seriousness: such a construction was indeed the true impetus F'(h)
for the creation of category theory [211]. A natural trans-
formation, n: ¥ = F connects a pair of functors F,F: C — C' by sending each
object a € C to a morphism n(a): F(a) — F'(a) so that for each morphism h: a = b
in C, there is a commutative square connecting F(h) and F'(h):

Said better, a natural transformation is a functor
in the Category of categories. This is a deep idea — that
categories themselves form the Objects of a Category

4 4 whose Morphisms are functors (under functor compo-
@{ ?@/ sition and with the identity functor playing the obvi-
\ \ ous role). The Functors of this Category relate a pair
4 of Morphisms: in the original category, this is precisely

what a natural transformation is.

Natural transformations are, like functors, com-
posable. Given n: F = Gand n': F = G, there is the
obvious natural transformation non': F-F — G- G However, it is also possible to
compose a natural transformation i with a functor J, either on the left, H - n, or on
the right, - H, obtaining a modified natural transformation.

Example 10.10 (Translation) ©)

Consider the reals (R, <) with the total order as a category: there is one morphism
a — b whenever a < b. Translation by € is a functor T.: R — R that sends a —
a+ € and preserves the order (hence morphisms). The translation functor does very
little: just a shift in objects. Thus, it comes as no surprise that there is a natural
transformation 7.: Id = T, from the identity that takes (a < b) to (a+€ < b+¢€).
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One can interpret the naturality in this setting as the indifference to whether one
<-compares objects before or after the translation. ©

Example 10.11 (Snakes) ©
The Snake Lemma (Lemma 5.5) asserts the existence of the connecting homomor-
phism §: He(C) — He_1(A), given a short exact sequence on A — B — C. What
makes the result so powerful is the so-called naturality of the resulting long-exact
sequence, as per Equation (5.5). This is equivalent to saying that § is a natural trans-
formation as follows. Consider the category ChCoSES of short exact sequences of
chain complexes. The Snake Lemma asserts that § is a natural transformation on
homology functors to GrAb:

0> A—->B—->C—-0 5 0>A—>B—>C—0
) ° )
He.(C) He 1(A)
©
Example 10.12 (Co/homology equivalences) ©

One of the great advantages of the multiple homology theories developed in Chapter
4 is that they are all isomorphic and that these isomorphisms are natural. This means
that not only do the cellular and singular homologies of a cell complex agree, but maps
between cell complexes induce the “same” homomorphism on homologies, as noted in
85.4. Of course, this naturality really means that there are natural transformations
between the various homology functors: cellular, singular, Morse, Cech, etc., restricted
to the subcategory of spaces/maps on which both theories are defined. These are,
specifically, natural isomorphisms between homology functors, meaning that, e.g.,
between H3"9 and HS®', there are an inverse pair of natural transformations whose
compositions (both ways) yield the identity natural transformation on each homology
functor. Natural isomorphisms are fundamental. ©)

Example 10.13 (Retraction to a cone point) ©

Given any category C, there is a unique functor R: C —
{®} to the category with one object and one (identity) mor-
phism. This R collapses all objects to e and all morphisms
to the identity. For any fixed object a € C, the obvious
functor J,: {e} — C that sends {e} — a acts like an inclu-
sion that satisfies R-J, = Id.. In what sense could J,- R be
compared to the identity functor Idc? In the case that C g &
has an initial object 0 € C, then there is a natural transfor-
mation 1: Jg- R = Idc given by sending (2 — ¢ — 0) — a,
using the unique morphism from the initial. This hints at the role played by an initial:
it acts as the apex of a cone along which the category is, metaphorically, contractible.*
©

4“More than metaphor: the nerve of any small category with an initial object has contractible
geometric realization.
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One says that categories are isomorphic, C = D, when there are functors ¥: C —
D and G: D — C which are inverses in that §-F = Idc and -G = Idp. This is rarely
satisfied, even for categories that seem very closely related. More common (and
useful) is the case where there are not equalities but rather natural transformations
§-F = Idc and F- G = Idp to the identities. One says that such categories € &~ D
are equivalent categories. This is analogous to the way in which homotopic spaces
are topologically equivalent, though not necessarily homeomorphic.

Example 10.14 (Duals and isomorphisms) ®

Duality can be subtle. On the category FinVect of finite-dimensional vector spaces,
there is the dual-space functor D: FinVect — FinVect that sends V — V7. Although
V ~ V" are isomorphic as vector spaces, this isomorphism is not natural. What this
means precisely is that there is no natural isomorphism D = Id. It is true, however,
that any V in FinVect is naturally isomorphic to its double-dual (V¥)": i.e., thereis a
natural isomorphism n: D? = Id. ©

10.6 Interleaving and stability in persistence

One of the more widely-cited results in topological data analysis is the Stability Theo-
rem for persistent homology [70], alluded to in §7.2 for sublevel set persistence. The
treatment of persistence in §5.13 and §7.2 usedc a discretization of the parameter line:
in practice, one may want to use a real parameter. Consider, therefore, the setting
of persistence over R, in which {X;: t € R} is a family of spaces with inclusion maps
X, C X, for a < b, thought of as (lower) excursion sets X; = {h < t} of a height
function h: X — R.

One question of stability is this: for A’ close to h, how much can the topology of
the excursion sets X; change? Any individual X; can change dramatically with a small
perturbation; the content of the Stability Theorem is that the impact on persistent
homology is small. This requires some notion of proximity for persistent homology.
Current practice uses the following definition. Given two R-indexed homology se-
quences, say, Hy(X:) and Hy(X}), they are said to be e-interleaved if there exist
homomorphisms ¢:: H,(X:) = Hi(Xiy) and ¢} Hi(Xi) = Hi(Xiye) such that
¢, ops and ¢ o @), are each the inclusion maps on homology induced by the shift +2¢.

An e-interleaving implies that the homologies of the two sequences can only
differ substantially over short parameter intervals. This motivates defining a pseudo-
metric on persistent homologies by declaring the distance d(Hk(X:), Hc(X})) to be
the infimum of € over all e-interleavings. This is not quite a metric, since it may
take on the value +oo (if no interleaving exists) and two persistence diagrams with
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interleaving distance zero are not necessarily identical (since the infimum may be 0
without a O-interleaving). Nevertheless, reflexivity and the triangle inequality do hold
for this pseudo-metric. In this language, the relevant result is:

Theorem 10.15 ([70]). Given h,h': X — R, the interleaving distance between
the sublevel set persistent homology sequences is bounded by the L., norm of the
difference of the height functions:

d(Hi(Xt), He(X1)) < [1h = Hll -

This result can be translated into categorical language. Consider a function
h: X = R. Then for a < b, the inclusion X, — X, of sublevel sets of h defines
an excursion-set functor £,: (R, <) — Top. The resulting sublevel set persistent
homology is the composition of this functor with H,.

The prevalence of functors motivates
the question: what is the interleaving dis-
tance of arbitrary functors (R, <) - Cfor Ca

/ category? The answer involves natural trans-

F S & L 5 . - i

ormations [51]. By Example 10.10, transla

tion in (R, <) is a functor T, isomorphic to

the identity functor via the natural transfor-

mation T.. An e-interleaving of two functors

F,F: R — Cis a pair of natural transformations n: F=F - T, and n': F = F- T,
such that

(R, <) —— (R, <) —— (R, <)

C C C

(n/'Te)On:EF'TQE and (n'Te)onl:?l'Tge.

The interleaving distance on functors, d(F, J"), is the infimal ¢ for an e-interleaving.
As before, this is not a metric, but rather a pseudo-metric than can take on the value
oo for non-interleavable functors.

Proof. (of Theorem 10.15) [51] Given h,h': X — R, these define excursion set
functors €, €y R — Top. Note that for € = ||h — h'||, = sup, |h(x) — H'(x)],

En(t)={h<t}Ci{hN<t+e}=Ep(t+e)
En(t)={N <t} C{h<t+el=E&,(t+e).

This implies an e-interleaving n,n' of &, and ;. Note that for any F, ' that are
e-interleaved, so are G- F and G- JF', for any functor G, by functoriality. Applying
the homology functor Hyx to &, and &y vyields an e-interleaving on homology for
e=|h—H|- ®

10.7 Limits

Let J be a (small) index category. A diagram is a functor F : J — C from an index
category to a representation category. A diagram can sometimes be thought of as a
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“picture” of J in C [20, 160]. Another interpretation is that a diagram is something
akin to a “sequence” in C (as is the case when J = N). This second interpretation
prompts the notion of a limit of a diagram.

Every student of Mathematics eventually grasps that limits are as subtle as they
are useful. A limiting process has two inputs: that which is converging to a limit, and
the indexing family over which the convergence occurs. The most familiar examples
of limits — a limit of a sequence of points in a metric space, or an intersection of
nested open sets in a topological space — limit over N as a poset. For a categorical
limit, the converging objects reside in a category C and the indexing family is an index
category J. The limit of a diagram & : J — C is a distinguished object limy F € C that
is thought of as a terminus of &.

The definition is facilitated by an auxiliary construct. Fix
F:J — Cadiagram. A cone over the diagram JF is a J-indexed
family of morphisms h;j: A — F(j) from a fixed object A in C
to the image of J in C that respects composition (as per the / \
diagram) for each morphism i — j in J. The collection of cones F(i) » F())
(A, hy) over F forms the objects of the cone category, Coney,
where a morphism between cones (A, hy) — (A", ) means that
there is a morphism A — A’ that makes the triangles with all f;; and h} pairs commute.
One visualizes the cones over F as pyramid-like structures balanced atop the base
image of J.

The limit of a diagram & : J — C is the terminal ob-
ject in the cone category Cones. This has an interpretation

as a universal property: such a limit gives a distinguished
object limyF = lim; F(j) € C and J-respecting morphisms
hi: limyF — F(j) such that any other cone must factor
o through the limit. As terminals, limits carry a connotation

that blends intersection, restriction, GCD, preimage, and
gluing.

Example 10.16 (Limit examples) ©

As in the case of calculus, limits may or may not exist. When a limit exists, it usually
corresponds to something important. The following examples of limits reinforce the
interpretation of a limit as being restrictive in nature.

[intersection] Consider an index category of the form J = e e with no non-identity
morphisms, and a diagram F: J — Opy. This is, simply, a pair of open sets in a space
X. The cone category Cones has as objects open sets in X with inclusions into the
two open sets defined by F. The limit is the largest such open set (any other factors
through it via inclusion): this is the intersection of the two open sets.

[products] The same index category J = e e when sent via F to Top yields a different
style of limit: the cartesian product of spaces. Let F have image objects topological
spaces X and Y. A cone over ¥ is a space Z and maps Z — X, Z — Y such that any
other space Z' with maps to X and Y must factor through Z: this is the cartesian
product Z = X x Y. The same construction works to give the familiar products in
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Vect and Grp as well: all are limits of this simple J = o o.

[AND] Using again the same index category, but taking a diagram into a poset (P, <)
gives as limit the meet, A, of the image of F in P: the <-largest object of P that is <-
smaller that both terms in the image of F. In a Boolean algebra, the limit corresponds
to the logical AND of the two image objects.

[equalizers] Consider the index category J = e = e with two objects and a pair of
morphisms between them. For any diagram & of J in C, one notes that a cone over
F is precisely an object in C that factors through both morphisms of the image of
F. The limit is therefore the universal such object: the equalizer. Limits therefore
encompass kernels in linear algebra.

[cohomology] This implies, in particular, that the simplest cohomology group is a
limit. The zero®™ cohomology H°(C) of a cochain complex C is simply the kernel of
d: C%— C! Since a limit is a generalized kernel, H° should be expressible as a limit:
it is. For a discrete example, let X be a cell complex with face poset given by <. Then

H°(X;G) = lim G, (10.1)
geX

where the limit is over the constant diagram that sends each simplex in the face poset
of (X, Q) to the group G.

[terminals] The empty category is a valid choice for J. The only diagram of this J in
C is the trivial diagram. By definition, a cone is simply an object of C, and the limit,
if it exists, is precisely a terminal object in C: thus limits generalize terminals.

[pullbacks]

The diagram J = e — e < e |eads to an interesting
type of intersection in the limit. Assume a diagram JF that
embeds Jinto Cas A — B < A’. Then, a cone over F and

the terminal limit is determined by commutative squares in
J lg the appropriate diagram. The colimit is called the pullback

of the diagram and is sometimes denoted Ax g A’, co-opting
notation from Top. Examples of pullbacks in this category
include: (1) the pullback of a fiber bundle m: E — B to a
bundle over X via a map f: X — B; and (2) the preimage of a subset A C Y (with
inclusion map t: A — Y) underthe map f: X =Y. ©

There are more interesting limits to be had with the use of complex, non-finite
index categories, including the limits used in calculus. The terminology is intentionally
suggestive: in the same way that a limit of a sequence in calculus is a single point
that best approximates the N-indexed sequence of points, limJF is a single object in C
that best approximates the image of the diagram F. What distinguishes a categorical
limit is its implicit uniqueness and its attendant morphisms to the diagram.
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10.8 Colimits

The astute reader will note that the above examples possess parallel or dual notions
which should likewise have a categorical formulation: direct sums, unions, disjoint
unions, free products, and the like. Each is a colimit obtained by dualizing the defini-
tion as follows.

Given a diagram F: J — C, a cocone is a is an
J-indexed family of morphisms h;: F(j) — A to a fixed
object A in C from the image of J in C that respects
composition in J. These are objects in the corresponding
cocone category, CoCones, where a morphism between ©— e
cones (A, hy) — (A’, h}) means that there is a morphism ﬂ
A — A’ that makes the triangles with all h; and Al pairs
commute. The colimit of a diagram F : J — C is the
initial object in the cocone category of &. This, too, has
an interpretation as a universal property: the colimit gives a distinguished object
colimy JF = colim; F(j) € C along with J-respecting morphisms h;: colimyJ — F(j)
that factors through any other cocone.

Example 10.17 (Colimit examples) O

The colimit generalizes the initial (and indeed is the initial if J is empty). Other
examples of colimits build an interpretation of a colimit as being agglomerative or
disjunctive in nature.

[union] For the simple index category J = e @ and a diagram J: J — Op,, CoCones
has as objects open sets in X containing the two open sets defined by . The colimit
is the smallest such open set (it factors through any other via inclusion): this is the
union.

[coproducts] A diagram of the same index category to Top has image spaces X and
Y. The colimit of & is a space colimg and maps from X and Y such that any other
space with maps from X and Y must factor through the colimit: this is precisely the
coproduct (or disjoint union) X LY. The same colimit in algebraic categories like
Vect or Grp is the direct sum, @&, of the objects. All of these colimits express a union
and a disjunction.

[OR] In a poset (P, <), the colimit is the join, V, of the F-image: the <J-smallest
object of P that is <-larger that both terms in the image of F. In a Boolean algebra,
the colimit corresponds to the logical OR of the two image objects.

[coequalizers] The index category J = e =3 e leads to a colimit that is dual to an
equalizer. This is called the coequalizer of the diagram, and, in Vect, expresses the
cokernel. This emphasizes that colimits are more like quotient objects than subobjects.

[homology] As with cohomology and limits, the zero™ homology, Hy(€) of a chain
complex € is a colimit. For example, if (X, <) is a cell complex with face poset, then

Ho(X; G) = colimG, (10.2)
ceX
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where the limit is over the constant diagram (X, Q) —» G.

[pushouts] The diagram J = e < e — e |eads to an amalgamation in the colimit.
The colimit is called the pushout of the diagram and is

. P .
sometimes denoted AUg A , c.o opting nqtat|on from Top. B N
An example of a pushout in this category is the wedge sum
of pointed spaces AV A’, where B is a singleton and f fl J
and g are inclusions. An algebraic example of a pushout A s colim F
in Grp is in the form of the Van Kampen Theorem (8.4),
the statement of which is simplified greatly with categorical e
language: 71 (U U V) is the pushout of the diagram

7'('1(U) — 7F1(Uﬂ V) — 71'1(\/).

[infinite-dimensional spaces] Throughout the text, invocations of certain infinite-
dimensional cell complexes — such as S*° or P> — have been made in ignorance of
their precise definition. Colimits assist with this. Consider the diagram of N in Top
given by the standard embeddings R? < R! < R? < ---. One can define R* to be
the colimit of this diagram. The reader can easily adapt this to define S, P>, T,
and inductively built CW complexes. Fortunately, these colimits in Top exist. ©

In applications, one must work to show that [co]limits exist and to show how they
behave under a given functor. A category for which [co]limits of all diagrams exist
is called a [co]Jcomplete category. Functors that preserve [co]limits are called, of
course, [co]continuous . A visceral comprehension of limits and colimits is essential
to applications of category theory. Contemporary problems in data, networks, and
sensing all involve localization of data and integration of local data into global: limits
and colimits.

10.9 Sheaves, redux

The language of categories mirrors, expands, and simplifies greatly the many defini-
tions of Chapter 9.

Cellular Sheaves: Let X be a regular cell complex and Facex be the poset category
of the cells of X under the face relation <, so that objects are cells and there is a
unique morphism o — T for every face o<t (with the identity face giving the identity
morphism). By now the reader has probably observed that a cellular sheaf over X is
neither more nor less than a functor F: Facex — C, where, in Chapter 9, Vect and Ab
were used extensively for C. The first consequence of this extended language is that
one may easily interpret what is meant by a sheaf of sets, or a sheaf of monoids, or
any kind of categorical data: it is the composition that is key. One thinks of a cellular
sheaf as being a representation of Faceyx in C.

The wide variety of categories available as data types greatly expands the vector
spaces used in Chapter 9 and yields a number of interesting objects. For example, a
complex of groups is a sheaf on a cell complex X taking values in Grp, a complex



10.9. Sheaves, redux 225

of spaces is a Top-valued sheaf on X, etc. The important construct comes in gluing
together local data over cells into a global object. The process for doing this gluing is
specified in Equation (9.2): it is a choice of data on each cell that agrees according
to faces and restriction maps. As an exercise in understanding concepts, the reader
should show that the value of the sheaf F on all of X is precisely the limit over the
face poset category:

F(X) = lim F(o) = H'(X; F). (10.3)

This equality is a slight abuse of notation. To wit: the
explicit definition of F(X) from Equation (9.2) specifies
local data on each cell. This is precisely a cone over the
diagram F: Facex — C. By the definition of a limit, there
is thus a unique map from F(X) to the limit. By equality
is meant that this unique map is a natural isomorphism,
as can be shown by means of the compatibility condition
for the assignment of local data. Note that for data taking
values in more general categories than Vect or Ab, one must
become concerned with the existence of limits. Fortunately,
finite limits tend to be uncomplicated things. The same cannot be said for infinite
limits.

Topological Sheaves: The subtleties of sheaves over a tooplogy demand the refine-
ments of categorical language. A presheaf on a space X taking values in a category
C is, precisely, a functor F: Op$ — C, where the preservation of composition of mor-
phisms corresponds to the respecting of restriction maps. The stalk of a (pre)sheaf
was defined via Equation (9.8) as an awkward sort of limiting equivalence. In truth,
it is a colimit,
F, = colimF(U),
Usx

where the U are open sets containing x, partially-ordered by reverse inclusion (U —
V for V C U) to provide a diagram over which the colimit is computed. It is an
exercise to show that this categorical colimit gives the same answer as the more
explicit mechanical process of (9.8).

As noted in Chapter 9, a presheaf alone does not make a sheaf. For this,
an additional condition must be satisfied. This gluing axiom has several equivalent
formulations in the language of this chapter. The most direct is a reinterpretation of
the exact sequence in Equation (9.9). Namely, for any open cover U = {U;} of U, the
value of F on U is an equalizer:

TUW) G

While this formulation is correct and canonical, it is perhaps not optimal in its reliance
on a mechanistic collation of pairwise gluings. A more elegant reformulation uses the
full nerve complex N(U) of the cover U of U and recapitulates the approach in §9.6
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of approaching sheaves over a topology via nerves. The gluing axiom is equivalent to
saying that
FU) = lim F(U,), (10.5)
U,eN

independent of the cover U. Asin Equation (10.3), the equality is an abuse of notation,
meaning that F(U) is naturally isomorphic to the limit of & over the cover. This limit
is computed over the face poset of the nerve N of the cover U, as in the cellular
case above. A cell U, in the nerve N is indexed by a multi-index J that determines
a nonempty intersection of the open sets U;, i € J, making F(U,), and the limit,
well-defined. This condition is worth repeating: a sheaf converts open covers into
isomorphic limits. Depending on one’s predilection and mood, the equalizer or limit
formulations of the gluing axiom will come more readily.

Sheaf Operations: The various manipulations of sheaves outlined in §9.7 provide
excellent instances of categorical constructs. For example, a sheaf morphism is neither
more nor less than a natural transformation 17: F = F between sheaves-as-functors.
In fact, depending one which subject one learns first — sheaves or categories — this
example may assist in making concrete an otherwise opaque definition. Thinking of a
natural transformation as a mapping between data structures over a category can be
illuminating.

Sheaves provide a topological and data-centric view of categories that may assist
in making the subject more visceral. One can think of any functor F: C — C’ as an
assignment of data from the target category C’ to the source category C in a sheaf-
like manner. Natural transformations n: & — F' provide the means of transforming
from one data structure to another. When the target category is sufficiently algebraic
(say, Ab), then it is possible to define kernels and cokernels of data, leading to the
cohomology of F. This foreshadows one of the most powerful set of topological tools
in category theory: derived functors, of which sheaf cohomology is a motivating
precursor.

10.10 The genius of categorification

The goal of this chapter is to point the reader to
categorification: the systematic lifting of, say, numerical

© ©
data to a higher categorical structure, with a concomitant
functoriality. This functoriality is key, and permits a lifting ‘ir ﬁ;
© ©

of numerical equality (“/ wonder why these two numbers
happen to be equal?”) to an algebraic equivalence (“These
two structures are isomorphic.”), with the ability to make
additional high-level connections. A subsequent decate-
gorification back to the numerical can, in the best cases, provide explanatory power
and intuition for deeper results.

Categorification — like category theory — is not itself a branch of topology; how-
ever, it has been so influenced by and effective in topology that it is fitting to end this
text with a gentle invocation. The focus will be on the sprit of the subject rather than
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on rigorous results.

Example 10.18 (Arithmetic, simple) ©

Counting is the primal decategorification, so internal as to have been sublimated as
such. To each finite collection of objects (apples, oranges, coins, cats, or czars),
one associates an element of N — the cardinality of the set. This abstraction permits
referencing a generic set of N objects, without having to specify the membership
thereof. To categorify this, the reader might first try the category of finite sets,
FinSet. The cardinality function | -|, sends objects of this category to N and descends
to a bijection from isomorphism classes of objects in FinSet to N. Note that FinSet
has more structure than N: an isomorphism between objects specifies identities as well
as preserving cardinalities. Because FinSet is a category, one can apply categorical
constructs and decategorify to see the numerical impact. For example, the colimit of
a pair of sets (the disjoint union) decategorifies to addition; the limit of a pair (the
cartesian product) decategorifies to multiplication. Certain basic laws — commutativity,
associativity, distributivity — have higher equivalents, and the order relation < on N
is enriched to the language of injectives and projectives. Interesting though this may
be, a reformulation of arithmetic in terms of category theory provides no new insight;
rather, it is an elementary example of how the most primal bits of mathematics are

the shadows of emanations from higher-up the hierarchy of structure. ©
© o le o o o le e olle o
©
© @l o o el © oj/le o
©
© © o o e o olle o
Example 10.19 (Arithmetic, complex) ©

The categorification of N to FinSet is not optimal: it leaves unclear how to recover
negative numbers, for example. Fortunately, there are multiple possible categorifica-
tions, some of which are more generalizable. Consider the subcategory FinVect of Vect
consisting of finite-dimensional vector spaces over a field F. Then one can lift N to
this category by means of the decategorification dim: an n-dimensional vector space
is the lift of n € N. Isomorphic objects in FinVect have the same dimension. In this
categorification, the lift of addition is the direct sum, @, and the lift of multiplication
is to the tensor product (over F), ®. There are (unique) identity objects for these
operations: the O-dimensional vector space, for &, and the 1-dimensional vector space
F, for ®. By categorifying to a linear-algebraic setting, the morphisms between (even
isomorphic) objects are richer and can store more data about relationships.

Other categorifications are more enlightening still. Consider FinChCo, the cat-
egory of finite, finite-dimensional chain complexes (over a field F), with chain maps
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as morphisms. The previous categorification to FinVect embeds in FinChCo as a se-
quence with one nonzero term. With complexes, one has a categorification of Z as
follows. Given a two-term sequence (extended by zeros),

30— 00—V W —0—0—

one can decategorify to Z by a difference of dimensions: dim V —dim W. The reader
will recognize once again the appearance of the Euler characteristic x: FinChCo — Z.
By lifting Z to all of FinChCo, arbitrary (finite) sequences of vector spaces collapse
via alternating sums of dimensions, providing a rich structure of sequences and chain
maps comparing them. ©

Example 10.20 (Co/Homology) ©

The two primal examples of decategori-
fication — dimension and Euler characteris-
%@@@@@ tic — have appeared repeatedly in this text.

— — — By Theorem 3.7, they are together complete
invariants of definable sets up to definable
homeomorphism. Lifts of these two types of numerical invariants are central to al-
gebraic topology. For a cell complex X, the combinatorics of adding together the
number of cells, weighted by the parity of the cell dimension seemed in Chapter 3
to give a serendipitous topological invariant in x. Likewise, in Chapter 4, computing
dimensions of simplicial homology groups to count cycles up to equivalence seemed to
not depend on the simplicial structure. Mathematics knows no such generous deity,
and coincidence hints at deeper reasons. The explanation given in Chapter 5 used
the language of homology and exact sequences. More vocabulary is now available:
co/homology is a categorification.

By converting the cells and assembly instructions into a chain complex C =
(Ce, ), one obtains a homology H, that is functorial (maps between spaces yield
chain maps that descend to homomorphisms on homology) and thus explains why
topological invariance holds. Better still, natural equivalences between homology the-
ories permit lifting x and H, to singular or non-cellular settings. The final ingredients
are the corresponding decategorifications which send homology groups back to N (via
dimension — a Betti number) or to Z (via the Euler characteristic). With the addition
of cohomology, one picks up a multiplicative structure and a wealth of new dualities
and relationships.

Nearly every tool in algebraic topology — long exact sequences, duality, naturality,
excision, connecting homomorphisms, cup products, bundles, fibrations, sheaves — is
built on the functoriality that categorification enables. Nearly every application in
this text — to data, dynamics, games, networks, sensing, signals, clustering, coloring,
motion planning, material defects, and more — rises from this functoriality. ©

Example 10.21 (Co/Sheaves) ©

Sheaves and sheaf cohomology (and their duals) provide categorifications of numerical
data distributed over a space. One simple example from this text is a flow sheaf from
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8§9.4-9.5. Recall that for a given flow on a directed acyclic graph X with capacity
constraints, one cares about the net flow value at the source/target. The numerical
capacities were lifted to a flow sheaf & by means of dimension — stalks over edges
are vector spaces whose dimension equals the flow capacity at the edge. Restriction
maps for the sheaf encode flow routing (or coding). The benefits of this categori-
fication include (1) the ability to use sheaf cohomology to characterize information
flows and flow values; (2) the ability to relate flow- and cut-values by means of long
exact sequences; (3) the presence of duality in sheaf cohomology as the analogue of
decomposition of flows into loops; and (4) the ability to use Euler characteristic to
see obstructions to max-flow and min-cut values.

A better example of sheaves-as-categorification in this text is the
Euler calculus of Chapter 3. As the Euler characteristic is a decate-
gorification of co/homology, the Euler integral is a decategorification of ®
compactly supported sheaf cohomology with coefficients in sheaves asso-
ciated to constructible functions. As per §9.9, any constructible function
h € CF(X) on a tame set X lifts to a complex of cellular sheaves J73
compatible with the triangulation of X induced by h. The decategori-
fication of this complex by means of Euler characteristic is the Euler
integral fx -dx: CF(X) — Z. The advantage of this perspective is an
immediate access to functoriality, yielding the Fubini Theorem (Theorem
3.11), the integral transforms of §3.9, and more [95, 191, 272]. O]

10.11 “Bring out number”

With reflection, one suspects that many questions in applied mathematics are at heart
functorial in nature and are profitably viewed through the lens of categorification. A
few speculations appear below. Some of these may be realized as proper categorifica-
tions; others are a loose lifting that invoke the insubstantial ghost of functoriality. This
text closes with a hope of provoking the reader into finding and using functoriality.

Example 10.22 (Data analysis) ©)

Topological data analysis has generated a substantial body of evidence that topology
facilitates the management and interpretation of large, unwieldy point clouds. How is
this accomplished? One ingredient is the dextrous application of co/homology functors
in order to capture features of a data set that are global (large-scale as opposed to fine
detail), computable (thanks to Mayer-Vietoris and other exact sequences), and robust
(topological invariants have good properties with respect to noise). The fact that
homology is a functor from the category of topological spaces grants to topological
data analysis a degree of nonchalance with respect to coordinates.

Data analysis begins with clustering, in the same way that homology begins with
Hq. The clustering functors of §10.4 provide an immediate and satisfying categori-
fication, but the problem of classifying and using novel clustering schemes based on
functoriality is as yet incomplete [60]. The (persistent) homologies Hy provide the
higher-order terms in the Taylor series of shape for data. This is limited primarily in
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the restriction to a single parameter — multi-parameter persistence cannot access a
suitably simple Structure Theorem as in 5.21. Perhaps a solution lies in the refor-
mulation of persistent homology as a cosheaf over a 1-dimensional base space, as
in §9.12: the classification of constructible cosheaves over the plane is much more
complex that over the line, but not unimaginably so. Whether this, or more advanced
representation-theoretic ideas, or deeper categorical methods arise to resolve the prob-
lem, it seems clear that the solution to multiparameter topological analysis of data
lies in more abstraction, not less. ©

Example 10.23 (Numerical analysis) ©

When solving a partial differential equation [PDE] by means of a numerical
method, one typically applies the method
and examines the large-scale quali-
tative features of the solution. To
validate that these results are not
artifacts of the numerical scheme, it
IS common to run the method again
on a refined grid or with a shorter
time step, noting again the quali-
tative features of the solution. If
there is a match (or, one might say,
“equivalence”) between these two so-

lutions, then one infers that the solution is genuine. This is a physical instance of the
maxim that morphisms and functors are more useful than objects. This example,
though a bit cartoonish, illustrates the difficulty in building a careful categorification:
what, exactly, is meant by the qualitative features of a numerical solution and an
equivalence thereof?

One way to proceed is to enrich a discretization with
structure inherited from the PDE. Any numerical scheme
works with functions on a discrete spatial domain with dis-
crete time axis. At each such discretization point in space-
time, one has a numerical value. The next time-value is
given as a function of nearby space-time values, according
to the relevant numerical scheme coming from the differ-
ential equation. The simplest such numerical schemes are
agnostic as to the precise form of the differential equa-
tion. Recently, however, it has been shown that one can
get better numerical results when the discretization is en-
riched and forced to preserve some structure inherited from the differential equation.
For example, in the case where a PDE is conservative, such as Hamiltonian systems
(cf. Examples 6.16 and 7.19), the dynamics must preserve an invariant differential
form (say, a volume or symplectic form). Discretizing (decategorifying) a solution
removes this structure. By modifying the discretization to retain a shadow of the ap-
propriate invariant form, one can work to ensure that the numerical scheme preserves
this structure, yielding more accurate simulations. This is precisely the motivating
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idea behind the discrete exterior calculus [12, 13, 32, 94]. Though often presented
as a structure-enriched variant of finite-element methods, it is perhaps better to think
of it as a decategorification of differential forms and Hodge calculus that forgets less
so as to retain enough functoriality to perform operations (wedge products, exterior
derivatives, Hodge-stars, etc.). The specific decategorification is critical.

Example 10.24 (Dynamics and index) ©

Applications of algebraic topology in dynamics and differential equations rest on a
foundation of index theory. In its first appearance in §3.4, the fixed point index J was
described as an integer invariant for equilibria of planar vector fields, computable via
a line integral and robust thanks to Green's Theorem. The Poincaré-Hopf Theorem
(3.5) asserted that this index is additive and yields the Euler characteristic when
“integrated” over the domain. In Example 4.23, J was revealed to be a degree, and
therefore applicable to fixed points of self-maps as well as equilibria of vector fields,
as per Example 7.20. This culminated in the Lefschetz index of §5.10, interpreted
first as something like an Euler characteristic of degrees, then, in §7.7, revealed to
be an integral with respect to Euler characteristic. In the language of Chapter 9, the
fixed point index lifts to a complex of constructible sheaves, the Euler characteristic
of which is the Lefschetz index.
This progression of indices exemplifies categorifica-

tion nicely. It has been seen on the level of co/homology vV dim
that the two simplest types of decategorification — di- AV =V | trace
mension and Euler characteristic — work well with vector Ve X
spaces and sequences of vector spaces respectively. When A Ve > V. =

lifting to dynamics, these have analogues. The dimension
of a vector space generalizes to the trace of a self-map;
the Euler characteristic of a chain complex generalizes to the Lefschetz index of a
chain map. Applying these to the identity map recovers dimension and Euler char-
acteristic. Thus, trace and Lefschetz index are the appropriate numerical invariants
of dynamics. To what do these categorify? In the same way that counting cells and
faces lifts to co/homology and functoriality, counting fixed points and their indices
lifts to the action of dynamics on co/homology.

The story of categorification in dynamics is richer

/ than it at first appears. Consider the gradient fields of
>©\‘ Morse theory in Chapter 7. Here, the fixed point index
Is nearly mute, in that a nondegenerate critical point has

fixed point index 1. This lifts, however, to an N-valued

O / Morse index, w, which characterizes the local dynamics.

Furthermore, with this richer index, one can stack the criti-
cal points into the Morse polynomial: the Morse inequalities
of (7.1) are an instance of a richer algebra unveiled with
slight added structure. This continues with the Morse ho-
mology of §7.3. By converting critical points into chains,
the dynamics is shown to recover the homology of the underlying manifold (Theorem

7.3). Corollary 7.6 asserts that the Morse homology decategorifies to give the Euler
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characteristic.

As one ascends to higher types of structure, categorical language is essential.
The flow category of Example 10.4 converts gradient dynamics into a category, with
critical points as objects and morphisms as flowlines. This category, like Morse homol-
ogy, remembers the underlying manifold, via the nerve construction of Example 10.7
and the geometric realization of simplicial sets as in Example 10.6: the flow category
Cp of a Morse function h: M — R has nerve N(C,) whose geometric realization is
homotopic to M [69].

One of the lessons of Chapter 7 is that the restrictions of classical Morse theory
— manifolds, smoothness, nondegeneracy, gradients — are largely ignorable, given an
appropriate ascension in technique. For example, the categorification of critical points
in a nondegenerate smooth gradient field to Morse homology in §7.1 returns the
homology of the base manifold, as in Theorem 7.3. This is mirrored in the degenerate
setting of a discrete gradient field on a cell complex using discrete Morse homology,
in Theorem 7.23. Better still is the ability to jettison the gradient assumption and
work with dynamics, as occurs in the Conley index of §7.6. This, in its homotopic
and homological variants, is the vanguard of efforts to categorify dynamics. The
prototypical argument for existence of connecting orbits in Examples 7.15-7.16 hints
at a functoriality of the Conley index which exceeds that of the index of Morse.

This story, however, is not completed. There are a multiplicity of extensions of
the Conley index for different settings [128, 129, 266, 286], including, most notably,
the setting of discrete dynamics based on the index pairs as in §7.7. Some recent
work has focused on properties of the Conley index over a large parameter domain
[11, 140], work that hints at sheaf-like properties of the index. This lies within the
purview of the categorification of dynamics, but does not exhaust the possibilities.
Space and time prevent an explanation of zeta-functions for counting periodic orbits
[264], model-category structures for dynamical systems [184], the categorification of
Floer homology to the Fukaya category [19, 275] and its applications [96], and the
interaction of Lagrangian submanifolds with sheaves [170]. There is much more to be
done. ©

Example 10.25 (Optimization) ®

There are numerous instances of minimax theorems in applied mathematics: in game
theory, in optimization and linear programming, in differential equations, and more.
The multiplicity of incarnations of a minimax nature lead to a suspicion of a deeper
principle in action. Given the fact the minima and maxima lift to lattice notions
of meet/join or categorical notions of limits/colimits, it may be conjectured that all
minimax theorems are expressions of relationships between limits and colimits in an
appropriate category.

One instance of this is the Max-Flow/Min-Cut Theorem, alluded to previously
in Example 6.5 and §9.4. Recent results of Krishnan [201] provide a dramatic cat-
egorification. Recall that one begins with a directed (acyclic) graph X from source
to target nodes, s — t, with edges having capacities in R™. The goal is to place a
conservative flow on X with maximal throughput at the source/target nodes. As a
means of keeping flow conservation at the source and target, append to X a feedback
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edge e from target-to-source. Then, as noted in Example 6.5, a flow evokes a 1-cycle
in homology, and a cut a dual cocycle. When framed this way, it seems clear that the
max-flow min-cut theorem is a topological theorem. It is, and is best seen as such
through the lens of categorification.

The first step is to categorify the capacity constraints
as a cellular capacity sheaf over X. In the classical set-
ting of numerical capacities cap(e) € R™ assigned to an
edge e of X, the capacity sheaf F over e takes values in
the interval [0, cap(e)] under addition, where the addition
operation is (1) non-invertible — subtraction is forbidden:;
and (2) partial — not all pairs of numbers are allowed to be
added. This partial addition encodes the constraint, since
addition must not exceed the capacity. This kind of alge-
braic structure is a partial commutative monoid. It is a
brilliant observation that one can categorify the constraints
of the optimization problem as a sheaf, albeit over the algebraically intricate category
of partial commutative monoids.

All other ingredients of the max-flow min-cut theorem lift likewise. Flow conser-
vation mimics the homological cycle condition. However, to respect the directedness
of the underlying graph, it is essential to build a homology theory that remembers and
respects the directions of edges. This is encoded in an orientation sheaf, O, taking
values in N-modules (in contrast to the un-oriented Z-modules); this has the prop-
erty that the stalks of O are copies of N summands, where each summand represents
an independent directed local path. A directed homology theory H; taking values
in sheaves of partial commutative monoids is constructed via an equalizer diagram
(kernels being not well-defined), and the partial commutative monoid of flows on X
respecting the directions and constraints of & is, precisely,

Hi(X;F) = HO(X;F® 0) :CIiCmX(3"® 0)(C). (10.6)

This definition/theorem has bound up within it a ver-
sion of Poincaré duality for directed spaces proved by Krish-
nan [200] that both foretells and enables the sheaf-theoretic
max-flow min-cut theorem. The left term of this equation
becomes a categorification of global flows on X, and the
right term becomes a categorification of local flow capac-
ities. The subtle work is how to partially decategorify the
left and right sides to flow-values and cut-values compara-
ble in a common framework. This is done by mapping both
sides above into a directed homology Ho(X; &), expressible
as something like a colimit. In the classical setting, this
partial decategorification translates to the following equality of partial commutative
monoids:

U [0.val(e)]= (1 [0.val(C)] (10.7)

flow ¢ cut ¢
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Thus, the maximal flow value equals the minimal cut value: but more than this, these
coincident numbers descend from isomorphic structures in a categorification. The
machinery required to complete the details is formidable and does not fit in this text,
but the benefits are compelling. Because the duality holds for a very general category
of capacity sheaves taking values in partial commutative monoids, other non-classical
optimal flow problems (of commodities, signals, and logics) over networks can be
solved via duality. This is a stellar example of categorification in applied mathematics.
©

Notes

1. This text has worked with small categories whose objects and morphisms form sets.
There are several unpleasant technicalities associated with categories that are not
small.

2. There are relatively few computational tools for working with categories; one hopes
that with increased awareness of applications that this will improve.

3. The interpretation of clustering as a functor in §10.4 is a very simple example to
demonstrate the benefit of categorical thinking. Not all clustering methods used in
practice are functors. One of the more popular methods, k-means clustering, takes as
its input the point cloud Q along with a number k € N and an initial k-tuple of points
in Q. It returns, via an iterative process, a partition of Q into k clusters. It seems
impossible to render such a method functorial, since the number of clusters is fixed a
priori.

4. The interleaving approach to stability of persistent homology in §10.6 is a rapidly-
developing subject. In the initial works on stability [70] a metric (called the bottleneck
distance) on multi-sets of points in the birth-death plane was used. This has been
shown to be isometric to the interleaving distance. Bubenik and Scott [51] use the
language of natural transformations; Lesnick [207] uses the language of modules and
structure theorems. The most recent work (at the time of publication) is a broad
generalization of the categorical approach in §10.6 [50].

5. The terminology of limits and colimits in this text is not universal. Many sources use
direct limit, inductive limit, or ||_m) to denote the colimit; the corresponding terms for
a limit are inverse limit, projective limit, and |jm. Yes, this /s confusing.

6. Derived functors, of which sheaf cohomology is the precursor, are the true, unrealised,
goal of this chapter. The interested reader should with all haste master the basics so
as to ascend to this cornice.

7. Yes, dear reader, the progression from objects to morphism to functors does not end
with natural transformations; nor, indeed, does it end at all. Mathematics is currently
brimming with A structures, N-categories, and other progressions which iterate the
notions of ever-higher morphisms between ever-higher objects to dizzying heights. The
use of Ax structures seems to be particularly potent [31]— that this potency will descend
to applications is to be hoped and remains to be seen.

8. Like the previous, this chapter is a shocking reduction of a vast intricate theory into a
cartoonish sketch. The reader whose sense of adventure is aroused will find an unend-
ing country to explore. The book by Awodey [20] is particularly friendly to readers from
Computer Science. Students of topology may wish to begin further exploration with
adjunctions, exponentials, Kan extensions, homotopy co/limits, nerves, the Yoneda
Lemma, and the other basic tools of category theory. The classic, complete reference
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is [211]. For a serious high-level treatment with applications to sheaves, [192] is a valu-
able resource; for applications to logic, [160, 212] are the appropriate references. The
most interesting new books on the subject are by Leinster [205] (extremely well-written)
and Spivak [282] (extremely creative at making connections to data structures).

9. The author, in his youth, mocked category theory as so much unapplicable generalized
nonsense. May the reader learn from his errors. Miserere mihi peccatori.



