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A.1 On point-set topology

It is an unfortunate fact that most students’ exposure to topology begins and ends with
the set-theoretic foundations. To minimize such would be akin to minimizing grammar
or arithmetic in primary school (which produces bad writers and no mathematicians).
This text cannot cover all the foundations; however, a few definitions will perhaps
provide appropriate pointers, with, e.g., [238], as a source for more thorough coverage.

A topology on a set X is a collection T, of subsets
of X declared to be the open sets. The topology must
satisfy three properties:

1. Jop Is closed under arbitrary unions;
® 2. Top is closed under finite intersections; and
3. Top contains both X and the empty set &.

From this spartan frame is the subject supported. A
set A C X isopen if A € T, and closed if its complement
X—A € Top is open. The standard topology on R" is the
topology whose elements consist of all possible unions of
all open metric balls of all sufficiently small radii at all points. There are well-defined
ways to generate topologies from such a basis for a topology.

The concept of a topology allows one to encode proximity without specifying
a metric. This feature is increasingly relevant to applications in data, networks, and
biology, where natural metrics may be obscured or nonexistent. The definition of a
topology, though primal, is powerful and subtle.

Example A.1 (Prime numbers) ©
The following brilliant proof is due to Furstenberg; it proves the infinitude of prime
numbers using only the definition of primeness and basic properties of a topology.
Consider the topology on Z generated by affine subsets {aZ + b: a # 0}, meaning
that nonempty open sets are generated by unions and finite intersections of these
basis sets. Let the reader verify that: (1) this indeed forms a topology on 7Z; (2) each
basis affine set {aZ + b : a # 0} is both open and closed in this topology; and (3) no
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nonempty finite subset of Z is open. Then, consider the set:

S:UpZ p prime .

p
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As the union of open sets, S is open. If the number of primes is finite, then S is
also closed, by the fact that a finite union of closed sets (being the complement of a
finite intersection of open sets) is closed. However, the complement Z—-S = {—1,1}
is finite: contradiction. Conclusion: there are infinitely many primes. Note that the
only point at which arithmetic was used was in the definition of S and the verification
of the definition of a topology. ©®

Other definitions common in point-set topology are:

1. The interior of a subset A C X is the largest open subset in A, or, equivalently,
the union of all open subsets of A.

2. The closure of A C X is the smallest closed superset of A, or, equivalently, the

intersection of all closed supersets of A.

The boundary of A C X, OA, is the complement of the interior in the closure.

A space X is compact if every open cover of X restricts to a finite subcover.

A function is continuous if the inverse image of open sets is open.

A homeomorphism is a continuous bijection with continuous inverse.

o0k w

A topology on X can induce topologies on spaces built from X. Given a pair of
spaces X and Y, the (cartesian) product X x Y is the set of ordered pairs (x, y); the
product topology is that with basis U x V for U € Top, and V' € Tqp,,. For A any
subset of a space X, the subspace topology on A consists of the collection {UN A}
for all U € Top. This is the smallest or weakest topology on A making the inclusion
map A — X continuous. The subspace topology is assumed whenever one discusses
a subset of a space as a space in its own right.

When collapsing a space X to a quotient by identify-
ing certain subsets, one imposes a topology on the image.
Given a surjective function g: X — Y, the quotient topol-
ogy on Y via q is the collection of sets V C Y such that
g~ (V) is open in X. This is the largest or strongest topol-
ogy on Y making the quotient map continuous.

Most simple spaces have an obvious quotient or sub-
space topology, and the arcana of the subject emphasized
in early texts is, for most practical purposes, inessential.
There are, however, subtleties associated with topologies
on infinite-dimensional spaces, particularly function spaces.
The beginner should focus on the compact-open topology on the space C(X,Y) of
maps f: X — Y. This topology is the smallest generated by sets of the form C(K, U),
where K C X is compact and U C Y is open.

A.2 On linear and abstract algebra

Deep knowledge of abstract algebra is not a prerequisite for reading this book, nor for
learning many basic aspects of algebraic topology. The reader who does know algebra
well will find many of the important tools not in this book (Hom, Ext, Tor, ®, etc.)
natural and implicit. A few basic concepts suffice for those coming from a minimal
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background. At the very least, the reader needs proper training in linear algebra. From
this subject, little need be said, with two crucial exceptions.

First: quotient spaces. Given a vector space V' and
subspace W, the quotient space V/W consists of equiv-
alence classes [v] of vectors in V modulo vectors in W. \\
Specifically, [v] = [v'] if and only if v/ — v € W. These \\
cosets are often illustrated in terms of the orthogonal com- Wi
plement W' of W in V. This is erroneous, as the orthog-
onal complement requires the existence of a well-defined
inner product on V' and such is not required to define V/W.
Another common error is, via conflation of V/W and W',
to assume that V//W is a subspace of V. It is not.

Second: transformations. More important that vec-
tor spaces themselves are linear transformations between them. One characterizes
A:V — W in terms of auxiliary vector spaces and simple transformations. The im-
age of Ais a subspace im A of the codomain W the kernel of Ais A-1(0), a subspace
ker A of the domain V. Less familiar to students is the equally-important cokernel,
coker A, the quotient space W/im A of the codomain by the image.

While many of the constructs in this text can be accomplished using only the
language of linear algebra, it quickly becomes important to grasp the more general
algebraic structures available. A group is a set G together with a binary operation
«. G x G — G (often called multiplication) that satisfies the following:

1. The operation is associative.
2. There is an identity element e € G, with eeg = gee = g for all g € G.
3. There is an inverse operation g — g so that geg = e = g«g for all g € G.

Examples include number systems (Z, Q, R, and C, but not N) under addition
(but not multiplication); vector spaces under vector addition; square matrix groups
(SL,, SO,, U,) under matrix multiplication; and polynomials Z[x] under addition.

Groups are broader than vector spaces, yet have some structural similarities.
A subgroup H < G is a subset of a group which is itself a group under the group
operation, meaning, in particular, that it is closed under the group operation. A
homomorphism is a function ¢: G — K between groups which is linear in the sense
that ¢(geg') = #(g)-¢(g'), where - denotes the group operation in K. The kernel
of a homomorphism is the subgroup ker ¢ = ¢~1(e), where e denotes the identity
element of K.

Groups are often specified using a presentation, in which a collection of gener-
ators {g.,} and their inverses form finite words with the usual associativity, identity,
and inverse rules applying. To these words are applied a set of relations, thought of
as replacement rules of the form rg = e, for some collection of finite words rg. For
example, the group Z? under addition has the presentation

Z2 =] <X,y . Xoyoxiloyil = e)

Rewriting the (sole) relation yields the usual commutativity rule for multiplication
of x and y. The group presented with N generators and no relations is the free
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group Fp; in general, the free product G x H of two finitely presented groups has
presentation given by combining the generators and relations of each factor, with no
additional relations. Presentations can be very complicated, implicating infinitely many
generators and/or relations. Determining when two presentations yield isomorphic
groups is uncomputable in general.

For purposes of doing homology and cohomology, it is convenient to work with
abelian groups — groups for which the operation is commutative. An abelian group
operation is almost always written in additive notation: +: G x G — G, the identity is
written as “0”, and the inverse of g € G is written “—g.” The quotient of an abelian
group G by a subgroup H < G consists of equivalence classes [g] for g € G, where
[g] =[g'] if and only if g — g € H.

Abelian groups generalize to a hierarchy of algebraic structures ascending to
vector spaces. A ring is an abelian group R whose group operation + is paired with a
multiplication «: R Xx R — R that is associative and distributive with a multiplicative
identity. The canonical examples are 7 and 7Z[x] with 1 as multiplicative inverse. When
multiplication is commutative and a multiplicative inverse exists (on the complement
of the additive identity 0), a ring ascends to a field. The familiar R-vector space
generalizes to have scalars in an arbitrary field F. One can relax the definition of
a vector space yet further, allowing scalars to reside not in a field but rather a ring
R. The resulting structure M is called an R-module. Other relaxations of algebraic
objects can be beneficial, even those which yield structures more primitive than groups:
for example, dropping from the definition of a group the existence of inverses leads to
a monoid; further dropping the existence of an identity yields a semigroup.

Other structures, though simpler, can capture aspects of algebraic operations
that are crucial in applications. For example, a poset, or partially-ordered set, is a
set P together with a binary relation < that is reflexive, antisymmetric, and transitive.
Such a structure encodes, e.g., inclusion in a topology, or the face relation of cells.

As this text demonstrates at several points, the rewards of even moderately
increased algebraic generality are substantial. Coefficients in finite fields can provide
computational accuracy as compared to real coefficients. Homology and cohomology
of chain complexes as Z-modules are critical for defining winding numbers, degrees,
and more. Ring structures enable cup products in cohomology. Monoids are the
critical structures for encoding constraints in network flow problems. Deeper truths
about homology and cohomology — in particular, the understanding and management
of torsional elements — require yet deeper tools from homological algebra (Ext, Tor)
that linear algebra does not immediately presage.



