
Notes Jacobson rings

§1. Definitions and Lemmas

(1.1) Definition An integral domain R is a Goldman domain if there exists a finite number
of non-zero elements u1, . . . , un such that R[u−1

1 , . . . , u−1
n ] = K, the field of fractions of R.

Notice that then K = R[u−1], where u =
∏

i ui.

(1.2) Lemma Let R be a Goldman domain with fraction field K, S is an R-subalgebra of K.
Then S is also a Goldman domain.

(1.3) Definition Let R be a commutative ring. A prime ideal P ⊂ R is an Goldman ideal if
R/P is a Goldman domain.

(1.4) Definition A commutative ring R is said to be a Jacobson ring if every Goldman prime
ideal is a maximal ideal.

(1.5) Proposition Let R be a commutative ring and let u ∈ R be a non-unipotent element
of R. Then there exists a Goldman prime ideal P of R which does not contain u.

Proof. Let S = uN, let m be a maximal ideal of S−1R, and let P = m∩R. Then R1 := R/P
is an integral domain and R1[ū−1] ∼= S−1R/m] is isomorphic to the fraction field of R1.

(1.6) Corollary Let I be an ideal in a commutative ring R. Then
√

I is equal to the inter-
section of all Goldman prime ideals which contain I.

(1.7) Lemma Let R1 be an integral domain contained in a field L. If L is integral over R1,
then R1 is a field.

(1.8) Proposition Let R ⊂ S be integral domains such that S is a finitely generated R-
algebra which is integral over R. Let K, L be the field of fractions of R, S respectively. Then
R is a Goldman domain if and only if S is a Goldman domain.

Proof. Let S = R[v1, . . . vm]with vi ∈ S. Suppose first that K = R[u−1] with u ∈ R. Then
S[u−1] is an integral domain which is algebraic over K and generated by v1, . . . , vm, hence
S[u−1] is a field, necessarily equal to L.

Conversely, assume that S is a Goldman domain and L = S[v−1], v ∈ S. Then after
adjoining a finite number of elements Let ai be the leading coefficient of an algebraic equations
of vi over R, i = 1, . . . ,m; let a be the leading coefficient of an algebraic equation of v−1 over
R. Let R1 = R[a−1

1 , . . . , a−1
m , a] ⊂ L, an integral domain finitely generated over R. Then

L = R1[v1, . . . , vm, v−1], and the R1-generators v1, . . . , vm, v−1] are integral over R1. Hence
R1 is a field by Lemma 1.7. So R is a Goldman domain.
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(1.9) Proposition Let R be a commutative ring and let P be a prime ideal of R. Then P is
a Goldman ideal if and only if it is the contraction of a maximal ideal in the polynomial ring
R[x] (resp. the polynomial ring R[x1, . . . , xn] ).

(1.10) Theorem A commutative ring R is a Jacobson ring if and only if the polynomial ring
R[x] is a Jacobson ring.

Proof. The “if” part is obvious. Assume now that R is a Jacobson ring and P is a Goldman
prime ideal of R[x]. Let Q = P ∩R. Consider R1 := R/Q ⊂ R[x]/P = R1[x̄] = R2. Since R2

is a Goldman domain by assumption, so is R1 by Prop. 1.8. Therefore Q is a maximal ideal
of R and R1 is a field, because R is a Jacobson ring. The domain R1[x̄] is a quotient of a
polynomial ring over the field R1, hence R1[x̄] is a field, i.e. Q is a maximal ideal.

(1.11) Corollary (Nullstellensatz) Let K be an algebraically field.

(i) Every maximal ideal of K[x1, . . . , xn] is of the form (x1 − a1, . . . , xn − an) for some
a = (a1, . . . , an) ∈ Kn.

(ii) Let I be an ideal in K[x1, . . . , xn]. Then the radical
√

I of I consists of all polynomials
f(x) such that f(a) = 0 for all common zeroes a = (a1, . . . , an) of I.
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