Notes Jacobson rings

§1. Definitions and Lemmas

(1.1) Definition An integral domain R is a *Goldman domain* if there exists a finite number of non-zero elements u_1, \ldots, u_n such that $R[u_1^{-1}, \ldots, u_n^{-1}] = K$, the field of fractions of R. Notice that then $K = R[u^{-1}]$, where $u = \prod_i u_i$.

(1.2) Lemma Let R be a Goldman domain with fraction field K, S is an R-subalgebra of K. Then S is also a Goldman domain.

(1.3) Definition Let R be a commutative ring. A prime ideal $P \subset R$ is an Goldman ideal if R/P is a Goldman domain.

(1.4) **Definition** A commutative ring R is said to be a *Jacobson ring* if every Goldman prime ideal is a maximal ideal.

(1.5) Proposition Let R be a commutative ring and let $u \in R$ be a non-unipotent element of R. Then there exists a Goldman prime ideal P of R which does not contain u.

PROOF. Let $S = u^{\mathbb{N}}$, let \mathfrak{m} be a maximal ideal of $S^{-1}R$, and let $P = \mathfrak{m} \cap R$. Then $R_1 := R/P$ is an integral domain and $R_1[\bar{u}^{-1}] \cong S^{-1}R/\mathfrak{m}$ is isomorphic to the fraction field of R_1 .

(1.6) Corollary Let I be an ideal in a commutative ring R. Then \sqrt{I} is equal to the intersection of all Goldman prime ideals which contain I.

(1.7) Lemma Let R_1 be an integral domain contained in a field L. If L is integral over R_1 , then R_1 is a field.

(1.8) Proposition Let $R \subset S$ be integral domains such that S is a finitely generated Ralgebra which is integral over R. Let K, L be the field of fractions of R, S respectively. Then R is a Goldman domain if and only if S is a Goldman domain.

PROOF. Let $S = R[v_1, \ldots, v_m]$ with $v_i \in S$. Suppose first that $K = R[u^{-1}]$ with $u \in R$. Then $S[u^{-1}]$ is an integral domain which is algebraic over K and generated by v_1, \ldots, v_m , hence $S[u^{-1}]$ is a field, necessarily equal to L.

Conversely, assume that S is a Goldman domain and $L = S[v^{-1}], v \in S$. Then after adjoining a finite number of elements Let a_i be the leading coefficient of an algebraic equations of v_i over R, i = 1, ..., m; let a be the leading coefficient of an algebraic equation of v^{-1} over R. Let $R_1 = R[a_1^{-1}, ..., a_m^{-1}, a] \subset L$, an integral domain finitely generated over R. Then $L = R_1[v_1, ..., v_m, v^{-1}]$, and the R_1 -generators $v_1, ..., v_m, v^{-1}]$ are integral over R_1 . Hence R_1 is a field by Lemma 1.7. So R is a Goldman domain. \Box (1.9) Proposition Let R be a commutative ring and let P be a prime ideal of R. Then P is a Goldman ideal if and only if it is the contraction of a maximal ideal in the polynomial ring R[x] (resp. the polynomial ring $R[x_1, \ldots, x_n]$).

(1.10) Theorem A commutative ring R is a Jacobson ring if and only if the polynomial ring R[x] is a Jacobson ring.

PROOF. The "if" part is obvious. Assume now that R is a Jacobson ring and P is a Goldman prime ideal of R[x]. Let $Q = P \cap R$. Consider $R_1 := R/Q \subset R[x]/P = R_1[\bar{x}] = R_2$. Since R_2 is a Goldman domain by assumption, so is R_1 by Prop. 1.8. Therefore Q is a maximal ideal of R and R_1 is a field, because R is a Jacobson ring. The domain $R_1[\bar{x}]$ is a quotient of a polynomial ring over the field R_1 , hence $R_1[\bar{x}]$ is a field, i.e. Q is a maximal ideal. \Box

(1.11) Corollary (Nullstellensatz) Let K be an algebraically field.

- (i) Every maximal ideal of $K[x_1, \ldots, x_n]$ is of the form $(x_1 a_1, \ldots, x_n a_n)$ for some $\underline{a} = (a_1, \ldots, a_n) \in K^n$.
- (ii) Let I be an ideal in $K[x_1, \ldots, x_n]$. Then the radical \sqrt{I} of I consists of all polynomials $f(\underline{x})$ such that $f(\underline{a}) = 0$ for all common zeroes $\underline{a} = (a_1, \ldots, a_n)$ of I.