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anifolds are the extension of domains familiar from calculus — curves and sur-
faces — to higher-dimensional settings. As the most intuitive and initially
useful topological spaces, these smooth domains provide a first glimpse of
the technicalities implicit in passing from local to global.

1.1 Manifolds

A topological n-manifold is a space! M locally homeomorphic to R”. That is, there
is a cover U = {U,} of M by open sets along with maps ¢4: U, — R” that are
continuous bijections onto their images with continuous inverses. In order to do
differential calculus, one needs a smoothing of a manifold. This consists of insisting
that the maps

b0 da': ba(Us NUp) = ¢p(Us N Up)

are smooth (infinitely differentiable, or C*) whenever U, N
Us # @. The pairs (Uq, ¢o) are called charts; they gen-
erate a maximal atlas of charts which specifies a smooth
structure on M. Charts and atlases are rarely explicitly con-
structed, and, if so, are often immediately ignored. The
standard tools of multivariable calculus — the Inverse and
Implicit Function Theorems — lift to manifolds and allow
for a simple means of producing interesting examples.

Smooth curves are 1-manifolds, easily classified. Any connected curve is diffeo-
morphic (smoothly homeomorphic with smooth inverse) to either R or to the circle
St thus, compactness suffices to distinguish the two. The story for 2-manifolds —
surfaces — introduces two more parameters. Compact surfaces can be orientable or
non-orientable, and the existence of holes or handles is captured in the invariant called
genus.

The sphere S? is the orientable surface of genus zero;
the torus T2 the orientable surface of genus one; their
nonorientable counterparts are the projective plane P2 and
the Klein bottle K? respectively. The Classification The-
orem for Surfaces states that any compact surface is dif-

@"é@

a3 feomorphic to the orientable or non-orientable surface of
~ some fixed genus g > 0. The spatial universe is, seem-
& fl ingly, a 3-manifold®. The classification of 3-manifolds is a

delightfully convoluted story [290], with recent, spectacu-
lar progress [233] that perches this dimension between the
simple (2) and the wholly bizarre (4).

LAIl manifolds in this text should be assumed Hausdorff and paracompact. The reader for whom
these terms are unfamiliar is encouraged to ignore them for the time being.

2This is a simplification, ignoring whatever complexities black holes, strings, and other exotica
produce.
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Example 1.1 (Spheres) ©)

The n-sphere, S, is the set of points in Euclidean R"™! unit distance to the origin.
The n-sphere is an n-dimensional manifold.

The 0-dimensional sphere S? is disconnected — it is
the disjoint union of two points. For n > 0, S” is a con-
nected manifold diffeomorphic to the compactification of
R" as follows. Consider the quotient space obtained from
R"” U %, where = is an abstract point whose neighborhoods \
consist of = union the points in R” sufficiently far from the

origin. This abstract space is diffeomorphic to S” via a dif- '

feomorphism that sends the origin and * to the south and
north poles of the sphere S” respectively. © v

Example 1.2 (Projective spaces) ®

The real projective space, P”, is defined as the space of all 1-dimensional linear
subspaces of R"t!, with the topology that says neighborhoods of a point in P" are
generated by small open cones about the associated line. That P" is an n-manifold for
all n is easily shown (but should be contemplated until it appears obvious). Projective
1-space, P!, is diffeomorphic to St. The projective plane, IP?, is a non-orientable
surface diffeomorphic to the following quotient spaces:

1. Identify opposite sides of a square with edge orientations reversed;
2. ldentify antipodal points on the boundary of the closed unit ball B C R?;
3. Identify antipodal points on the 2-sphere S2.

For any n, P" is diffeomorphic to the quotient S"/a,
where a: S” — S” is the antipodal map a(x) = —x. The
> space P3 is diffeomorphic to the space of rotation matri-

| | ces, SO3, the group of real 3-by-3 orthogonal matrices with
1 ‘ determinant 1. Among the many possible extensions of pro-

jective spaces, the Grassmannian spaces arise in numerous

| all k-dimensional subspaces of R”, with topology induced
< in like manner to P”. The Grassmannian is a manifold that
specializes to P" = GJ*!. ®

| contexts. The Grassmannian G} is defined as the space of

1.2 Configuration spaces of linkages

Applications of manifolds and differential topology are ubiquitous in rational mechanics,
Hamiltonian dynamics, and mathematical physics and are well-covered in standard
texts [1, 15, 217, 231]. A simple application of (topological) manifolds to robotics falls
under a different aegis. Consider a planar mechanical linkage consisting of several flat,
rigid rods joined at their ends by pins that permit free rotation in the plane. One can
use out-of-plane height (or mathematical license) to assert that interior intersections
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of rods are ignorable. The configuration space of the linkage is a topological space
that assigns a point to each configuration of the linkage — a relative positioning of the
rods up to equivalence generated by rotations and translations in the plane — and which
assigns neighborhoods in the obvious manner. A neighborhood of a configuration is
all configurations obtainable via a small perturbation of the mechanical linkage. The
configuration space of a planar linkage is almost always a manifold, the dimension of
which conveys the number of mechanical degrees of freedom of the device.

Example 1.3 (Crank-rocker) ©

The canonical example of a simple useful linkage is the Grashof 4-bar, or crank-rocker
linkage, used extensively in mechanical components. Four rods of lengths {L;}{ are
linked in a cyclic chain. When one rod is anchored, the system is seen to have one
mechanical degree of freedom. The configuration space is thus one-dimensional and
almost always a manifold. If one has a single short rod, then this rod can be rotated
completely about its anchor, causing the opposing rod to rock back-and-forth.

This linkage is used to transform spinning motion
(from, say, a motor) into rocking motion (as in a wind-
shield wiper). The configuration space of such a linkage
is STUS?, the coproduct or disjoint union of two circles.
The second circle comes from taking the mirror image of
the linkage along the axis of its fixed rod in the plane and
repeating the circular motion there: this forms an entirely
separate circle's worth of configuration states. ©

YU

Many other familiar manifolds are realized as configuration spaces of planar
linkages (with judicious use of the third dimension to mitigate bar crossings).
The undergraduate (!) thesis of Walker [299] has many
examples of orientable 2-manifolds as configuration spaces
of planar linkages. A simple 5-bar linkage has configuration ®
space which can be a closed, orientable surface of genus g 3 ®
ranging between 0 and 4, depending on the lengths of the
edges. The reader is encouraged to try building a linkage
whose configuration space yields an interesting 3-manifold.
The realization question this exercise prompts has a defini-
tive answer (albeit with a convoluted attribution and history):

Theorem 1.4 ([189]). Any smooth compact manifold is diffeomorphic to the config-
uration space of some planar linkage.

This remarkable result provides great consolation to students whose ability to
conceptualize geometric dimensions greater than three is limited: one can sense all
the complexities of manifolds by hand via kinematics. The reader is encouraged to
build a few configurable linkages and to determine the dimensions of the resulting
configuration spaces.

Example 1.5 (Robot arms) ©
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A robot arm is a special kind of mechanical linkage in which joints are sequentially
attached by rigid rods. One end of the arm is fixed (mounted to the floor) and the
other is free (usually ending in a manipulator for manufacturing, grasping, pick-and-
place, etc.).

Among the most commonly available joints are pin joints
(cf. an elbow) and rotor joints (cf. rotation of a forearm),
each with configuration space S*. Ignoring the (nontrivial!)
potential for collision, the configuration space of such an
arm in R3 has the topology of the n-torus, T" := H’fSl,
the cartesian product of n circles, where n is the number
of rotational or pin joints. There are natural maps asso-
ciated with this configuration space, including the map to
R3 which records the location of the end of the arm, or the map to SO5 that records
the orientation (but not the position) of an asymmetric part grasped by the end ma-
nipulator. ©

1.3 Derivatives

Derivatives, vector fields, gradients, and more are familiar
constructs of calculus that extend to arbitrary manifolds
by means of localization. Differentiability is a prototypical
example. A map between manifolds f: M — N is differ-
entiable if pushing it down via charts yields a differentiable
map.

Specifically, whenever f takes p € U, C M to f(p) €
Vs C N, one has 9gofogp,* a smooth map from a subset of
R'™to a subset of R”. The derivative of f at p is therefore
defined as the derivative of g o f o ¢!, and one must
check that the choice of chart does not affect the result.

It suffices to use charts and coordinates to understand

derivatives, but it is not satisfying. A deeper inquiry leads

\_ﬁ to a significant construct in differential topology. The tan-

gent space to a manifold M at a point p € M, T,M, is

a vector space of tangent directions to M at p, where the
origin 0 € T,M is abstractly identified with p itself.

This notion is the first point of departure from the
calculus mindset — in elementary calculus classes there is
a general confusion between tangent vectors (e.g., from
vector fields) and points in the space itself. It is tempting to illustrate the tangent
space as a vector space of dimension dim M that is tangent to the manifold, but
this pictorial representation is dangerously ill-defined — in what larger space does this
tangent space reside? Do different tangent spaces intersect? There are several ways
to correctly define a tangent space. The most intuitive uses smooth curves. Define
T,M to be the vector space of equivalence classes of differentiable curves y: R — M

NN
o
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where y(0) = p. Two such curves, v and 4 are equivalent if and only if ¥'(0) = 4'(0)
in some (and hence any) chart. An element of T,M is of the form £ = [y'(0)], where
[-] denotes the equivalence relation. The vector space structure is inherited from that
of the chart in R”. A tangent vector coincides with the intuition from calculus in
the case of M = R”. Invariance with respect to charts implies that the derivative of
f:M— Nat pe Mis realizable as a linear transformation Df,: T,M — T¢,)N. In
any particular chart, a basis of tangent vectors may be chosen to realize Df, as the
Jacobian matrix of partial derivatives at p.

The next step is crucial: one glues the disjoint union
of all tangent spaces T,M, p € M, into a single space T.M
called the tangent bundle of M. An element of T, M is of
the form (p, V), where V. € T,M. The natural topology on
T.M is one for which a neighborhood of (p, V) is a product
of a neighborhood of V' in T, M with a neighborhood of p in
M. In this topology, T« M is a smooth manifold of dimension
equal to 2dimM. For example, the tangent bundle of a
circle is diffeomorphic to S' x R'. However, it is not the
case that T,S? =2 S?x R?. That this is so is not so obvious.

y, 4

1.4 \Vector fields

The formalism of tangent spaces and tangent bundles simplifies the transition of
calculus-based ideas to arbitrary manifolds; a ready and recurring example is the topol-
ogy and dynamics of vector fields. A vector field on M is a choice of tangent vectors
V(p) € T,(M) which is continuous in p. Specifically, V: M — T, M is a map satisfying
woV =Idy, for m: T,M — M the projection map taking a tangent vector at p to p
itself. Such a map V is called a section of T, M.

As with sufficiently smooth differential equations on R", vector fields can be
integrated to yield a flow. Given V a vector field on M, the flow associated to V is
the family of diffeomorphisms @;: M — M satisfying:

1. po(x) = x for all x € M;
2. Ysyt(x) = @e(s(x)) for all x € M and s, t € R;
3. %(pt(x) = V(x).

One thinks of :(x) as determining the location of a particle starting at x and moving
via the velocity field V' for t units of time. For M non-compact or V insufficiently
smooth, one must worry about existence and uniqueness of solutions: such questions
are not considered in this text. Smooth vector fields on compact manifolds yield
smooth flows whose dynamics links topology and differential equations.

Example 1.6 (Equilibria) ©

The primal objects of inquiry in dynamics are the equilibrium solutions: a vector field
is said to have a fixed point or equilibrium at p if V(p) = 0. An isolated fixed
point may have several qualitatively distinct features based on stability. The stable
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manifold of a fixed point p is the set

W2 (p) :={x e M lim ¢«(x) = p}. (1.1)

For “typical” fixed points of a “typical” vector field, W*(p)
/ 5 \\\\‘J is ir_1 fact a ma.nifold, as is. the unstablle manifold, W"(p),
defined by taking the limit t — —oc in (1.1) above [258].
A sink is a fixed point p whose stable manifold contains an
V¢ open neighborhood of p; such equilibria are fundamentally
%4 stable solutions. A source is a p whose unstable mani-
fold contains an open neighborhood of p; such equilibria
are fundamentally unstable. A saddle equilibrium satisfies
’\ V& dim W*°(p) > 0 and dim W"(p) > 0; such solutions are

balanced between stable and unstable behavior. ©

Example 1.7 (Periodic orbits) ®

If a continuous-time dynamical system — a flow — is imagined to be supported by the
skeleton of its equilibria, then the analogous circulatory system would be comprised of
the periodic orbits.

A periodic orbit of a flow is an orbit {©:(x)}+cr satisfying
Yri7(X) = (x) for some fixed T > 0 and all t € R. The
minimal such T > 0 is the period of the orbit. Periodic
orbits are submanifolds diffeomorphic to St. One may clas-
sify periodic orbits as being stable, unstable, saddle-type, or
degenerate. The existence of periodic orbits — in contrast
to that of equilibria — is a computationally devilish problem.
On S3, it is possible to find smooth, fixed-point-free vector
fields whose set of periodic orbits is all of S or empty: see
Example 8.11. ©

The dynamics of vector fields goes well beyond equilibria and periodic orbits
(see, e.g., [167, 258]); however, for typical systems, the skeleton of periodic orbits
and equilibria, together with the musculature of their stable and unstable manifolds,
give the basic frame for reasoning about the body of behavior.

1.5 Braids and robot motion planning

A different class of configuration spaces is inspired by applications in multi-agent
robotics. Consider an automated factory equipped with mobile robots. A common
goal is to place several such robots in motion simultaneously, controlled by an algorithm
that either guides the robots from initial positions to goal positions (in a warehousing
application), or executes a cyclic pattern (in manufacturing applications). These
robots are costly and cannot tolerate collisions. As a first step at modeling such
a system, assume the location of each robot is a point in a space X (typically a
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domain in R? or R3). The configuration space of n distinct labeled points on X,
denoted €"(X), is the space

C"(X) = (ﬁX) — A ;. A:={(x)]: x; = x; for some | # j}. (1.2)

The set A, the pairwise diagonal, represents those configurations of n points in X
which experience a collision — this is the set of illegal configurations for the robots. Of
course, robots are not point-like, and near-collisions are unacceptable. From the point
of view of topology, however, removing a sufficiently small neighborhood of A gives a
space equivalent to €"(X), and the configuration space €"(IR?) forms an acceptable
model for robot motion planning on an unobstructed floor.
There are applications for which labeling the points
is important, with warehousing, in which robots move spe-
cific packages, being a prime example. However, in some
settings, such as mobile security cameras in a building,
anonymity is not detrimental — any camera will do. The \
unlabeled configuration space, denoted UC"(X), is de-
fined to be the quotient of C”(X) by the natural action of
the symmetric group S, which permutes the ordered points
in X:

O O

e

©

UC"(X) := C"(X)/S..

This space is given the quotient topology: a subset in UC"(X) is open if and only if
the union of preimages in C(X) is open. Configuration spaces of points on a manifold
M are all (non-compact) manifolds of dimension dim €"(M) = n dim M. The space
C"(S1) is homeomorphic to (n — 1)! disjoint copies of St x R"~!, while UC"(S?) is a
connected space.

Example 1.8 (Braids) O

The configuration space of points on R? is relevant to
mobile robot motion planning (e.g., on a factory floor); it is
also among the most topologically interesting configuration
spaces [38]. Consider the case of n robots which begin and
end at fixed configurations, tracing out non-colliding routes
in between. This complex motion corresponds to a path in
C"(IR?), or, perhaps, UC"(R?), if the robots are not labeled.
(If the path has the same beginning and ending configuration,
it is a loop, an image of St in the configuration space.) How
many different ways are there for the robots to wind about one
another en route from their starting to ending locations? The
space-time graph of a path in configuration space is a braid, a
weaving of strands encapsulating positions. A deformation in the motion plan equals
a homotopy of the path (fixing the endpoints), which itself corresponds to moving
the braid strands in such a way that they cannot intersect. From this, and a few
sketches, the reader reasons correctly that there are infinitely many fundamentally
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inequivalent motion plans between starting and ending configurations. See §8.3 for a
more algebraic description. ©®

©

Example 1.9 (Navigation fields)

Configuration spaces in robotics are widespread, both as models of complex articulated
agents or automated guided vehicles. One of many useful techniques for controlling
robotic systems to execute behaviors and avoid collisions is to place a vector field
on the configuration space and use the resulting flow to guide systems towards a
goal configuration. The task: given a configuration space X and a specified goal
point or loop G C X, construct an explicit vector field on X having G as a global
attractor, so that (almost) all initial conditions will converge to and remain near
the goal. Programming such a vector field is a challenge, usually requiring explicit
coordinate systems. Additional features are also desirable: near the collision set (e.g.,
A from Equation (1.2)), the vector field should be pointed away from the collision set,
so that A is a repeller.

For example, consider the problem of mobilizing a pair of robots on a circu-
lar track so as to patrol the domain while remaining as far apart as possible. This
can be done by means of a vector field on C?(S?). Coordinatize C2(S!) C T2
as {(01,02); 01 # 6>}. The reader may check that the following vector field has
{61 = 6, £ 7} as an attracting periodic solution and A = {6; = 6>} as a repelling set:

91 =1 —|—sin(91 — 92) , 62 =1 +sin(92 — 91)

All initial conditions evolve to this desired state of circulation on S*. This is an excellent
model not only for motion on a circular track, but also for an alternating gait in legged
locomotion, where each leg position/momentum is represented by S?.

One reason for specifying a vector field on the entire
configuration space (instead of simply dictating a path from
initial to goal states) is so that if the robot experiences an
unexpected failure in executing a motion, the vector field
automatically corrects for the failure. Enlarging the prob-
lem from path-planning to field-planning returns stability
and robustness [248]. This technique has been successfully
applied in visual servoing [75], in robots that juggle [250],
in automated guided vehicles [149], and in hopping [195]
and insectoid [177] robot locomotion. This approach to
robot motion planning makes extensive use of differential
equations and dynamics on manifold configuration spaces.

Y
RN

1.6 Transversality

Genericity is often invoked in applications, but seldom explained in detail. Intuition is
an acceptable starting point: consider the following examples of generic features of
smooth manifolds and mappings:
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Two intersecting curves in R? generically intersect in a discrete set of points.
Three curves in R? generically do not have a point of mutual intersection.
Two curves in R” generically do not intersect for n > 2.

Two intersecting surfaces in R3 generically intersect along curves.

A real square matrix A is generically invertible.

Critical points of a R-valued function on a manifold are generically discrete.
The roots of a polynomial are generically non-repeating.

The fixed points of a vector field are generically discrete.

The configuration space of a planar linkage is generically a manifold.

. A generic map of a surface into R® is injective.

© XN W =

[
O

Some of these seem obviously true; others less obviously so. All are provably true with
precise meaning using the theory of transversality.

Two submanifolds V,W in M are transverse, written V rh
W, if and only if,

TV+TW=T,M VpeVnW. (1.3) m

S

d

Otherwise said, at an intersection, the tangent spaces to V
and W span that of M. For example, two planes in R3 are
transverse if and only if they are not identical. Note that
the absence of intersection is automatically transverse. A
central theme of topology is the lifting of concepts from
spaces to maps between spaces. The notion of transverse
maps is the first of many examples of this principle. Two smooth maps f: V — M
and g: W — M are transverse, written f h g, if and only if:

Df,(T\V) + Dgw(TuW) = T,M Vf(v) =g(w) = p. (1.4)

This means that the degrees of freedom in the intersection
of images of f and g span the full degrees of freedom in
M. Note that submanifolds V. W C M are transverse if and
only if the inclusion maps vv: V — M and vy W — M
are transverse as maps. Likewise, a map f is transverse to
a submanifold W € M if and only if f M ty. This map-
centric definition does not constrain the images of maps to
be submanifolds. This is one hint that differential tools are
efficacious in the management of singular behavior. A point
g € N is a regular value of f: M — N if f th {g}. Thisis
equivalent to the statement that, for each p € f~1(q), the
derivative is a surjection — the matrix of Df, is of rank at least n = dim N.

One benefit of transversality is that localized linear-algebraic results can be pulled
back to global results. The following local result from linear algebra about dimensions
of intersecting subspaces of a vector space is crucial:
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Lemma 1.10 (Rank-Nullity Theorem).  For a linear transformation T: U — V
between finite-dimensional vector spaces,

dim ker T — dim coker T = dim U — dim V. (1.5)

By applying Lemma 1.10 pointwise along the inverse
image of transverse maps, one obtains a fundamental useful

theorem: m
Theorem 1.11 (Preimage Theorem).  Consider a dif-

ferentiable map f: M — N between smooth manifolds. If 1 1
f W for W C N a submanifold, then f~*(W) is a sub- e

manifold of M of dimension

dim f}(W) = dim M — dim N + dim W. (1.6)

This provides an effective means of constructing manifolds without the need for
explicit charts: it is often used in the context of a regular value of a map.

1. The sphere S”is the inverse image of 1 under f: R"™ — R given by f(x) = ||x|.
It is a manifold of dimension n=(n+ 1) —1+0.

2. The torus T" is the inverse image f (1, ..., 1) of the map f: C" — R" given
by f(z) = ([|zl],- ... [|zo]])- Its dimension is n =2n—n+ 0.

3. The matrix group O, of rigid rotations of R” (both orientation preserving and
reversing) can be realized as the inverse image f !(ld) of the identity under
the map from n-by-n real matrices to symmetric n-by-n real matrices given by
f(A) = AAT. The dimension of O, is > — n(n+ 1)+ 0= Zn(n—1).

4. The determinant map restricted to O, is in fact a smooth map to the 0-manifold
S® = {£1}. As such, the special orthogonal group SO, as the inverse image of
41 under this restricted det, is a manifold of the same dimension as O,; thus,
0O, is a disjoint union of two copies of SO,,.

In the above examples, the transversality condition is checked by showing that
the mapping f has a derivative of full rank at the appropriate (regular) value. Such
regularity seems to fail rarely, for special singular values. This intuition is the driving
force behind the Transversality Theorem. A subset of a topological space is said to
be residual if it contains a countable intersection of open, dense subsets. A property
dependent upon a parameter A € A is said to be a generic property if it holds for
A in a residual subset of A — even when that subspace is not explicitly given. For
reasonable (e.g., Baire) spaces, residual sets are dense, and hence form a decent
notion of topological typicality.

Theorem 1.12 (Transversality Theorem). For M and N smooth manifolds and
W C N a submanifold, the set of smooth maps f: M — N with f h W is residual in
C>(M, N), the space of all smooth maps from M to N. If W is closed, then this set
of transverse maps is both open and dense.
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The proof of this theorem relies heavily on Sard’s Lemma: the regular values
of a sufficiently smooth map between manifolds are generic in the codomain.

Example 1.13 (Fixed points of a vector field) ©
The fixed point set of a differentiable vector field on a compact manifold M is gener-
ically finite, thanks to transversality.

Recall from §1.4 that a smooth vector field is a sec-
tion, or smooth map V: M — T.M with w(V(p)) = p for
all p € M. The zero-section Z C T, M is the set {(p,0)}
of all zero vectors. The fixed point set of V is therefore the /\o@o_
preimage VV~1(Z). For a generic perturbation of V, this set d
is a submanifold of dimension

dim Fix(V) = dim M + dim M —dim T.M = 0.

A 0-dimensional compact submanifold is a finite point set. With more careful analysis
of the meaning of transversality, it can be shown that the type of fixed point is also
constrained: on 2-d surface, only source, sinks, and saddles are generic fixed points.
©

Example 1.14 (Beacon alignment) ©
Consider three people walking along generic smooth paths in the plane R?. How
often are their positions collinear? This is relevant to robot navigation via beacon
triangulation.

One considers the map f: €3(R?) — R which computes the
(signed) area of the triangle spanned by the three locations
at an instant of time:

f(vi, vo,v3) =det[vo — vi; vz — vq].

This map has zero as a regular value, and Theorem 1.11 im-
plies that the set of collinear configurations is a submanifold
W = £=1(0) of C3(R?). A set of three paths is a generic
map from R (time) into C3(R?). It follows from Theorems
1.12 and 1.11 that, generically, one expects collinearity at
a discrete set of times, since

dim R! +dim W — dim G*(R?) =14+5 -6 =0.

This, moreover, implies a stability in the phenomenon of collinearity: at such an
alignment, a generic perturbation of the paths perturbs where the alignment occurs,
but does not remove it. ©

1.7 Signals of opportunity

Applications of transversality are alike: (1) set up the correct maps/spaces; (2) invoke
transversality; (3) count dimensions. This has some simple consequences, as in com-
puting the generic intersection of curves and surfaces in R3. Other consequences are
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not so obvious. The following theorem states that any continuous map of a source
manifold into a target manifold has, after generic perturbation, a submanifold as its
image when the dimension of the target is large enough. How large? The critical
bound comes, as it must, from the proper transversality criterion and a dimension
count:

Theorem 1.15 (Whitney Embedding Theorem). Any continuous function f: M —
N between smooth manifolds is generically perturbed to a smooth injection when
dim N > 2dim M.

Proof. The configuration space C2M = M x M — Ay, of two distinct points on M is
a manifold of dimension 2dim M. The graph of f induces a map

Cf: M= CMxNxN : (x,y)—=(x.y f(x)f(y)).

The key step is this: observe that the set of points on
which 7 is non-injective is (C2f)"1(C2M x Ay), where Ay C
N x N is the diagonal. According to the appropriate transver-
sality theorem (specifically, the multi-jet transversality theorem
[161, Thm. 4.13]), generic perturbations of f induce generic
perturbations of G°f. From Theorems 1.11, 1.12, and the hy-
pothesis that dim N > 2dim M, the generic dimension of the
non-injective set of f is:

dim @M — dim(C>M x N x N) +dim(C*M x Ay) = 2dim M — dim N < 0.

Thus, there are no self-intersections, and the result is a smooth submanifold. ®

A simple application of Whitney's theorem [257] informs a problem of localiza-
tion via signals. Consider a scenario in which one wants to determine location in an
unknown environment. Certainly, a GPS device would suffice. Such a device works by
receiving signals from multiple satellite transmitters and utilizing known timing data
about the transmitters to determine location, within the tolerances of the signal recep-
tion. This sophisticated system requires many independent components to operate,
including geosynchronous satellites, synchronized clocks, and more, all with nontrivial
power constraints. Though wonderfully useful, GPS devices are not universally avail-
able: they do not operate underwater or indoors; they are unreliable in urban canyons;
the need for satellites and synchronized clocks can limit availability.

There is no reason, however, why other signals could not be used. In fact,
passive signals — arising naturally from TV transmissions, radio, even ionospheric waves
induced by lightning strikes [99] — provide easily measured pulses with which to attempt
to reconstruct location. There is a small but fascinating literature on the use of such
signals of opportunity to solve localization and mapping problems.

The following is a simple mathematical model for localization via signals of op-
portunity. Consider a connected open domain D C R* which is a k-manifold. Assume
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there exist NV transmitters of fixed location which asynchronously emit pulses whose
times of arrival can be measured by a receiver at any location in D. Given a receiver
located at an unknown point of D, do the received TOA (time of arrival) signals
uniquely localize the receiver? Consider the signal profile mapping T: D — R which
records the TOA of the (received, identified, and ordered) transmitter pulses. If one
assumes that the generic placement of transmitters associated with this system pro-
vides a generic perturbation to T within C>(D, R"), then the resulting perturbation
embeds the domain D smoothly for N > 2k. Thus, the mapping T is generically
injective, implying unique channel response and the feasibility of localization in D via
TOA. For example, this implies that a receiver can be localized to a unique position in
a planar domain D using only a sequence of five or more transmission signals, globally
readable from generically-placed transmitters. Note: it is not assumed that the signals
move along round waves, nor does the receiver compute any distances-to-transmitters.

This result is greatly generalizable to a robust sig-
nals embedding theorem [257]. First, one may modify
the codomain to record different signal inputs. For ex-
ample, using TDOA (time difference of arrival) merely re-
duces the dimension of the signal codomain by one and
preserves injectivity for sufficiently many pulses. Second,
one may quotient out the signal codomain by the action
of the symmetric group Sy to model inability to identify
target sources. This does not change the dimension of the
signals codomain: the system has the same number of de-
grees of freedom. The only change is that the codomain
has certain well-mannered singularities inherited from the action of Sy. It follows
from transversality that any reasonable signal space of sufficient dimension preserves
the ability to localize based on knowledge of the image of D under T. Transversality
and dimension-counting provide a critical bound on the number of signals needed to
disambiguate position, independent of the types of signals used.

1.8 Stratified spaces

The application of Whitney's Theorem to signal localization in the previous subsection
is questionable in practice. Signals do not propagate unendingly, and the physical reali-
ties of signal reflection/echo, multi-bounce, and diffraction conspire to make manifold
theory suboptimal in this setting. The addition of signal noise further frustrates a
differential-topological approach. Finally, the assumption that D is a manifold is a
poor one. In realistic settings, the domain has a boundary: signals are bouncing off of
walls, building exteriors, and other structures that, at best, are piecewise-manifolds.
One approach to this last difficulty is to enlarge the class of manifolds. An
n-manifold with boundary is a space locally homeomorphic to either R” or R"~1 x
[0, oc), with the usual compatibility conditions required for a smoothing. The bound-
ary of D, 9D, is therefore a manifold of dimension n — 1. Many of the tools and
theorems of this chapter (e.g., tangent spaces and transversality) apply with minor
modifications to manifolds with boundary. Yet this is not enough in practice: further
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generalization is needed. An n-manifold with corners is a space, each point of which
has a neighborhood locally homeomorphic to

{xeR": x,>0,i=1,..., m},

for some 0 < m < n, where m may vary from point to point. A true manifold has
m = 0 everywhere; a manifold with boundary has m < 1. The analogues of smooth-
ings, derivatives, tangent spaces, and other constructs are not difficult to generate.
The boundary of a manifold with corners no longer has the structure of a smooth
manifold, as, e.g., is clear in the case of a cube or other platonic solid. Note however,
that such a boundary is assembled from manifolds of various dimensions, suitably glued
together. Such piecewise-manifolds are common in applications. Consider the solution
to a polynomial equation p(x) = 0, for x € R”. An application of transversality theory
shows that the solution set is, for generic choices of coefficients of p, a manifold of
dimension n — 1; however, nature does not always deal out such conveniences. Innu-
merable applications call for the solution to a specific polynomial equation. The null
set of a polynomial, even when not a true manifold, can nevertheless be decomposed
into manifolds of various dimensions, glued together in a particular manner.

There is a hierarchy of such stratified spaces which
deviate from the smooth regularity of a manifold. An in-
tuitive definition of a stratified space is a space X, along
with a finite partition X = U;X;, such that each X; is a
manifold. Precise control over how these manifolds are
pieced together is needed but is too intricate for this in-
troduction: let the reader think of a stratified space as a
piecewise-manifold.

Typical examples of stratified spaces include singular
solutions to polynomial or real-analytic equations. More
physical examples are readily generated. Recall the setting
of planar linkage configuration spaces. The 4-bar mechanism gives a 1-d manifold,
except when the lengths satisfy [ = L3 and L, = L 4. In this case, the configuration
space is a pair of circles with intersections (or, better, singularities) — either two or
three depending on whether or not all the lengths are the same. These singularities
have physical significance: they correspond to configurations which are collinear. Upon
building such a linkage, one can feel the difference as it passes through a singular point.
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Notes

1.

10.

Homeomorphic manifolds are not always diffeomorphic. In dimensions three and be-
low, they are. Each R” has a unique smooth structure except n = 4, which has an
uncountable number of exotic smoothings [162]. Spheres S’ of dimension seven have
exactly 28 distinct smooth structures; see [225] for a survey. It is unknown at the time
of publication if S* has non-standard smoothings [130].

. A manifold is orientable if it has an atlas such that all transition maps ¢,30¢;1 between

charts preserve orientation (have derivatives with positive determinant). The projective
plane P? and Klein bottle K? are well-known non-orientable surfaces. Verifying that all
transition maps preserve orientation seems difficult: more efficient algebraic means of
orienting manifolds will arise in Chapters 4 and 5.

. Configuration spaces are for many the entrance to applied topology: it is a subject

worthy of its own text. It is instructive and highly recommended to build a complex
mechanical linkage and investigate its topology by hand. For planar linkages, flat
cardboard, wood, metal or plastic with pin joints works well. For 3-d linkages, the
author uses wooden dowels with latex tubing for rotational joints. Sadly, no higher
spatial dimensions are available for resolving intersections between edges in spatial
linkages. With practice, the user can tell the dimension of the configuration space by
feel, without explicit computation (past dimension 10, the author’s discernment fails).
Other tools of advanced calculus follow in patterns similar to those of derivatives,
including differential forms, integration of forms, Stokes’ Theorem, partial differential
equations, and more: see Chapter 6. The reader interested in calculus on manifolds
can find excellent introductions [169], some tuned to applications in mechanics [1, 15].
Transversality is a topological approach to genericity. Probability theory offers com-
plementary and, often, incommensurate approaches.

Lemma 1.10 is the hidden jewel of this chapter, as it enables so much of the machinery
in future chapters. This is the first appearance of an Euler characteristic in this text.
It is not the last — there are at least half-a-dozen manifestations of this index in this
text.

One must be careful in proving genericity results, as the specification of a topology on
function spaces is required. Tweaking the topology of the function spaces allows for
relative versions, which allow perturbations to one domain while holding the function
fixed elsewhere.

Higher derivative data associated to a map f: M — N is encoded in the r-jet, j'f,
taking values in a jet bundle J"(M, N). This j'f records, for each p € M, the Taylor
polynomial of f at p up to order r. As always, the computations are done at the chart
level and shown to be independent of coordinates. The Jet Transversality Theorem
says that, for any submanifold W C J"(M, N) of the jet bundle, the set of f: M —> N
whose r-jets are transverse to W is a residual subset of C*(M, N) [179].

The study (and even the definition) of stratified spaces is much more involved than here
indicated [163]. Various forms of the Transversality Theorem apply to stratified spaces
[161, 216]; they are sufficient to derive a form of Whitney's Theorem on embeddings
and allow for unique channel response in a transmitter-receiver system outfitted with
corners, walls, and reflections [257].

The configuration space of hard spheres in a domain gives a wonderful class of stratified
spaces whose topology can be quite intricate [23]. The topology of these configuration
spaces undergoes large-scale qualitative changes as the number of spheres is increased
— changes that mimic phase transitions in matter [58].



