MATH 620 HOME WORK ASSIGNMENT 1

- 1. Let K be a finite separable extension field of k.
 - (a) Show that the character group of $\operatorname{Res}_{K/k}(\mathbb{G}_m)$ is naturally isomorphic to the free \mathbb{Z} -module generated by the set of embeddings of K into the separable clousre k^{sep} of k.
 - (b) Describe the action of $\operatorname{Gal}(k^{\operatorname{sep}}/K)$ on the character group of $\operatorname{Res}_{K/k}(\mathbb{G}_m)$.
- 2. Let T be a torus over \mathbb{R} . Prove that $T(\mathbb{R})$ is compact if and only if the non-trivial element $\tau \in \operatorname{Gal}(\mathbb{C}/\mathbb{R})$ operates on $X^*(T)$ as -1.
- 3. Prove that $T(\mathbb{R})$ is Zariski dense in T for any torus T over \mathbb{R} .
- 4. Let T be a torus over \mathbb{R} .
 - (i) Prove that for any homomorphism $\nu : \mathbb{G}_m \to T$ over \mathbb{C} , there exists a homomorphism $h : \mathbb{S} \to T$ over \mathbb{R} such that $h \circ \mu = \nu$.
 - (ii) If $h_1, h_2 : \mathbb{S} \to T$ are two \mathbb{R} -homomorphisms of tori over \mathbb{R} such that $h_1 \circ \mu = h_2 \circ \mu$, then $h_1 = h_2$.
- 5. Let T be a torus over \mathbb{R} . Prove that for any homomorphism $\chi: T \to \mathbb{G}_m$, there exists exactly one \mathbb{R} homomorphism $h: T \to \mathbb{S}$ such that $\chi_z \circ h = \chi$.
- 6. Prove that the homomorphism $\operatorname{Nm}\circ\beta: \mathbb{G}_m \times \mathbb{C}_1^{\times} \to \mathbb{G}_m$ is equal to the square morphism on the first factor of the source and is trivial on the second factor.
- 7. (i) Find all \mathbb{R} -endomorphisms of the torus \mathbb{S} .
 - (ii) Find all \mathbb{R} -homomorphisms from \mathbb{S} to $\underline{\mathbb{C}_1^{\times}}$.
- 8. Let V be a finite dimensional vector space over \mathbb{Q} . Let $h : \mathbb{S} \to \operatorname{GL}(V_{\mathbb{R}})$ be an \mathbb{R} -homomorphism, giving $V_{\mathbb{R}}$ the stucture of a real Hodge structure. Then (V, h) is a \mathbb{Q} -Hodge structure if and only if the weight cocharacter

$$w_h := h \circ w : \mathbb{G}_{\mathrm{m}\mathbb{R}} \to \mathrm{GL}(V_{\mathbb{R}})$$

of $\operatorname{GL}(V_{\mathbb{R}})$ is defined over \mathbb{Q} .

- 9. Let V be an irreducible \mathbb{R} -Hodge structure, and $\dim_{\mathbb{Q}}(V) = 2$ of weight n. Prove that the homomorphism $h_V : \mathbb{S} \to \operatorname{GL}(V)$ has the form $h_V = h_1 \circ [n]_{\mathbb{S}}$, where $h_1 : \mathbb{S} \to \operatorname{GL}(V)$ is an \mathbb{R} -homomophism giving V the structure of a real Hodge structure of weight 1.
- 10. Prove that every one-dimensional \mathbb{Q} -Hodge structure is isomorphic to $\mathbb{Q}(i)$ for some $i \in \mathbb{Z}$.

11. Give an example of a subgroup S of $\operatorname{GL}_n(\mathbb{C})$ such that the smallest \mathbb{Q} -subvariety Z of the \mathbb{Q} -algebraic group GL_n which contains S is not a stable under multiplication. In other words, Z is not a \mathbb{Q} -algebraic subgroup.

(Hint: Here is one example. Take an integer $m \ge 2$. Consider the following subsubgroup

$$S = \left\{ Ad\left(\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \right) \cdot \begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix} : A \in \mathrm{GL}_m(\mathbb{C}) \right\}$$

of GL_{2m} , where $b = (b_{ij}$ is an element of $\operatorname{M}_m(\mathbb{C})$ such that tr. deg $\mathbb{Q}(n_{ij}) = m^2$. Then it is not difficult to show that the \mathbb{Q} -Zariski closure of S is equal to

$$\left\{ \begin{bmatrix} A & B \\ 0 & A \end{bmatrix} : \operatorname{tr}(A^{i}B) = 0, i = 0, 1, \dots, m-1 \right\}$$

On the other hand, one can show that the smallest \mathbb{Q} -subgroup containing S is equal to

$$\left\{ \left[\begin{array}{cc} A & B \\ 0 & A \end{array} \right] \right\}$$

Notice that this group is not reductive.)

12. Let F be a totally real number field. Let V be a two-dimensional vector space over F, with a \mathbb{Q} -Hodge structure of Hodge type $\{(0, -1), (-1, 0)\}$ on V, such that the subset $F \subset \operatorname{End}_{\mathbb{Q}}(V)$ consists of Hodge cycles. In other words, the action of F on V preserves the Hodge filtration. Prove that the Mumford-Tate group $\operatorname{MT}(V)$ is either $\operatorname{GL}_F(V)$, or is isomorphic to the inverse image of \mathbb{G}_m under

$$\operatorname{Nm}_{K/F} : \operatorname{Res}_{K/\mathbb{Q}}(\mathbb{G}_{\mathrm{m}}) \to \operatorname{Res}_{F/\mathbb{Q}}(\mathbb{G}_{\mathrm{m}}),$$

where K is a totally imaginary quadratic extension field of F.

- 13. Let V be a finite dimensional vector space over \mathbb{C} , which is a direct sum of two nontrivial subspaces V_0 and V_1 such that the dimensions n_0, n_1 of V_0, V_1 are relatively prime. Let G be a connected reductive algebraic subgroup of GL(V) such that the commutant of G in GL(V) is equal to the group of homotheties on V. Assume moreover that G contains the subgroup H of GL(V) consisting of all elements which act as homotheties on V_0 and on V_1 .
 - (a) Let Z be the center of \mathbb{G} and let G^{der} be the derived group of G. Show that Z is equal to the group of homotheties on V, and the action of G^{der} is irreducible.
 - (b) For any finite dimensional linear representation W of the torus H, denote by $\chi_H(W)$ the character of V; $\chi_H(W)$ is a linear combination of elements of the character group $X^*(H)$ with coefficients in $\mathbb{Z}_{\geq 0}$. Show that if W_1, W_2 are H-modules such that $\chi_H(V) = \chi_H(W_1) \cdot \chi_H(W_2)$, then either W_1 or W_2 is one-dimensional.

- (c) Deduce from (b) that G^{der} is an almost simple semisimple algebraic subgroup of SL(V).
- (d) Use the fact that the center of G^{der} contains a cyclic subgroup of order $n = \dim(V)$ and the classification of simply connected semisimple algebraic groups to prove that G^{der} is equal to SL(V).
- 14. Let V be a Q-Hodge structure of type $\{(0, -1), (-1, 0)\}$, such that $\operatorname{End}_{\mathbb{Q}-\operatorname{Hdg}}(V)$ contains a imaginary quadratic field K. Decompose $V^{-1,0}$ as

$$V^{-1,0} = V_0^{-1,0} \oplus V_1^{-1,0}$$

such that K operates on $V_0^{-1,0}$ via an embedding $\sigma: K \hookrightarrow \mathbb{C}$, and K operates on $V_1^{-1,0}$ via the complex conjugate of σ . Prove that if the dimensions n_0, n_1 of $V_0^{-1,0}, V_1^{-1,0}$ are relatively prime, then the Mumford-Tate group MT(V) is isomorphic to GL(V). (Note: Problems 13 and 14 are taken from *Serre, Proc. Cof. Local Fields, Driebergen,* 118–131, 1966.)